1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/cputlb.h" 27 #include "exec/memory-internal.h" 28 #include "exec/ram_addr.h" 29 #include "tcg/tcg.h" 30 #include "qemu/error-report.h" 31 #include "exec/log.h" 32 #include "exec/helper-proto-common.h" 33 #include "qemu/atomic.h" 34 #include "qemu/atomic128.h" 35 #include "exec/translate-all.h" 36 #include "trace.h" 37 #include "tb-hash.h" 38 #include "internal.h" 39 #ifdef CONFIG_PLUGIN 40 #include "qemu/plugin-memory.h" 41 #endif 42 #include "tcg/tcg-ldst.h" 43 #include "tcg/oversized-guest.h" 44 45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 46 /* #define DEBUG_TLB */ 47 /* #define DEBUG_TLB_LOG */ 48 49 #ifdef DEBUG_TLB 50 # define DEBUG_TLB_GATE 1 51 # ifdef DEBUG_TLB_LOG 52 # define DEBUG_TLB_LOG_GATE 1 53 # else 54 # define DEBUG_TLB_LOG_GATE 0 55 # endif 56 #else 57 # define DEBUG_TLB_GATE 0 58 # define DEBUG_TLB_LOG_GATE 0 59 #endif 60 61 #define tlb_debug(fmt, ...) do { \ 62 if (DEBUG_TLB_LOG_GATE) { \ 63 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 64 ## __VA_ARGS__); \ 65 } else if (DEBUG_TLB_GATE) { \ 66 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 67 } \ 68 } while (0) 69 70 #define assert_cpu_is_self(cpu) do { \ 71 if (DEBUG_TLB_GATE) { \ 72 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 73 } \ 74 } while (0) 75 76 /* run_on_cpu_data.target_ptr should always be big enough for a 77 * target_ulong even on 32 bit builds */ 78 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); 79 80 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 81 */ 82 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 83 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 84 85 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 86 { 87 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 88 } 89 90 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 91 { 92 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 93 } 94 95 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 96 size_t max_entries) 97 { 98 desc->window_begin_ns = ns; 99 desc->window_max_entries = max_entries; 100 } 101 102 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr) 103 { 104 CPUJumpCache *jc = cpu->tb_jmp_cache; 105 int i, i0; 106 107 if (unlikely(!jc)) { 108 return; 109 } 110 111 i0 = tb_jmp_cache_hash_page(page_addr); 112 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 113 qatomic_set(&jc->array[i0 + i].tb, NULL); 114 } 115 } 116 117 /** 118 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 119 * @desc: The CPUTLBDesc portion of the TLB 120 * @fast: The CPUTLBDescFast portion of the same TLB 121 * 122 * Called with tlb_lock_held. 123 * 124 * We have two main constraints when resizing a TLB: (1) we only resize it 125 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 126 * the array or unnecessarily flushing it), which means we do not control how 127 * frequently the resizing can occur; (2) we don't have access to the guest's 128 * future scheduling decisions, and therefore have to decide the magnitude of 129 * the resize based on past observations. 130 * 131 * In general, a memory-hungry process can benefit greatly from an appropriately 132 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 133 * we just have to make the TLB as large as possible; while an oversized TLB 134 * results in minimal TLB miss rates, it also takes longer to be flushed 135 * (flushes can be _very_ frequent), and the reduced locality can also hurt 136 * performance. 137 * 138 * To achieve near-optimal performance for all kinds of workloads, we: 139 * 140 * 1. Aggressively increase the size of the TLB when the use rate of the 141 * TLB being flushed is high, since it is likely that in the near future this 142 * memory-hungry process will execute again, and its memory hungriness will 143 * probably be similar. 144 * 145 * 2. Slowly reduce the size of the TLB as the use rate declines over a 146 * reasonably large time window. The rationale is that if in such a time window 147 * we have not observed a high TLB use rate, it is likely that we won't observe 148 * it in the near future. In that case, once a time window expires we downsize 149 * the TLB to match the maximum use rate observed in the window. 150 * 151 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 152 * since in that range performance is likely near-optimal. Recall that the TLB 153 * is direct mapped, so we want the use rate to be low (or at least not too 154 * high), since otherwise we are likely to have a significant amount of 155 * conflict misses. 156 */ 157 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 158 int64_t now) 159 { 160 size_t old_size = tlb_n_entries(fast); 161 size_t rate; 162 size_t new_size = old_size; 163 int64_t window_len_ms = 100; 164 int64_t window_len_ns = window_len_ms * 1000 * 1000; 165 bool window_expired = now > desc->window_begin_ns + window_len_ns; 166 167 if (desc->n_used_entries > desc->window_max_entries) { 168 desc->window_max_entries = desc->n_used_entries; 169 } 170 rate = desc->window_max_entries * 100 / old_size; 171 172 if (rate > 70) { 173 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 174 } else if (rate < 30 && window_expired) { 175 size_t ceil = pow2ceil(desc->window_max_entries); 176 size_t expected_rate = desc->window_max_entries * 100 / ceil; 177 178 /* 179 * Avoid undersizing when the max number of entries seen is just below 180 * a pow2. For instance, if max_entries == 1025, the expected use rate 181 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 182 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 183 * later. Thus, make sure that the expected use rate remains below 70%. 184 * (and since we double the size, that means the lowest rate we'd 185 * expect to get is 35%, which is still in the 30-70% range where 186 * we consider that the size is appropriate.) 187 */ 188 if (expected_rate > 70) { 189 ceil *= 2; 190 } 191 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 192 } 193 194 if (new_size == old_size) { 195 if (window_expired) { 196 tlb_window_reset(desc, now, desc->n_used_entries); 197 } 198 return; 199 } 200 201 g_free(fast->table); 202 g_free(desc->fulltlb); 203 204 tlb_window_reset(desc, now, 0); 205 /* desc->n_used_entries is cleared by the caller */ 206 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 207 fast->table = g_try_new(CPUTLBEntry, new_size); 208 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 209 210 /* 211 * If the allocations fail, try smaller sizes. We just freed some 212 * memory, so going back to half of new_size has a good chance of working. 213 * Increased memory pressure elsewhere in the system might cause the 214 * allocations to fail though, so we progressively reduce the allocation 215 * size, aborting if we cannot even allocate the smallest TLB we support. 216 */ 217 while (fast->table == NULL || desc->fulltlb == NULL) { 218 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 219 error_report("%s: %s", __func__, strerror(errno)); 220 abort(); 221 } 222 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 223 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 224 225 g_free(fast->table); 226 g_free(desc->fulltlb); 227 fast->table = g_try_new(CPUTLBEntry, new_size); 228 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 229 } 230 } 231 232 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 233 { 234 desc->n_used_entries = 0; 235 desc->large_page_addr = -1; 236 desc->large_page_mask = -1; 237 desc->vindex = 0; 238 memset(fast->table, -1, sizeof_tlb(fast)); 239 memset(desc->vtable, -1, sizeof(desc->vtable)); 240 } 241 242 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx, 243 int64_t now) 244 { 245 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; 246 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx]; 247 248 tlb_mmu_resize_locked(desc, fast, now); 249 tlb_mmu_flush_locked(desc, fast); 250 } 251 252 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 253 { 254 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 255 256 tlb_window_reset(desc, now, 0); 257 desc->n_used_entries = 0; 258 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 259 fast->table = g_new(CPUTLBEntry, n_entries); 260 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 261 tlb_mmu_flush_locked(desc, fast); 262 } 263 264 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 265 { 266 env_tlb(env)->d[mmu_idx].n_used_entries++; 267 } 268 269 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 270 { 271 env_tlb(env)->d[mmu_idx].n_used_entries--; 272 } 273 274 void tlb_init(CPUState *cpu) 275 { 276 CPUArchState *env = cpu->env_ptr; 277 int64_t now = get_clock_realtime(); 278 int i; 279 280 qemu_spin_init(&env_tlb(env)->c.lock); 281 282 /* All tlbs are initialized flushed. */ 283 env_tlb(env)->c.dirty = 0; 284 285 for (i = 0; i < NB_MMU_MODES; i++) { 286 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now); 287 } 288 } 289 290 void tlb_destroy(CPUState *cpu) 291 { 292 CPUArchState *env = cpu->env_ptr; 293 int i; 294 295 qemu_spin_destroy(&env_tlb(env)->c.lock); 296 for (i = 0; i < NB_MMU_MODES; i++) { 297 CPUTLBDesc *desc = &env_tlb(env)->d[i]; 298 CPUTLBDescFast *fast = &env_tlb(env)->f[i]; 299 300 g_free(fast->table); 301 g_free(desc->fulltlb); 302 } 303 } 304 305 /* flush_all_helper: run fn across all cpus 306 * 307 * If the wait flag is set then the src cpu's helper will be queued as 308 * "safe" work and the loop exited creating a synchronisation point 309 * where all queued work will be finished before execution starts 310 * again. 311 */ 312 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 313 run_on_cpu_data d) 314 { 315 CPUState *cpu; 316 317 CPU_FOREACH(cpu) { 318 if (cpu != src) { 319 async_run_on_cpu(cpu, fn, d); 320 } 321 } 322 } 323 324 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 325 { 326 CPUState *cpu; 327 size_t full = 0, part = 0, elide = 0; 328 329 CPU_FOREACH(cpu) { 330 CPUArchState *env = cpu->env_ptr; 331 332 full += qatomic_read(&env_tlb(env)->c.full_flush_count); 333 part += qatomic_read(&env_tlb(env)->c.part_flush_count); 334 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count); 335 } 336 *pfull = full; 337 *ppart = part; 338 *pelide = elide; 339 } 340 341 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 342 { 343 CPUArchState *env = cpu->env_ptr; 344 uint16_t asked = data.host_int; 345 uint16_t all_dirty, work, to_clean; 346 int64_t now = get_clock_realtime(); 347 348 assert_cpu_is_self(cpu); 349 350 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 351 352 qemu_spin_lock(&env_tlb(env)->c.lock); 353 354 all_dirty = env_tlb(env)->c.dirty; 355 to_clean = asked & all_dirty; 356 all_dirty &= ~to_clean; 357 env_tlb(env)->c.dirty = all_dirty; 358 359 for (work = to_clean; work != 0; work &= work - 1) { 360 int mmu_idx = ctz32(work); 361 tlb_flush_one_mmuidx_locked(env, mmu_idx, now); 362 } 363 364 qemu_spin_unlock(&env_tlb(env)->c.lock); 365 366 tcg_flush_jmp_cache(cpu); 367 368 if (to_clean == ALL_MMUIDX_BITS) { 369 qatomic_set(&env_tlb(env)->c.full_flush_count, 370 env_tlb(env)->c.full_flush_count + 1); 371 } else { 372 qatomic_set(&env_tlb(env)->c.part_flush_count, 373 env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); 374 if (to_clean != asked) { 375 qatomic_set(&env_tlb(env)->c.elide_flush_count, 376 env_tlb(env)->c.elide_flush_count + 377 ctpop16(asked & ~to_clean)); 378 } 379 } 380 } 381 382 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 383 { 384 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 385 386 if (cpu->created && !qemu_cpu_is_self(cpu)) { 387 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 388 RUN_ON_CPU_HOST_INT(idxmap)); 389 } else { 390 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 391 } 392 } 393 394 void tlb_flush(CPUState *cpu) 395 { 396 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 397 } 398 399 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 400 { 401 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 402 403 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 404 405 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 406 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 407 } 408 409 void tlb_flush_all_cpus(CPUState *src_cpu) 410 { 411 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 412 } 413 414 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 415 { 416 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 417 418 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 419 420 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 421 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 422 } 423 424 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 425 { 426 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 427 } 428 429 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 430 vaddr page, vaddr mask) 431 { 432 page &= mask; 433 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 434 435 return (page == (tlb_entry->addr_read & mask) || 436 page == (tlb_addr_write(tlb_entry) & mask) || 437 page == (tlb_entry->addr_code & mask)); 438 } 439 440 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page) 441 { 442 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 443 } 444 445 /** 446 * tlb_entry_is_empty - return true if the entry is not in use 447 * @te: pointer to CPUTLBEntry 448 */ 449 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 450 { 451 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 452 } 453 454 /* Called with tlb_c.lock held */ 455 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 456 vaddr page, 457 vaddr mask) 458 { 459 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 460 memset(tlb_entry, -1, sizeof(*tlb_entry)); 461 return true; 462 } 463 return false; 464 } 465 466 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page) 467 { 468 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 469 } 470 471 /* Called with tlb_c.lock held */ 472 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx, 473 vaddr page, 474 vaddr mask) 475 { 476 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; 477 int k; 478 479 assert_cpu_is_self(env_cpu(env)); 480 for (k = 0; k < CPU_VTLB_SIZE; k++) { 481 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 482 tlb_n_used_entries_dec(env, mmu_idx); 483 } 484 } 485 } 486 487 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 488 vaddr page) 489 { 490 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1); 491 } 492 493 static void tlb_flush_page_locked(CPUArchState *env, int midx, vaddr page) 494 { 495 vaddr lp_addr = env_tlb(env)->d[midx].large_page_addr; 496 vaddr lp_mask = env_tlb(env)->d[midx].large_page_mask; 497 498 /* Check if we need to flush due to large pages. */ 499 if ((page & lp_mask) == lp_addr) { 500 tlb_debug("forcing full flush midx %d (%" 501 VADDR_PRIx "/%" VADDR_PRIx ")\n", 502 midx, lp_addr, lp_mask); 503 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 504 } else { 505 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 506 tlb_n_used_entries_dec(env, midx); 507 } 508 tlb_flush_vtlb_page_locked(env, midx, page); 509 } 510 } 511 512 /** 513 * tlb_flush_page_by_mmuidx_async_0: 514 * @cpu: cpu on which to flush 515 * @addr: page of virtual address to flush 516 * @idxmap: set of mmu_idx to flush 517 * 518 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 519 * at @addr from the tlbs indicated by @idxmap from @cpu. 520 */ 521 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 522 vaddr addr, 523 uint16_t idxmap) 524 { 525 CPUArchState *env = cpu->env_ptr; 526 int mmu_idx; 527 528 assert_cpu_is_self(cpu); 529 530 tlb_debug("page addr: %" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap); 531 532 qemu_spin_lock(&env_tlb(env)->c.lock); 533 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 534 if ((idxmap >> mmu_idx) & 1) { 535 tlb_flush_page_locked(env, mmu_idx, addr); 536 } 537 } 538 qemu_spin_unlock(&env_tlb(env)->c.lock); 539 540 /* 541 * Discard jump cache entries for any tb which might potentially 542 * overlap the flushed page, which includes the previous. 543 */ 544 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 545 tb_jmp_cache_clear_page(cpu, addr); 546 } 547 548 /** 549 * tlb_flush_page_by_mmuidx_async_1: 550 * @cpu: cpu on which to flush 551 * @data: encoded addr + idxmap 552 * 553 * Helper for tlb_flush_page_by_mmuidx and friends, called through 554 * async_run_on_cpu. The idxmap parameter is encoded in the page 555 * offset of the target_ptr field. This limits the set of mmu_idx 556 * that can be passed via this method. 557 */ 558 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 559 run_on_cpu_data data) 560 { 561 vaddr addr_and_idxmap = data.target_ptr; 562 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK; 563 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 564 565 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 566 } 567 568 typedef struct { 569 vaddr addr; 570 uint16_t idxmap; 571 } TLBFlushPageByMMUIdxData; 572 573 /** 574 * tlb_flush_page_by_mmuidx_async_2: 575 * @cpu: cpu on which to flush 576 * @data: allocated addr + idxmap 577 * 578 * Helper for tlb_flush_page_by_mmuidx and friends, called through 579 * async_run_on_cpu. The addr+idxmap parameters are stored in a 580 * TLBFlushPageByMMUIdxData structure that has been allocated 581 * specifically for this helper. Free the structure when done. 582 */ 583 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 584 run_on_cpu_data data) 585 { 586 TLBFlushPageByMMUIdxData *d = data.host_ptr; 587 588 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 589 g_free(d); 590 } 591 592 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap) 593 { 594 tlb_debug("addr: %" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap); 595 596 /* This should already be page aligned */ 597 addr &= TARGET_PAGE_MASK; 598 599 if (qemu_cpu_is_self(cpu)) { 600 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 601 } else if (idxmap < TARGET_PAGE_SIZE) { 602 /* 603 * Most targets have only a few mmu_idx. In the case where 604 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 605 * allocating memory for this operation. 606 */ 607 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 608 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 609 } else { 610 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 611 612 /* Otherwise allocate a structure, freed by the worker. */ 613 d->addr = addr; 614 d->idxmap = idxmap; 615 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 616 RUN_ON_CPU_HOST_PTR(d)); 617 } 618 } 619 620 void tlb_flush_page(CPUState *cpu, vaddr addr) 621 { 622 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 623 } 624 625 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr, 626 uint16_t idxmap) 627 { 628 tlb_debug("addr: %" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 629 630 /* This should already be page aligned */ 631 addr &= TARGET_PAGE_MASK; 632 633 /* 634 * Allocate memory to hold addr+idxmap only when needed. 635 * See tlb_flush_page_by_mmuidx for details. 636 */ 637 if (idxmap < TARGET_PAGE_SIZE) { 638 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 639 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 640 } else { 641 CPUState *dst_cpu; 642 643 /* Allocate a separate data block for each destination cpu. */ 644 CPU_FOREACH(dst_cpu) { 645 if (dst_cpu != src_cpu) { 646 TLBFlushPageByMMUIdxData *d 647 = g_new(TLBFlushPageByMMUIdxData, 1); 648 649 d->addr = addr; 650 d->idxmap = idxmap; 651 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 652 RUN_ON_CPU_HOST_PTR(d)); 653 } 654 } 655 } 656 657 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 658 } 659 660 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr) 661 { 662 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 663 } 664 665 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 666 vaddr addr, 667 uint16_t idxmap) 668 { 669 tlb_debug("addr: %" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 670 671 /* This should already be page aligned */ 672 addr &= TARGET_PAGE_MASK; 673 674 /* 675 * Allocate memory to hold addr+idxmap only when needed. 676 * See tlb_flush_page_by_mmuidx for details. 677 */ 678 if (idxmap < TARGET_PAGE_SIZE) { 679 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 680 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 681 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 682 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 683 } else { 684 CPUState *dst_cpu; 685 TLBFlushPageByMMUIdxData *d; 686 687 /* Allocate a separate data block for each destination cpu. */ 688 CPU_FOREACH(dst_cpu) { 689 if (dst_cpu != src_cpu) { 690 d = g_new(TLBFlushPageByMMUIdxData, 1); 691 d->addr = addr; 692 d->idxmap = idxmap; 693 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 694 RUN_ON_CPU_HOST_PTR(d)); 695 } 696 } 697 698 d = g_new(TLBFlushPageByMMUIdxData, 1); 699 d->addr = addr; 700 d->idxmap = idxmap; 701 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 702 RUN_ON_CPU_HOST_PTR(d)); 703 } 704 } 705 706 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr) 707 { 708 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 709 } 710 711 static void tlb_flush_range_locked(CPUArchState *env, int midx, 712 vaddr addr, vaddr len, 713 unsigned bits) 714 { 715 CPUTLBDesc *d = &env_tlb(env)->d[midx]; 716 CPUTLBDescFast *f = &env_tlb(env)->f[midx]; 717 vaddr mask = MAKE_64BIT_MASK(0, bits); 718 719 /* 720 * If @bits is smaller than the tlb size, there may be multiple entries 721 * within the TLB; otherwise all addresses that match under @mask hit 722 * the same TLB entry. 723 * TODO: Perhaps allow bits to be a few bits less than the size. 724 * For now, just flush the entire TLB. 725 * 726 * If @len is larger than the tlb size, then it will take longer to 727 * test all of the entries in the TLB than it will to flush it all. 728 */ 729 if (mask < f->mask || len > f->mask) { 730 tlb_debug("forcing full flush midx %d (" 731 "%" VADDR_PRIx "/%" VADDR_PRIx "+%" VADDR_PRIx ")\n", 732 midx, addr, mask, len); 733 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 734 return; 735 } 736 737 /* 738 * Check if we need to flush due to large pages. 739 * Because large_page_mask contains all 1's from the msb, 740 * we only need to test the end of the range. 741 */ 742 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 743 tlb_debug("forcing full flush midx %d (" 744 "%" VADDR_PRIx "/%" VADDR_PRIx ")\n", 745 midx, d->large_page_addr, d->large_page_mask); 746 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 747 return; 748 } 749 750 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) { 751 vaddr page = addr + i; 752 CPUTLBEntry *entry = tlb_entry(env, midx, page); 753 754 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 755 tlb_n_used_entries_dec(env, midx); 756 } 757 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask); 758 } 759 } 760 761 typedef struct { 762 vaddr addr; 763 vaddr len; 764 uint16_t idxmap; 765 uint16_t bits; 766 } TLBFlushRangeData; 767 768 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 769 TLBFlushRangeData d) 770 { 771 CPUArchState *env = cpu->env_ptr; 772 int mmu_idx; 773 774 assert_cpu_is_self(cpu); 775 776 tlb_debug("range: %" VADDR_PRIx "/%u+%" VADDR_PRIx " mmu_map:0x%x\n", 777 d.addr, d.bits, d.len, d.idxmap); 778 779 qemu_spin_lock(&env_tlb(env)->c.lock); 780 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 781 if ((d.idxmap >> mmu_idx) & 1) { 782 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits); 783 } 784 } 785 qemu_spin_unlock(&env_tlb(env)->c.lock); 786 787 /* 788 * If the length is larger than the jump cache size, then it will take 789 * longer to clear each entry individually than it will to clear it all. 790 */ 791 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 792 tcg_flush_jmp_cache(cpu); 793 return; 794 } 795 796 /* 797 * Discard jump cache entries for any tb which might potentially 798 * overlap the flushed pages, which includes the previous. 799 */ 800 d.addr -= TARGET_PAGE_SIZE; 801 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 802 tb_jmp_cache_clear_page(cpu, d.addr); 803 d.addr += TARGET_PAGE_SIZE; 804 } 805 } 806 807 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 808 run_on_cpu_data data) 809 { 810 TLBFlushRangeData *d = data.host_ptr; 811 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 812 g_free(d); 813 } 814 815 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr, 816 vaddr len, uint16_t idxmap, 817 unsigned bits) 818 { 819 TLBFlushRangeData d; 820 821 /* 822 * If all bits are significant, and len is small, 823 * this devolves to tlb_flush_page. 824 */ 825 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 826 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 827 return; 828 } 829 /* If no page bits are significant, this devolves to tlb_flush. */ 830 if (bits < TARGET_PAGE_BITS) { 831 tlb_flush_by_mmuidx(cpu, idxmap); 832 return; 833 } 834 835 /* This should already be page aligned */ 836 d.addr = addr & TARGET_PAGE_MASK; 837 d.len = len; 838 d.idxmap = idxmap; 839 d.bits = bits; 840 841 if (qemu_cpu_is_self(cpu)) { 842 tlb_flush_range_by_mmuidx_async_0(cpu, d); 843 } else { 844 /* Otherwise allocate a structure, freed by the worker. */ 845 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 846 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 847 RUN_ON_CPU_HOST_PTR(p)); 848 } 849 } 850 851 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr, 852 uint16_t idxmap, unsigned bits) 853 { 854 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 855 } 856 857 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 858 vaddr addr, vaddr len, 859 uint16_t idxmap, unsigned bits) 860 { 861 TLBFlushRangeData d; 862 CPUState *dst_cpu; 863 864 /* 865 * If all bits are significant, and len is small, 866 * this devolves to tlb_flush_page. 867 */ 868 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 869 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 870 return; 871 } 872 /* If no page bits are significant, this devolves to tlb_flush. */ 873 if (bits < TARGET_PAGE_BITS) { 874 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 875 return; 876 } 877 878 /* This should already be page aligned */ 879 d.addr = addr & TARGET_PAGE_MASK; 880 d.len = len; 881 d.idxmap = idxmap; 882 d.bits = bits; 883 884 /* Allocate a separate data block for each destination cpu. */ 885 CPU_FOREACH(dst_cpu) { 886 if (dst_cpu != src_cpu) { 887 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 888 async_run_on_cpu(dst_cpu, 889 tlb_flush_range_by_mmuidx_async_1, 890 RUN_ON_CPU_HOST_PTR(p)); 891 } 892 } 893 894 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 895 } 896 897 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 898 vaddr addr, uint16_t idxmap, 899 unsigned bits) 900 { 901 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 902 idxmap, bits); 903 } 904 905 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 906 vaddr addr, 907 vaddr len, 908 uint16_t idxmap, 909 unsigned bits) 910 { 911 TLBFlushRangeData d, *p; 912 CPUState *dst_cpu; 913 914 /* 915 * If all bits are significant, and len is small, 916 * this devolves to tlb_flush_page. 917 */ 918 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 919 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 920 return; 921 } 922 /* If no page bits are significant, this devolves to tlb_flush. */ 923 if (bits < TARGET_PAGE_BITS) { 924 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 925 return; 926 } 927 928 /* This should already be page aligned */ 929 d.addr = addr & TARGET_PAGE_MASK; 930 d.len = len; 931 d.idxmap = idxmap; 932 d.bits = bits; 933 934 /* Allocate a separate data block for each destination cpu. */ 935 CPU_FOREACH(dst_cpu) { 936 if (dst_cpu != src_cpu) { 937 p = g_memdup(&d, sizeof(d)); 938 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 939 RUN_ON_CPU_HOST_PTR(p)); 940 } 941 } 942 943 p = g_memdup(&d, sizeof(d)); 944 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 945 RUN_ON_CPU_HOST_PTR(p)); 946 } 947 948 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 949 vaddr addr, 950 uint16_t idxmap, 951 unsigned bits) 952 { 953 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 954 idxmap, bits); 955 } 956 957 /* update the TLBs so that writes to code in the virtual page 'addr' 958 can be detected */ 959 void tlb_protect_code(ram_addr_t ram_addr) 960 { 961 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 962 TARGET_PAGE_SIZE, 963 DIRTY_MEMORY_CODE); 964 } 965 966 /* update the TLB so that writes in physical page 'phys_addr' are no longer 967 tested for self modifying code */ 968 void tlb_unprotect_code(ram_addr_t ram_addr) 969 { 970 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 971 } 972 973 974 /* 975 * Dirty write flag handling 976 * 977 * When the TCG code writes to a location it looks up the address in 978 * the TLB and uses that data to compute the final address. If any of 979 * the lower bits of the address are set then the slow path is forced. 980 * There are a number of reasons to do this but for normal RAM the 981 * most usual is detecting writes to code regions which may invalidate 982 * generated code. 983 * 984 * Other vCPUs might be reading their TLBs during guest execution, so we update 985 * te->addr_write with qatomic_set. We don't need to worry about this for 986 * oversized guests as MTTCG is disabled for them. 987 * 988 * Called with tlb_c.lock held. 989 */ 990 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 991 uintptr_t start, uintptr_t length) 992 { 993 uintptr_t addr = tlb_entry->addr_write; 994 995 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 996 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 997 addr &= TARGET_PAGE_MASK; 998 addr += tlb_entry->addend; 999 if ((addr - start) < length) { 1000 #if TARGET_LONG_BITS == 32 1001 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write; 1002 ptr_write += HOST_BIG_ENDIAN; 1003 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY); 1004 #elif TCG_OVERSIZED_GUEST 1005 tlb_entry->addr_write |= TLB_NOTDIRTY; 1006 #else 1007 qatomic_set(&tlb_entry->addr_write, 1008 tlb_entry->addr_write | TLB_NOTDIRTY); 1009 #endif 1010 } 1011 } 1012 } 1013 1014 /* 1015 * Called with tlb_c.lock held. 1016 * Called only from the vCPU context, i.e. the TLB's owner thread. 1017 */ 1018 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 1019 { 1020 *d = *s; 1021 } 1022 1023 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1024 * the target vCPU). 1025 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1026 * thing actually updated is the target TLB entry ->addr_write flags. 1027 */ 1028 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1029 { 1030 CPUArchState *env; 1031 1032 int mmu_idx; 1033 1034 env = cpu->env_ptr; 1035 qemu_spin_lock(&env_tlb(env)->c.lock); 1036 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1037 unsigned int i; 1038 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]); 1039 1040 for (i = 0; i < n; i++) { 1041 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], 1042 start1, length); 1043 } 1044 1045 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1046 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], 1047 start1, length); 1048 } 1049 } 1050 qemu_spin_unlock(&env_tlb(env)->c.lock); 1051 } 1052 1053 /* Called with tlb_c.lock held */ 1054 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1055 vaddr addr) 1056 { 1057 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) { 1058 tlb_entry->addr_write = addr; 1059 } 1060 } 1061 1062 /* update the TLB corresponding to virtual page vaddr 1063 so that it is no longer dirty */ 1064 void tlb_set_dirty(CPUState *cpu, vaddr addr) 1065 { 1066 CPUArchState *env = cpu->env_ptr; 1067 int mmu_idx; 1068 1069 assert_cpu_is_self(cpu); 1070 1071 addr &= TARGET_PAGE_MASK; 1072 qemu_spin_lock(&env_tlb(env)->c.lock); 1073 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1074 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, addr), addr); 1075 } 1076 1077 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1078 int k; 1079 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1080 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], addr); 1081 } 1082 } 1083 qemu_spin_unlock(&env_tlb(env)->c.lock); 1084 } 1085 1086 /* Our TLB does not support large pages, so remember the area covered by 1087 large pages and trigger a full TLB flush if these are invalidated. */ 1088 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 1089 vaddr addr, uint64_t size) 1090 { 1091 vaddr lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; 1092 vaddr lp_mask = ~(size - 1); 1093 1094 if (lp_addr == (vaddr)-1) { 1095 /* No previous large page. */ 1096 lp_addr = addr; 1097 } else { 1098 /* Extend the existing region to include the new page. 1099 This is a compromise between unnecessary flushes and 1100 the cost of maintaining a full variable size TLB. */ 1101 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; 1102 while (((lp_addr ^ addr) & lp_mask) != 0) { 1103 lp_mask <<= 1; 1104 } 1105 } 1106 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1107 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; 1108 } 1109 1110 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent, 1111 target_ulong address, int flags, 1112 MMUAccessType access_type, bool enable) 1113 { 1114 if (enable) { 1115 address |= flags & TLB_FLAGS_MASK; 1116 flags &= TLB_SLOW_FLAGS_MASK; 1117 if (flags) { 1118 address |= TLB_FORCE_SLOW; 1119 } 1120 } else { 1121 address = -1; 1122 flags = 0; 1123 } 1124 ent->addr_idx[access_type] = address; 1125 full->slow_flags[access_type] = flags; 1126 } 1127 1128 /* 1129 * Add a new TLB entry. At most one entry for a given virtual address 1130 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1131 * supplied size is only used by tlb_flush_page. 1132 * 1133 * Called from TCG-generated code, which is under an RCU read-side 1134 * critical section. 1135 */ 1136 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1137 vaddr addr, CPUTLBEntryFull *full) 1138 { 1139 CPUArchState *env = cpu->env_ptr; 1140 CPUTLB *tlb = env_tlb(env); 1141 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1142 MemoryRegionSection *section; 1143 unsigned int index, read_flags, write_flags; 1144 uintptr_t addend; 1145 CPUTLBEntry *te, tn; 1146 hwaddr iotlb, xlat, sz, paddr_page; 1147 vaddr addr_page; 1148 int asidx, wp_flags, prot; 1149 bool is_ram, is_romd; 1150 1151 assert_cpu_is_self(cpu); 1152 1153 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1154 sz = TARGET_PAGE_SIZE; 1155 } else { 1156 sz = (hwaddr)1 << full->lg_page_size; 1157 tlb_add_large_page(env, mmu_idx, addr, sz); 1158 } 1159 addr_page = addr & TARGET_PAGE_MASK; 1160 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1161 1162 prot = full->prot; 1163 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1164 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1165 &xlat, &sz, full->attrs, &prot); 1166 assert(sz >= TARGET_PAGE_SIZE); 1167 1168 tlb_debug("vaddr=%" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx 1169 " prot=%x idx=%d\n", 1170 addr, full->phys_addr, prot, mmu_idx); 1171 1172 read_flags = 0; 1173 if (full->lg_page_size < TARGET_PAGE_BITS) { 1174 /* Repeat the MMU check and TLB fill on every access. */ 1175 read_flags |= TLB_INVALID_MASK; 1176 } 1177 if (full->attrs.byte_swap) { 1178 read_flags |= TLB_BSWAP; 1179 } 1180 1181 is_ram = memory_region_is_ram(section->mr); 1182 is_romd = memory_region_is_romd(section->mr); 1183 1184 if (is_ram || is_romd) { 1185 /* RAM and ROMD both have associated host memory. */ 1186 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1187 } else { 1188 /* I/O does not; force the host address to NULL. */ 1189 addend = 0; 1190 } 1191 1192 write_flags = read_flags; 1193 if (is_ram) { 1194 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1195 /* 1196 * Computing is_clean is expensive; avoid all that unless 1197 * the page is actually writable. 1198 */ 1199 if (prot & PAGE_WRITE) { 1200 if (section->readonly) { 1201 write_flags |= TLB_DISCARD_WRITE; 1202 } else if (cpu_physical_memory_is_clean(iotlb)) { 1203 write_flags |= TLB_NOTDIRTY; 1204 } 1205 } 1206 } else { 1207 /* I/O or ROMD */ 1208 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1209 /* 1210 * Writes to romd devices must go through MMIO to enable write. 1211 * Reads to romd devices go through the ram_ptr found above, 1212 * but of course reads to I/O must go through MMIO. 1213 */ 1214 write_flags |= TLB_MMIO; 1215 if (!is_romd) { 1216 read_flags = write_flags; 1217 } 1218 } 1219 1220 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page, 1221 TARGET_PAGE_SIZE); 1222 1223 index = tlb_index(env, mmu_idx, addr_page); 1224 te = tlb_entry(env, mmu_idx, addr_page); 1225 1226 /* 1227 * Hold the TLB lock for the rest of the function. We could acquire/release 1228 * the lock several times in the function, but it is faster to amortize the 1229 * acquisition cost by acquiring it just once. Note that this leads to 1230 * a longer critical section, but this is not a concern since the TLB lock 1231 * is unlikely to be contended. 1232 */ 1233 qemu_spin_lock(&tlb->c.lock); 1234 1235 /* Note that the tlb is no longer clean. */ 1236 tlb->c.dirty |= 1 << mmu_idx; 1237 1238 /* Make sure there's no cached translation for the new page. */ 1239 tlb_flush_vtlb_page_locked(env, mmu_idx, addr_page); 1240 1241 /* 1242 * Only evict the old entry to the victim tlb if it's for a 1243 * different page; otherwise just overwrite the stale data. 1244 */ 1245 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) { 1246 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1247 CPUTLBEntry *tv = &desc->vtable[vidx]; 1248 1249 /* Evict the old entry into the victim tlb. */ 1250 copy_tlb_helper_locked(tv, te); 1251 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1252 tlb_n_used_entries_dec(env, mmu_idx); 1253 } 1254 1255 /* refill the tlb */ 1256 /* 1257 * At this point iotlb contains a physical section number in the lower 1258 * TARGET_PAGE_BITS, and either 1259 * + the ram_addr_t of the page base of the target RAM (RAM) 1260 * + the offset within section->mr of the page base (I/O, ROMD) 1261 * We subtract addr_page (which is page aligned and thus won't 1262 * disturb the low bits) to give an offset which can be added to the 1263 * (non-page-aligned) vaddr of the eventual memory access to get 1264 * the MemoryRegion offset for the access. Note that the vaddr we 1265 * subtract here is that of the page base, and not the same as the 1266 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 1267 */ 1268 desc->fulltlb[index] = *full; 1269 full = &desc->fulltlb[index]; 1270 full->xlat_section = iotlb - addr_page; 1271 full->phys_addr = paddr_page; 1272 1273 /* Now calculate the new entry */ 1274 tn.addend = addend - addr_page; 1275 1276 tlb_set_compare(full, &tn, addr_page, read_flags, 1277 MMU_INST_FETCH, prot & PAGE_EXEC); 1278 1279 if (wp_flags & BP_MEM_READ) { 1280 read_flags |= TLB_WATCHPOINT; 1281 } 1282 tlb_set_compare(full, &tn, addr_page, read_flags, 1283 MMU_DATA_LOAD, prot & PAGE_READ); 1284 1285 if (prot & PAGE_WRITE_INV) { 1286 write_flags |= TLB_INVALID_MASK; 1287 } 1288 if (wp_flags & BP_MEM_WRITE) { 1289 write_flags |= TLB_WATCHPOINT; 1290 } 1291 tlb_set_compare(full, &tn, addr_page, write_flags, 1292 MMU_DATA_STORE, prot & PAGE_WRITE); 1293 1294 copy_tlb_helper_locked(te, &tn); 1295 tlb_n_used_entries_inc(env, mmu_idx); 1296 qemu_spin_unlock(&tlb->c.lock); 1297 } 1298 1299 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr, 1300 hwaddr paddr, MemTxAttrs attrs, int prot, 1301 int mmu_idx, uint64_t size) 1302 { 1303 CPUTLBEntryFull full = { 1304 .phys_addr = paddr, 1305 .attrs = attrs, 1306 .prot = prot, 1307 .lg_page_size = ctz64(size) 1308 }; 1309 1310 assert(is_power_of_2(size)); 1311 tlb_set_page_full(cpu, mmu_idx, addr, &full); 1312 } 1313 1314 void tlb_set_page(CPUState *cpu, vaddr addr, 1315 hwaddr paddr, int prot, 1316 int mmu_idx, uint64_t size) 1317 { 1318 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED, 1319 prot, mmu_idx, size); 1320 } 1321 1322 /* 1323 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1324 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1325 * be discarded and looked up again (e.g. via tlb_entry()). 1326 */ 1327 static void tlb_fill(CPUState *cpu, vaddr addr, int size, 1328 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1329 { 1330 bool ok; 1331 1332 /* 1333 * This is not a probe, so only valid return is success; failure 1334 * should result in exception + longjmp to the cpu loop. 1335 */ 1336 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size, 1337 access_type, mmu_idx, false, retaddr); 1338 assert(ok); 1339 } 1340 1341 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1342 MMUAccessType access_type, 1343 int mmu_idx, uintptr_t retaddr) 1344 { 1345 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1346 mmu_idx, retaddr); 1347 } 1348 1349 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 1350 vaddr addr, unsigned size, 1351 MMUAccessType access_type, 1352 int mmu_idx, MemTxAttrs attrs, 1353 MemTxResult response, 1354 uintptr_t retaddr) 1355 { 1356 CPUClass *cc = CPU_GET_CLASS(cpu); 1357 1358 if (!cpu->ignore_memory_transaction_failures && 1359 cc->tcg_ops->do_transaction_failed) { 1360 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1361 access_type, mmu_idx, attrs, 1362 response, retaddr); 1363 } 1364 } 1365 1366 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full, 1367 int mmu_idx, vaddr addr, uintptr_t retaddr, 1368 MMUAccessType access_type, MemOp op) 1369 { 1370 CPUState *cpu = env_cpu(env); 1371 hwaddr mr_offset; 1372 MemoryRegionSection *section; 1373 MemoryRegion *mr; 1374 uint64_t val; 1375 MemTxResult r; 1376 1377 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1378 mr = section->mr; 1379 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1380 cpu->mem_io_pc = retaddr; 1381 if (!cpu->can_do_io) { 1382 cpu_io_recompile(cpu, retaddr); 1383 } 1384 1385 { 1386 QEMU_IOTHREAD_LOCK_GUARD(); 1387 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs); 1388 } 1389 1390 if (r != MEMTX_OK) { 1391 hwaddr physaddr = mr_offset + 1392 section->offset_within_address_space - 1393 section->offset_within_region; 1394 1395 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, 1396 mmu_idx, full->attrs, r, retaddr); 1397 } 1398 return val; 1399 } 1400 1401 /* 1402 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin. 1403 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match 1404 * because of the side effect of io_writex changing memory layout. 1405 */ 1406 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section, 1407 hwaddr mr_offset) 1408 { 1409 #ifdef CONFIG_PLUGIN 1410 SavedIOTLB *saved = &cs->saved_iotlb; 1411 saved->section = section; 1412 saved->mr_offset = mr_offset; 1413 #endif 1414 } 1415 1416 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full, 1417 int mmu_idx, uint64_t val, vaddr addr, 1418 uintptr_t retaddr, MemOp op) 1419 { 1420 CPUState *cpu = env_cpu(env); 1421 hwaddr mr_offset; 1422 MemoryRegionSection *section; 1423 MemoryRegion *mr; 1424 MemTxResult r; 1425 1426 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1427 mr = section->mr; 1428 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1429 if (!cpu->can_do_io) { 1430 cpu_io_recompile(cpu, retaddr); 1431 } 1432 cpu->mem_io_pc = retaddr; 1433 1434 /* 1435 * The memory_region_dispatch may trigger a flush/resize 1436 * so for plugins we save the iotlb_data just in case. 1437 */ 1438 save_iotlb_data(cpu, section, mr_offset); 1439 1440 { 1441 QEMU_IOTHREAD_LOCK_GUARD(); 1442 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs); 1443 } 1444 1445 if (r != MEMTX_OK) { 1446 hwaddr physaddr = mr_offset + 1447 section->offset_within_address_space - 1448 section->offset_within_region; 1449 1450 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), 1451 MMU_DATA_STORE, mmu_idx, full->attrs, r, 1452 retaddr); 1453 } 1454 } 1455 1456 /* Return true if ADDR is present in the victim tlb, and has been copied 1457 back to the main tlb. */ 1458 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 1459 MMUAccessType access_type, vaddr page) 1460 { 1461 size_t vidx; 1462 1463 assert_cpu_is_self(env_cpu(env)); 1464 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1465 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; 1466 uint64_t cmp = tlb_read_idx(vtlb, access_type); 1467 1468 if (cmp == page) { 1469 /* Found entry in victim tlb, swap tlb and iotlb. */ 1470 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; 1471 1472 qemu_spin_lock(&env_tlb(env)->c.lock); 1473 copy_tlb_helper_locked(&tmptlb, tlb); 1474 copy_tlb_helper_locked(tlb, vtlb); 1475 copy_tlb_helper_locked(vtlb, &tmptlb); 1476 qemu_spin_unlock(&env_tlb(env)->c.lock); 1477 1478 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1479 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx]; 1480 CPUTLBEntryFull tmpf; 1481 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1482 return true; 1483 } 1484 } 1485 return false; 1486 } 1487 1488 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1489 CPUTLBEntryFull *full, uintptr_t retaddr) 1490 { 1491 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1492 1493 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1494 1495 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1496 tb_invalidate_phys_range_fast(ram_addr, size, retaddr); 1497 } 1498 1499 /* 1500 * Set both VGA and migration bits for simplicity and to remove 1501 * the notdirty callback faster. 1502 */ 1503 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1504 1505 /* We remove the notdirty callback only if the code has been flushed. */ 1506 if (!cpu_physical_memory_is_clean(ram_addr)) { 1507 trace_memory_notdirty_set_dirty(mem_vaddr); 1508 tlb_set_dirty(cpu, mem_vaddr); 1509 } 1510 } 1511 1512 static int probe_access_internal(CPUArchState *env, vaddr addr, 1513 int fault_size, MMUAccessType access_type, 1514 int mmu_idx, bool nonfault, 1515 void **phost, CPUTLBEntryFull **pfull, 1516 uintptr_t retaddr) 1517 { 1518 uintptr_t index = tlb_index(env, mmu_idx, addr); 1519 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1520 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1521 vaddr page_addr = addr & TARGET_PAGE_MASK; 1522 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW; 1523 CPUTLBEntryFull *full; 1524 1525 if (!tlb_hit_page(tlb_addr, page_addr)) { 1526 if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) { 1527 CPUState *cs = env_cpu(env); 1528 1529 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type, 1530 mmu_idx, nonfault, retaddr)) { 1531 /* Non-faulting page table read failed. */ 1532 *phost = NULL; 1533 *pfull = NULL; 1534 return TLB_INVALID_MASK; 1535 } 1536 1537 /* TLB resize via tlb_fill may have moved the entry. */ 1538 index = tlb_index(env, mmu_idx, addr); 1539 entry = tlb_entry(env, mmu_idx, addr); 1540 1541 /* 1542 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1543 * to force the next access through tlb_fill. We've just 1544 * called tlb_fill, so we know that this entry *is* valid. 1545 */ 1546 flags &= ~TLB_INVALID_MASK; 1547 } 1548 tlb_addr = tlb_read_idx(entry, access_type); 1549 } 1550 flags &= tlb_addr; 1551 1552 *pfull = full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1553 flags |= full->slow_flags[access_type]; 1554 1555 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1556 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1557 *phost = NULL; 1558 return TLB_MMIO; 1559 } 1560 1561 /* Everything else is RAM. */ 1562 *phost = (void *)((uintptr_t)addr + entry->addend); 1563 return flags; 1564 } 1565 1566 int probe_access_full(CPUArchState *env, vaddr addr, int size, 1567 MMUAccessType access_type, int mmu_idx, 1568 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1569 uintptr_t retaddr) 1570 { 1571 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1572 nonfault, phost, pfull, retaddr); 1573 1574 /* Handle clean RAM pages. */ 1575 if (unlikely(flags & TLB_NOTDIRTY)) { 1576 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr); 1577 flags &= ~TLB_NOTDIRTY; 1578 } 1579 1580 return flags; 1581 } 1582 1583 int probe_access_flags(CPUArchState *env, vaddr addr, int size, 1584 MMUAccessType access_type, int mmu_idx, 1585 bool nonfault, void **phost, uintptr_t retaddr) 1586 { 1587 CPUTLBEntryFull *full; 1588 int flags; 1589 1590 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1591 1592 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1593 nonfault, phost, &full, retaddr); 1594 1595 /* Handle clean RAM pages. */ 1596 if (unlikely(flags & TLB_NOTDIRTY)) { 1597 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1598 flags &= ~TLB_NOTDIRTY; 1599 } 1600 1601 return flags; 1602 } 1603 1604 void *probe_access(CPUArchState *env, vaddr addr, int size, 1605 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1606 { 1607 CPUTLBEntryFull *full; 1608 void *host; 1609 int flags; 1610 1611 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1612 1613 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1614 false, &host, &full, retaddr); 1615 1616 /* Per the interface, size == 0 merely faults the access. */ 1617 if (size == 0) { 1618 return NULL; 1619 } 1620 1621 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1622 /* Handle watchpoints. */ 1623 if (flags & TLB_WATCHPOINT) { 1624 int wp_access = (access_type == MMU_DATA_STORE 1625 ? BP_MEM_WRITE : BP_MEM_READ); 1626 cpu_check_watchpoint(env_cpu(env), addr, size, 1627 full->attrs, wp_access, retaddr); 1628 } 1629 1630 /* Handle clean RAM pages. */ 1631 if (flags & TLB_NOTDIRTY) { 1632 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1633 } 1634 } 1635 1636 return host; 1637 } 1638 1639 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1640 MMUAccessType access_type, int mmu_idx) 1641 { 1642 CPUTLBEntryFull *full; 1643 void *host; 1644 int flags; 1645 1646 flags = probe_access_internal(env, addr, 0, access_type, 1647 mmu_idx, true, &host, &full, 0); 1648 1649 /* No combination of flags are expected by the caller. */ 1650 return flags ? NULL : host; 1651 } 1652 1653 /* 1654 * Return a ram_addr_t for the virtual address for execution. 1655 * 1656 * Return -1 if we can't translate and execute from an entire page 1657 * of RAM. This will force us to execute by loading and translating 1658 * one insn at a time, without caching. 1659 * 1660 * NOTE: This function will trigger an exception if the page is 1661 * not executable. 1662 */ 1663 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr, 1664 void **hostp) 1665 { 1666 CPUTLBEntryFull *full; 1667 void *p; 1668 1669 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH, 1670 cpu_mmu_index(env, true), false, &p, &full, 0); 1671 if (p == NULL) { 1672 return -1; 1673 } 1674 1675 if (full->lg_page_size < TARGET_PAGE_BITS) { 1676 return -1; 1677 } 1678 1679 if (hostp) { 1680 *hostp = p; 1681 } 1682 return qemu_ram_addr_from_host_nofail(p); 1683 } 1684 1685 /* Load/store with atomicity primitives. */ 1686 #include "ldst_atomicity.c.inc" 1687 1688 #ifdef CONFIG_PLUGIN 1689 /* 1690 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1691 * This should be a hot path as we will have just looked this path up 1692 * in the softmmu lookup code (or helper). We don't handle re-fills or 1693 * checking the victim table. This is purely informational. 1694 * 1695 * This almost never fails as the memory access being instrumented 1696 * should have just filled the TLB. The one corner case is io_writex 1697 * which can cause TLB flushes and potential resizing of the TLBs 1698 * losing the information we need. In those cases we need to recover 1699 * data from a copy of the CPUTLBEntryFull. As long as this always occurs 1700 * from the same thread (which a mem callback will be) this is safe. 1701 */ 1702 1703 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx, 1704 bool is_store, struct qemu_plugin_hwaddr *data) 1705 { 1706 CPUArchState *env = cpu->env_ptr; 1707 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1708 uintptr_t index = tlb_index(env, mmu_idx, addr); 1709 uint64_t tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read; 1710 1711 if (likely(tlb_hit(tlb_addr, addr))) { 1712 /* We must have an iotlb entry for MMIO */ 1713 if (tlb_addr & TLB_MMIO) { 1714 CPUTLBEntryFull *full; 1715 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1716 data->is_io = true; 1717 data->v.io.section = 1718 iotlb_to_section(cpu, full->xlat_section, full->attrs); 1719 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1720 } else { 1721 data->is_io = false; 1722 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1723 } 1724 return true; 1725 } else { 1726 SavedIOTLB *saved = &cpu->saved_iotlb; 1727 data->is_io = true; 1728 data->v.io.section = saved->section; 1729 data->v.io.offset = saved->mr_offset; 1730 return true; 1731 } 1732 } 1733 1734 #endif 1735 1736 /* 1737 * Probe for a load/store operation. 1738 * Return the host address and into @flags. 1739 */ 1740 1741 typedef struct MMULookupPageData { 1742 CPUTLBEntryFull *full; 1743 void *haddr; 1744 vaddr addr; 1745 int flags; 1746 int size; 1747 } MMULookupPageData; 1748 1749 typedef struct MMULookupLocals { 1750 MMULookupPageData page[2]; 1751 MemOp memop; 1752 int mmu_idx; 1753 } MMULookupLocals; 1754 1755 /** 1756 * mmu_lookup1: translate one page 1757 * @env: cpu context 1758 * @data: lookup parameters 1759 * @mmu_idx: virtual address context 1760 * @access_type: load/store/code 1761 * @ra: return address into tcg generated code, or 0 1762 * 1763 * Resolve the translation for the one page at @data.addr, filling in 1764 * the rest of @data with the results. If the translation fails, 1765 * tlb_fill will longjmp out. Return true if the softmmu tlb for 1766 * @mmu_idx may have resized. 1767 */ 1768 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data, 1769 int mmu_idx, MMUAccessType access_type, uintptr_t ra) 1770 { 1771 vaddr addr = data->addr; 1772 uintptr_t index = tlb_index(env, mmu_idx, addr); 1773 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1774 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1775 bool maybe_resized = false; 1776 CPUTLBEntryFull *full; 1777 int flags; 1778 1779 /* If the TLB entry is for a different page, reload and try again. */ 1780 if (!tlb_hit(tlb_addr, addr)) { 1781 if (!victim_tlb_hit(env, mmu_idx, index, access_type, 1782 addr & TARGET_PAGE_MASK)) { 1783 tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra); 1784 maybe_resized = true; 1785 index = tlb_index(env, mmu_idx, addr); 1786 entry = tlb_entry(env, mmu_idx, addr); 1787 } 1788 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK; 1789 } 1790 1791 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1792 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW); 1793 flags |= full->slow_flags[access_type]; 1794 1795 data->full = full; 1796 data->flags = flags; 1797 /* Compute haddr speculatively; depending on flags it might be invalid. */ 1798 data->haddr = (void *)((uintptr_t)addr + entry->addend); 1799 1800 return maybe_resized; 1801 } 1802 1803 /** 1804 * mmu_watch_or_dirty 1805 * @env: cpu context 1806 * @data: lookup parameters 1807 * @access_type: load/store/code 1808 * @ra: return address into tcg generated code, or 0 1809 * 1810 * Trigger watchpoints for @data.addr:@data.size; 1811 * record writes to protected clean pages. 1812 */ 1813 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data, 1814 MMUAccessType access_type, uintptr_t ra) 1815 { 1816 CPUTLBEntryFull *full = data->full; 1817 vaddr addr = data->addr; 1818 int flags = data->flags; 1819 int size = data->size; 1820 1821 /* On watchpoint hit, this will longjmp out. */ 1822 if (flags & TLB_WATCHPOINT) { 1823 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ; 1824 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra); 1825 flags &= ~TLB_WATCHPOINT; 1826 } 1827 1828 /* Note that notdirty is only set for writes. */ 1829 if (flags & TLB_NOTDIRTY) { 1830 notdirty_write(env_cpu(env), addr, size, full, ra); 1831 flags &= ~TLB_NOTDIRTY; 1832 } 1833 data->flags = flags; 1834 } 1835 1836 /** 1837 * mmu_lookup: translate page(s) 1838 * @env: cpu context 1839 * @addr: virtual address 1840 * @oi: combined mmu_idx and MemOp 1841 * @ra: return address into tcg generated code, or 0 1842 * @access_type: load/store/code 1843 * @l: output result 1844 * 1845 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size 1846 * bytes. Return true if the lookup crosses a page boundary. 1847 */ 1848 static bool mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi, 1849 uintptr_t ra, MMUAccessType type, MMULookupLocals *l) 1850 { 1851 unsigned a_bits; 1852 bool crosspage; 1853 int flags; 1854 1855 l->memop = get_memop(oi); 1856 l->mmu_idx = get_mmuidx(oi); 1857 1858 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES); 1859 1860 /* Handle CPU specific unaligned behaviour */ 1861 a_bits = get_alignment_bits(l->memop); 1862 if (addr & ((1 << a_bits) - 1)) { 1863 cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra); 1864 } 1865 1866 l->page[0].addr = addr; 1867 l->page[0].size = memop_size(l->memop); 1868 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK; 1869 l->page[1].size = 0; 1870 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK; 1871 1872 if (likely(!crosspage)) { 1873 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); 1874 1875 flags = l->page[0].flags; 1876 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1877 mmu_watch_or_dirty(env, &l->page[0], type, ra); 1878 } 1879 if (unlikely(flags & TLB_BSWAP)) { 1880 l->memop ^= MO_BSWAP; 1881 } 1882 } else { 1883 /* Finish compute of page crossing. */ 1884 int size0 = l->page[1].addr - addr; 1885 l->page[1].size = l->page[0].size - size0; 1886 l->page[0].size = size0; 1887 1888 /* 1889 * Lookup both pages, recognizing exceptions from either. If the 1890 * second lookup potentially resized, refresh first CPUTLBEntryFull. 1891 */ 1892 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); 1893 if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) { 1894 uintptr_t index = tlb_index(env, l->mmu_idx, addr); 1895 l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index]; 1896 } 1897 1898 flags = l->page[0].flags | l->page[1].flags; 1899 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1900 mmu_watch_or_dirty(env, &l->page[0], type, ra); 1901 mmu_watch_or_dirty(env, &l->page[1], type, ra); 1902 } 1903 1904 /* 1905 * Since target/sparc is the only user of TLB_BSWAP, and all 1906 * Sparc accesses are aligned, any treatment across two pages 1907 * would be arbitrary. Refuse it until there's a use. 1908 */ 1909 tcg_debug_assert((flags & TLB_BSWAP) == 0); 1910 } 1911 1912 return crosspage; 1913 } 1914 1915 /* 1916 * Probe for an atomic operation. Do not allow unaligned operations, 1917 * or io operations to proceed. Return the host address. 1918 */ 1919 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi, 1920 int size, uintptr_t retaddr) 1921 { 1922 uintptr_t mmu_idx = get_mmuidx(oi); 1923 MemOp mop = get_memop(oi); 1924 int a_bits = get_alignment_bits(mop); 1925 uintptr_t index; 1926 CPUTLBEntry *tlbe; 1927 vaddr tlb_addr; 1928 void *hostaddr; 1929 CPUTLBEntryFull *full; 1930 1931 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1932 1933 /* Adjust the given return address. */ 1934 retaddr -= GETPC_ADJ; 1935 1936 /* Enforce guest required alignment. */ 1937 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1938 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1939 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1940 mmu_idx, retaddr); 1941 } 1942 1943 /* Enforce qemu required alignment. */ 1944 if (unlikely(addr & (size - 1))) { 1945 /* We get here if guest alignment was not requested, 1946 or was not enforced by cpu_unaligned_access above. 1947 We might widen the access and emulate, but for now 1948 mark an exception and exit the cpu loop. */ 1949 goto stop_the_world; 1950 } 1951 1952 index = tlb_index(env, mmu_idx, addr); 1953 tlbe = tlb_entry(env, mmu_idx, addr); 1954 1955 /* Check TLB entry and enforce page permissions. */ 1956 tlb_addr = tlb_addr_write(tlbe); 1957 if (!tlb_hit(tlb_addr, addr)) { 1958 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE, 1959 addr & TARGET_PAGE_MASK)) { 1960 tlb_fill(env_cpu(env), addr, size, 1961 MMU_DATA_STORE, mmu_idx, retaddr); 1962 index = tlb_index(env, mmu_idx, addr); 1963 tlbe = tlb_entry(env, mmu_idx, addr); 1964 } 1965 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1966 } 1967 1968 /* 1969 * Let the guest notice RMW on a write-only page. 1970 * We have just verified that the page is writable. 1971 * Subpage lookups may have left TLB_INVALID_MASK set, 1972 * but addr_read will only be -1 if PAGE_READ was unset. 1973 */ 1974 if (unlikely(tlbe->addr_read == -1)) { 1975 tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); 1976 /* 1977 * Since we don't support reads and writes to different 1978 * addresses, and we do have the proper page loaded for 1979 * write, this shouldn't ever return. But just in case, 1980 * handle via stop-the-world. 1981 */ 1982 goto stop_the_world; 1983 } 1984 /* Collect TLB_WATCHPOINT for read. */ 1985 tlb_addr |= tlbe->addr_read; 1986 1987 /* Notice an IO access or a needs-MMU-lookup access */ 1988 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { 1989 /* There's really nothing that can be done to 1990 support this apart from stop-the-world. */ 1991 goto stop_the_world; 1992 } 1993 1994 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1995 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1996 1997 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1998 notdirty_write(env_cpu(env), addr, size, full, retaddr); 1999 } 2000 2001 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 2002 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, 2003 BP_MEM_READ | BP_MEM_WRITE, retaddr); 2004 } 2005 2006 return hostaddr; 2007 2008 stop_the_world: 2009 cpu_loop_exit_atomic(env_cpu(env), retaddr); 2010 } 2011 2012 /* 2013 * Load Helpers 2014 * 2015 * We support two different access types. SOFTMMU_CODE_ACCESS is 2016 * specifically for reading instructions from system memory. It is 2017 * called by the translation loop and in some helpers where the code 2018 * is disassembled. It shouldn't be called directly by guest code. 2019 * 2020 * For the benefit of TCG generated code, we want to avoid the 2021 * complication of ABI-specific return type promotion and always 2022 * return a value extended to the register size of the host. This is 2023 * tcg_target_long, except in the case of a 32-bit host and 64-bit 2024 * data, and for that we always have uint64_t. 2025 * 2026 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 2027 */ 2028 2029 /** 2030 * do_ld_mmio_beN: 2031 * @env: cpu context 2032 * @p: translation parameters 2033 * @ret_be: accumulated data 2034 * @mmu_idx: virtual address context 2035 * @ra: return address into tcg generated code, or 0 2036 * 2037 * Load @p->size bytes from @p->addr, which is memory-mapped i/o. 2038 * The bytes are concatenated in big-endian order with @ret_be. 2039 */ 2040 static uint64_t do_ld_mmio_beN(CPUArchState *env, MMULookupPageData *p, 2041 uint64_t ret_be, int mmu_idx, 2042 MMUAccessType type, uintptr_t ra) 2043 { 2044 CPUTLBEntryFull *full = p->full; 2045 vaddr addr = p->addr; 2046 int i, size = p->size; 2047 2048 QEMU_IOTHREAD_LOCK_GUARD(); 2049 for (i = 0; i < size; i++) { 2050 uint8_t x = io_readx(env, full, mmu_idx, addr + i, ra, type, MO_UB); 2051 ret_be = (ret_be << 8) | x; 2052 } 2053 return ret_be; 2054 } 2055 2056 /** 2057 * do_ld_bytes_beN 2058 * @p: translation parameters 2059 * @ret_be: accumulated data 2060 * 2061 * Load @p->size bytes from @p->haddr, which is RAM. 2062 * The bytes to concatenated in big-endian order with @ret_be. 2063 */ 2064 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) 2065 { 2066 uint8_t *haddr = p->haddr; 2067 int i, size = p->size; 2068 2069 for (i = 0; i < size; i++) { 2070 ret_be = (ret_be << 8) | haddr[i]; 2071 } 2072 return ret_be; 2073 } 2074 2075 /** 2076 * do_ld_parts_beN 2077 * @p: translation parameters 2078 * @ret_be: accumulated data 2079 * 2080 * As do_ld_bytes_beN, but atomically on each aligned part. 2081 */ 2082 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be) 2083 { 2084 void *haddr = p->haddr; 2085 int size = p->size; 2086 2087 do { 2088 uint64_t x; 2089 int n; 2090 2091 /* 2092 * Find minimum of alignment and size. 2093 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which 2094 * would have only checked the low bits of addr|size once at the start, 2095 * but is just as easy. 2096 */ 2097 switch (((uintptr_t)haddr | size) & 7) { 2098 case 4: 2099 x = cpu_to_be32(load_atomic4(haddr)); 2100 ret_be = (ret_be << 32) | x; 2101 n = 4; 2102 break; 2103 case 2: 2104 case 6: 2105 x = cpu_to_be16(load_atomic2(haddr)); 2106 ret_be = (ret_be << 16) | x; 2107 n = 2; 2108 break; 2109 default: 2110 x = *(uint8_t *)haddr; 2111 ret_be = (ret_be << 8) | x; 2112 n = 1; 2113 break; 2114 case 0: 2115 g_assert_not_reached(); 2116 } 2117 haddr += n; 2118 size -= n; 2119 } while (size != 0); 2120 return ret_be; 2121 } 2122 2123 /** 2124 * do_ld_parts_be4 2125 * @p: translation parameters 2126 * @ret_be: accumulated data 2127 * 2128 * As do_ld_bytes_beN, but with one atomic load. 2129 * Four aligned bytes are guaranteed to cover the load. 2130 */ 2131 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be) 2132 { 2133 int o = p->addr & 3; 2134 uint32_t x = load_atomic4(p->haddr - o); 2135 2136 x = cpu_to_be32(x); 2137 x <<= o * 8; 2138 x >>= (4 - p->size) * 8; 2139 return (ret_be << (p->size * 8)) | x; 2140 } 2141 2142 /** 2143 * do_ld_parts_be8 2144 * @p: translation parameters 2145 * @ret_be: accumulated data 2146 * 2147 * As do_ld_bytes_beN, but with one atomic load. 2148 * Eight aligned bytes are guaranteed to cover the load. 2149 */ 2150 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra, 2151 MMULookupPageData *p, uint64_t ret_be) 2152 { 2153 int o = p->addr & 7; 2154 uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o); 2155 2156 x = cpu_to_be64(x); 2157 x <<= o * 8; 2158 x >>= (8 - p->size) * 8; 2159 return (ret_be << (p->size * 8)) | x; 2160 } 2161 2162 /** 2163 * do_ld_parts_be16 2164 * @p: translation parameters 2165 * @ret_be: accumulated data 2166 * 2167 * As do_ld_bytes_beN, but with one atomic load. 2168 * 16 aligned bytes are guaranteed to cover the load. 2169 */ 2170 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra, 2171 MMULookupPageData *p, uint64_t ret_be) 2172 { 2173 int o = p->addr & 15; 2174 Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o); 2175 int size = p->size; 2176 2177 if (!HOST_BIG_ENDIAN) { 2178 y = bswap128(y); 2179 } 2180 y = int128_lshift(y, o * 8); 2181 y = int128_urshift(y, (16 - size) * 8); 2182 x = int128_make64(ret_be); 2183 x = int128_lshift(x, size * 8); 2184 return int128_or(x, y); 2185 } 2186 2187 /* 2188 * Wrapper for the above. 2189 */ 2190 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p, 2191 uint64_t ret_be, int mmu_idx, MMUAccessType type, 2192 MemOp mop, uintptr_t ra) 2193 { 2194 MemOp atom; 2195 unsigned tmp, half_size; 2196 2197 if (unlikely(p->flags & TLB_MMIO)) { 2198 return do_ld_mmio_beN(env, p, ret_be, mmu_idx, type, ra); 2199 } 2200 2201 /* 2202 * It is a given that we cross a page and therefore there is no 2203 * atomicity for the load as a whole, but subobjects may need attention. 2204 */ 2205 atom = mop & MO_ATOM_MASK; 2206 switch (atom) { 2207 case MO_ATOM_SUBALIGN: 2208 return do_ld_parts_beN(p, ret_be); 2209 2210 case MO_ATOM_IFALIGN_PAIR: 2211 case MO_ATOM_WITHIN16_PAIR: 2212 tmp = mop & MO_SIZE; 2213 tmp = tmp ? tmp - 1 : 0; 2214 half_size = 1 << tmp; 2215 if (atom == MO_ATOM_IFALIGN_PAIR 2216 ? p->size == half_size 2217 : p->size >= half_size) { 2218 if (!HAVE_al8_fast && p->size < 4) { 2219 return do_ld_whole_be4(p, ret_be); 2220 } else { 2221 return do_ld_whole_be8(env, ra, p, ret_be); 2222 } 2223 } 2224 /* fall through */ 2225 2226 case MO_ATOM_IFALIGN: 2227 case MO_ATOM_WITHIN16: 2228 case MO_ATOM_NONE: 2229 return do_ld_bytes_beN(p, ret_be); 2230 2231 default: 2232 g_assert_not_reached(); 2233 } 2234 } 2235 2236 /* 2237 * Wrapper for the above, for 8 < size < 16. 2238 */ 2239 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p, 2240 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra) 2241 { 2242 int size = p->size; 2243 uint64_t b; 2244 MemOp atom; 2245 2246 if (unlikely(p->flags & TLB_MMIO)) { 2247 p->size = size - 8; 2248 a = do_ld_mmio_beN(env, p, a, mmu_idx, MMU_DATA_LOAD, ra); 2249 p->addr += p->size; 2250 p->size = 8; 2251 b = do_ld_mmio_beN(env, p, 0, mmu_idx, MMU_DATA_LOAD, ra); 2252 return int128_make128(b, a); 2253 } 2254 2255 /* 2256 * It is a given that we cross a page and therefore there is no 2257 * atomicity for the load as a whole, but subobjects may need attention. 2258 */ 2259 atom = mop & MO_ATOM_MASK; 2260 switch (atom) { 2261 case MO_ATOM_SUBALIGN: 2262 p->size = size - 8; 2263 a = do_ld_parts_beN(p, a); 2264 p->haddr += size - 8; 2265 p->size = 8; 2266 b = do_ld_parts_beN(p, 0); 2267 break; 2268 2269 case MO_ATOM_WITHIN16_PAIR: 2270 /* Since size > 8, this is the half that must be atomic. */ 2271 return do_ld_whole_be16(env, ra, p, a); 2272 2273 case MO_ATOM_IFALIGN_PAIR: 2274 /* 2275 * Since size > 8, both halves are misaligned, 2276 * and so neither is atomic. 2277 */ 2278 case MO_ATOM_IFALIGN: 2279 case MO_ATOM_WITHIN16: 2280 case MO_ATOM_NONE: 2281 p->size = size - 8; 2282 a = do_ld_bytes_beN(p, a); 2283 b = ldq_be_p(p->haddr + size - 8); 2284 break; 2285 2286 default: 2287 g_assert_not_reached(); 2288 } 2289 2290 return int128_make128(b, a); 2291 } 2292 2293 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2294 MMUAccessType type, uintptr_t ra) 2295 { 2296 if (unlikely(p->flags & TLB_MMIO)) { 2297 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB); 2298 } else { 2299 return *(uint8_t *)p->haddr; 2300 } 2301 } 2302 2303 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2304 MMUAccessType type, MemOp memop, uintptr_t ra) 2305 { 2306 uint64_t ret; 2307 2308 if (unlikely(p->flags & TLB_MMIO)) { 2309 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop); 2310 } 2311 2312 /* Perform the load host endian, then swap if necessary. */ 2313 ret = load_atom_2(env, ra, p->haddr, memop); 2314 if (memop & MO_BSWAP) { 2315 ret = bswap16(ret); 2316 } 2317 return ret; 2318 } 2319 2320 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2321 MMUAccessType type, MemOp memop, uintptr_t ra) 2322 { 2323 uint32_t ret; 2324 2325 if (unlikely(p->flags & TLB_MMIO)) { 2326 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop); 2327 } 2328 2329 /* Perform the load host endian. */ 2330 ret = load_atom_4(env, ra, p->haddr, memop); 2331 if (memop & MO_BSWAP) { 2332 ret = bswap32(ret); 2333 } 2334 return ret; 2335 } 2336 2337 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2338 MMUAccessType type, MemOp memop, uintptr_t ra) 2339 { 2340 uint64_t ret; 2341 2342 if (unlikely(p->flags & TLB_MMIO)) { 2343 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop); 2344 } 2345 2346 /* Perform the load host endian. */ 2347 ret = load_atom_8(env, ra, p->haddr, memop); 2348 if (memop & MO_BSWAP) { 2349 ret = bswap64(ret); 2350 } 2351 return ret; 2352 } 2353 2354 static uint8_t do_ld1_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2355 uintptr_t ra, MMUAccessType access_type) 2356 { 2357 MMULookupLocals l; 2358 bool crosspage; 2359 2360 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2361 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2362 tcg_debug_assert(!crosspage); 2363 2364 return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); 2365 } 2366 2367 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr, 2368 MemOpIdx oi, uintptr_t retaddr) 2369 { 2370 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8); 2371 return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2372 } 2373 2374 static uint16_t do_ld2_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2375 uintptr_t ra, MMUAccessType access_type) 2376 { 2377 MMULookupLocals l; 2378 bool crosspage; 2379 uint16_t ret; 2380 uint8_t a, b; 2381 2382 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2383 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2384 if (likely(!crosspage)) { 2385 return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2386 } 2387 2388 a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); 2389 b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra); 2390 2391 if ((l.memop & MO_BSWAP) == MO_LE) { 2392 ret = a | (b << 8); 2393 } else { 2394 ret = b | (a << 8); 2395 } 2396 return ret; 2397 } 2398 2399 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr, 2400 MemOpIdx oi, uintptr_t retaddr) 2401 { 2402 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2403 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2404 } 2405 2406 static uint32_t do_ld4_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2407 uintptr_t ra, MMUAccessType access_type) 2408 { 2409 MMULookupLocals l; 2410 bool crosspage; 2411 uint32_t ret; 2412 2413 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2414 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2415 if (likely(!crosspage)) { 2416 return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2417 } 2418 2419 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2420 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2421 if ((l.memop & MO_BSWAP) == MO_LE) { 2422 ret = bswap32(ret); 2423 } 2424 return ret; 2425 } 2426 2427 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr, 2428 MemOpIdx oi, uintptr_t retaddr) 2429 { 2430 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2431 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2432 } 2433 2434 static uint64_t do_ld8_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2435 uintptr_t ra, MMUAccessType access_type) 2436 { 2437 MMULookupLocals l; 2438 bool crosspage; 2439 uint64_t ret; 2440 2441 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2442 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2443 if (likely(!crosspage)) { 2444 return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2445 } 2446 2447 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2448 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2449 if ((l.memop & MO_BSWAP) == MO_LE) { 2450 ret = bswap64(ret); 2451 } 2452 return ret; 2453 } 2454 2455 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr, 2456 MemOpIdx oi, uintptr_t retaddr) 2457 { 2458 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2459 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2460 } 2461 2462 /* 2463 * Provide signed versions of the load routines as well. We can of course 2464 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 2465 */ 2466 2467 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr, 2468 MemOpIdx oi, uintptr_t retaddr) 2469 { 2470 return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr); 2471 } 2472 2473 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr, 2474 MemOpIdx oi, uintptr_t retaddr) 2475 { 2476 return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr); 2477 } 2478 2479 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr, 2480 MemOpIdx oi, uintptr_t retaddr) 2481 { 2482 return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr); 2483 } 2484 2485 static Int128 do_ld16_mmu(CPUArchState *env, vaddr addr, 2486 MemOpIdx oi, uintptr_t ra) 2487 { 2488 MMULookupLocals l; 2489 bool crosspage; 2490 uint64_t a, b; 2491 Int128 ret; 2492 int first; 2493 2494 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2495 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l); 2496 if (likely(!crosspage)) { 2497 /* Perform the load host endian. */ 2498 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2499 QEMU_IOTHREAD_LOCK_GUARD(); 2500 a = io_readx(env, l.page[0].full, l.mmu_idx, addr, 2501 ra, MMU_DATA_LOAD, MO_64); 2502 b = io_readx(env, l.page[0].full, l.mmu_idx, addr + 8, 2503 ra, MMU_DATA_LOAD, MO_64); 2504 ret = int128_make128(HOST_BIG_ENDIAN ? b : a, 2505 HOST_BIG_ENDIAN ? a : b); 2506 } else { 2507 ret = load_atom_16(env, ra, l.page[0].haddr, l.memop); 2508 } 2509 if (l.memop & MO_BSWAP) { 2510 ret = bswap128(ret); 2511 } 2512 return ret; 2513 } 2514 2515 first = l.page[0].size; 2516 if (first == 8) { 2517 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64; 2518 2519 a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2520 b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2521 if ((mop8 & MO_BSWAP) == MO_LE) { 2522 ret = int128_make128(a, b); 2523 } else { 2524 ret = int128_make128(b, a); 2525 } 2526 return ret; 2527 } 2528 2529 if (first < 8) { 2530 a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, 2531 MMU_DATA_LOAD, l.memop, ra); 2532 ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra); 2533 } else { 2534 ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra); 2535 b = int128_getlo(ret); 2536 ret = int128_lshift(ret, l.page[1].size * 8); 2537 a = int128_gethi(ret); 2538 b = do_ld_beN(env, &l.page[1], b, l.mmu_idx, 2539 MMU_DATA_LOAD, l.memop, ra); 2540 ret = int128_make128(b, a); 2541 } 2542 if ((l.memop & MO_BSWAP) == MO_LE) { 2543 ret = bswap128(ret); 2544 } 2545 return ret; 2546 } 2547 2548 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr, 2549 uint32_t oi, uintptr_t retaddr) 2550 { 2551 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 2552 return do_ld16_mmu(env, addr, oi, retaddr); 2553 } 2554 2555 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi) 2556 { 2557 return helper_ld16_mmu(env, addr, oi, GETPC()); 2558 } 2559 2560 /* 2561 * Load helpers for cpu_ldst.h. 2562 */ 2563 2564 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) 2565 { 2566 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2567 } 2568 2569 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) 2570 { 2571 uint8_t ret; 2572 2573 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB); 2574 ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2575 plugin_load_cb(env, addr, oi); 2576 return ret; 2577 } 2578 2579 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr, 2580 MemOpIdx oi, uintptr_t ra) 2581 { 2582 uint16_t ret; 2583 2584 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2585 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2586 plugin_load_cb(env, addr, oi); 2587 return ret; 2588 } 2589 2590 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr, 2591 MemOpIdx oi, uintptr_t ra) 2592 { 2593 uint32_t ret; 2594 2595 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2596 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2597 plugin_load_cb(env, addr, oi); 2598 return ret; 2599 } 2600 2601 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr, 2602 MemOpIdx oi, uintptr_t ra) 2603 { 2604 uint64_t ret; 2605 2606 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2607 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2608 plugin_load_cb(env, addr, oi); 2609 return ret; 2610 } 2611 2612 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr, 2613 MemOpIdx oi, uintptr_t ra) 2614 { 2615 Int128 ret; 2616 2617 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 2618 ret = do_ld16_mmu(env, addr, oi, ra); 2619 plugin_load_cb(env, addr, oi); 2620 return ret; 2621 } 2622 2623 /* 2624 * Store Helpers 2625 */ 2626 2627 /** 2628 * do_st_mmio_leN: 2629 * @env: cpu context 2630 * @p: translation parameters 2631 * @val_le: data to store 2632 * @mmu_idx: virtual address context 2633 * @ra: return address into tcg generated code, or 0 2634 * 2635 * Store @p->size bytes at @p->addr, which is memory-mapped i/o. 2636 * The bytes to store are extracted in little-endian order from @val_le; 2637 * return the bytes of @val_le beyond @p->size that have not been stored. 2638 */ 2639 static uint64_t do_st_mmio_leN(CPUArchState *env, MMULookupPageData *p, 2640 uint64_t val_le, int mmu_idx, uintptr_t ra) 2641 { 2642 CPUTLBEntryFull *full = p->full; 2643 vaddr addr = p->addr; 2644 int i, size = p->size; 2645 2646 QEMU_IOTHREAD_LOCK_GUARD(); 2647 for (i = 0; i < size; i++, val_le >>= 8) { 2648 io_writex(env, full, mmu_idx, val_le, addr + i, ra, MO_UB); 2649 } 2650 return val_le; 2651 } 2652 2653 /* 2654 * Wrapper for the above. 2655 */ 2656 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p, 2657 uint64_t val_le, int mmu_idx, 2658 MemOp mop, uintptr_t ra) 2659 { 2660 MemOp atom; 2661 unsigned tmp, half_size; 2662 2663 if (unlikely(p->flags & TLB_MMIO)) { 2664 return do_st_mmio_leN(env, p, val_le, mmu_idx, ra); 2665 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2666 return val_le >> (p->size * 8); 2667 } 2668 2669 /* 2670 * It is a given that we cross a page and therefore there is no atomicity 2671 * for the store as a whole, but subobjects may need attention. 2672 */ 2673 atom = mop & MO_ATOM_MASK; 2674 switch (atom) { 2675 case MO_ATOM_SUBALIGN: 2676 return store_parts_leN(p->haddr, p->size, val_le); 2677 2678 case MO_ATOM_IFALIGN_PAIR: 2679 case MO_ATOM_WITHIN16_PAIR: 2680 tmp = mop & MO_SIZE; 2681 tmp = tmp ? tmp - 1 : 0; 2682 half_size = 1 << tmp; 2683 if (atom == MO_ATOM_IFALIGN_PAIR 2684 ? p->size == half_size 2685 : p->size >= half_size) { 2686 if (!HAVE_al8_fast && p->size <= 4) { 2687 return store_whole_le4(p->haddr, p->size, val_le); 2688 } else if (HAVE_al8) { 2689 return store_whole_le8(p->haddr, p->size, val_le); 2690 } else { 2691 cpu_loop_exit_atomic(env_cpu(env), ra); 2692 } 2693 } 2694 /* fall through */ 2695 2696 case MO_ATOM_IFALIGN: 2697 case MO_ATOM_WITHIN16: 2698 case MO_ATOM_NONE: 2699 return store_bytes_leN(p->haddr, p->size, val_le); 2700 2701 default: 2702 g_assert_not_reached(); 2703 } 2704 } 2705 2706 /* 2707 * Wrapper for the above, for 8 < size < 16. 2708 */ 2709 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p, 2710 Int128 val_le, int mmu_idx, 2711 MemOp mop, uintptr_t ra) 2712 { 2713 int size = p->size; 2714 MemOp atom; 2715 2716 if (unlikely(p->flags & TLB_MMIO)) { 2717 p->size = 8; 2718 do_st_mmio_leN(env, p, int128_getlo(val_le), mmu_idx, ra); 2719 p->size = size - 8; 2720 p->addr += 8; 2721 return do_st_mmio_leN(env, p, int128_gethi(val_le), mmu_idx, ra); 2722 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2723 return int128_gethi(val_le) >> ((size - 8) * 8); 2724 } 2725 2726 /* 2727 * It is a given that we cross a page and therefore there is no atomicity 2728 * for the store as a whole, but subobjects may need attention. 2729 */ 2730 atom = mop & MO_ATOM_MASK; 2731 switch (atom) { 2732 case MO_ATOM_SUBALIGN: 2733 store_parts_leN(p->haddr, 8, int128_getlo(val_le)); 2734 return store_parts_leN(p->haddr + 8, p->size - 8, 2735 int128_gethi(val_le)); 2736 2737 case MO_ATOM_WITHIN16_PAIR: 2738 /* Since size > 8, this is the half that must be atomic. */ 2739 if (!HAVE_ATOMIC128_RW) { 2740 cpu_loop_exit_atomic(env_cpu(env), ra); 2741 } 2742 return store_whole_le16(p->haddr, p->size, val_le); 2743 2744 case MO_ATOM_IFALIGN_PAIR: 2745 /* 2746 * Since size > 8, both halves are misaligned, 2747 * and so neither is atomic. 2748 */ 2749 case MO_ATOM_IFALIGN: 2750 case MO_ATOM_WITHIN16: 2751 case MO_ATOM_NONE: 2752 stq_le_p(p->haddr, int128_getlo(val_le)); 2753 return store_bytes_leN(p->haddr + 8, p->size - 8, 2754 int128_gethi(val_le)); 2755 2756 default: 2757 g_assert_not_reached(); 2758 } 2759 } 2760 2761 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val, 2762 int mmu_idx, uintptr_t ra) 2763 { 2764 if (unlikely(p->flags & TLB_MMIO)) { 2765 io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB); 2766 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2767 /* nothing */ 2768 } else { 2769 *(uint8_t *)p->haddr = val; 2770 } 2771 } 2772 2773 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val, 2774 int mmu_idx, MemOp memop, uintptr_t ra) 2775 { 2776 if (unlikely(p->flags & TLB_MMIO)) { 2777 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop); 2778 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2779 /* nothing */ 2780 } else { 2781 /* Swap to host endian if necessary, then store. */ 2782 if (memop & MO_BSWAP) { 2783 val = bswap16(val); 2784 } 2785 store_atom_2(env, ra, p->haddr, memop, val); 2786 } 2787 } 2788 2789 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val, 2790 int mmu_idx, MemOp memop, uintptr_t ra) 2791 { 2792 if (unlikely(p->flags & TLB_MMIO)) { 2793 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop); 2794 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2795 /* nothing */ 2796 } else { 2797 /* Swap to host endian if necessary, then store. */ 2798 if (memop & MO_BSWAP) { 2799 val = bswap32(val); 2800 } 2801 store_atom_4(env, ra, p->haddr, memop, val); 2802 } 2803 } 2804 2805 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val, 2806 int mmu_idx, MemOp memop, uintptr_t ra) 2807 { 2808 if (unlikely(p->flags & TLB_MMIO)) { 2809 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop); 2810 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2811 /* nothing */ 2812 } else { 2813 /* Swap to host endian if necessary, then store. */ 2814 if (memop & MO_BSWAP) { 2815 val = bswap64(val); 2816 } 2817 store_atom_8(env, ra, p->haddr, memop, val); 2818 } 2819 } 2820 2821 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 2822 MemOpIdx oi, uintptr_t ra) 2823 { 2824 MMULookupLocals l; 2825 bool crosspage; 2826 2827 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8); 2828 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2829 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2830 tcg_debug_assert(!crosspage); 2831 2832 do_st_1(env, &l.page[0], val, l.mmu_idx, ra); 2833 } 2834 2835 static void do_st2_mmu(CPUArchState *env, vaddr addr, uint16_t val, 2836 MemOpIdx oi, uintptr_t ra) 2837 { 2838 MMULookupLocals l; 2839 bool crosspage; 2840 uint8_t a, b; 2841 2842 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2843 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2844 if (likely(!crosspage)) { 2845 do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2846 return; 2847 } 2848 2849 if ((l.memop & MO_BSWAP) == MO_LE) { 2850 a = val, b = val >> 8; 2851 } else { 2852 b = val, a = val >> 8; 2853 } 2854 do_st_1(env, &l.page[0], a, l.mmu_idx, ra); 2855 do_st_1(env, &l.page[1], b, l.mmu_idx, ra); 2856 } 2857 2858 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 2859 MemOpIdx oi, uintptr_t retaddr) 2860 { 2861 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2862 do_st2_mmu(env, addr, val, oi, retaddr); 2863 } 2864 2865 static void do_st4_mmu(CPUArchState *env, vaddr addr, uint32_t val, 2866 MemOpIdx oi, uintptr_t ra) 2867 { 2868 MMULookupLocals l; 2869 bool crosspage; 2870 2871 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2872 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2873 if (likely(!crosspage)) { 2874 do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2875 return; 2876 } 2877 2878 /* Swap to little endian for simplicity, then store by bytes. */ 2879 if ((l.memop & MO_BSWAP) != MO_LE) { 2880 val = bswap32(val); 2881 } 2882 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2883 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 2884 } 2885 2886 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 2887 MemOpIdx oi, uintptr_t retaddr) 2888 { 2889 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2890 do_st4_mmu(env, addr, val, oi, retaddr); 2891 } 2892 2893 static void do_st8_mmu(CPUArchState *env, vaddr addr, uint64_t val, 2894 MemOpIdx oi, uintptr_t ra) 2895 { 2896 MMULookupLocals l; 2897 bool crosspage; 2898 2899 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2900 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2901 if (likely(!crosspage)) { 2902 do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2903 return; 2904 } 2905 2906 /* Swap to little endian for simplicity, then store by bytes. */ 2907 if ((l.memop & MO_BSWAP) != MO_LE) { 2908 val = bswap64(val); 2909 } 2910 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2911 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 2912 } 2913 2914 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val, 2915 MemOpIdx oi, uintptr_t retaddr) 2916 { 2917 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2918 do_st8_mmu(env, addr, val, oi, retaddr); 2919 } 2920 2921 static void do_st16_mmu(CPUArchState *env, vaddr addr, Int128 val, 2922 MemOpIdx oi, uintptr_t ra) 2923 { 2924 MMULookupLocals l; 2925 bool crosspage; 2926 uint64_t a, b; 2927 int first; 2928 2929 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2930 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2931 if (likely(!crosspage)) { 2932 /* Swap to host endian if necessary, then store. */ 2933 if (l.memop & MO_BSWAP) { 2934 val = bswap128(val); 2935 } 2936 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2937 QEMU_IOTHREAD_LOCK_GUARD(); 2938 if (HOST_BIG_ENDIAN) { 2939 b = int128_getlo(val), a = int128_gethi(val); 2940 } else { 2941 a = int128_getlo(val), b = int128_gethi(val); 2942 } 2943 io_writex(env, l.page[0].full, l.mmu_idx, a, addr, ra, MO_64); 2944 io_writex(env, l.page[0].full, l.mmu_idx, b, addr + 8, ra, MO_64); 2945 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) { 2946 /* nothing */ 2947 } else { 2948 store_atom_16(env, ra, l.page[0].haddr, l.memop, val); 2949 } 2950 return; 2951 } 2952 2953 first = l.page[0].size; 2954 if (first == 8) { 2955 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64; 2956 2957 if (l.memop & MO_BSWAP) { 2958 val = bswap128(val); 2959 } 2960 if (HOST_BIG_ENDIAN) { 2961 b = int128_getlo(val), a = int128_gethi(val); 2962 } else { 2963 a = int128_getlo(val), b = int128_gethi(val); 2964 } 2965 do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra); 2966 do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra); 2967 return; 2968 } 2969 2970 if ((l.memop & MO_BSWAP) != MO_LE) { 2971 val = bswap128(val); 2972 } 2973 if (first < 8) { 2974 do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra); 2975 val = int128_urshift(val, first * 8); 2976 do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 2977 } else { 2978 b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2979 do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra); 2980 } 2981 } 2982 2983 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val, 2984 MemOpIdx oi, uintptr_t retaddr) 2985 { 2986 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 2987 do_st16_mmu(env, addr, val, oi, retaddr); 2988 } 2989 2990 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi) 2991 { 2992 helper_st16_mmu(env, addr, val, oi, GETPC()); 2993 } 2994 2995 /* 2996 * Store Helpers for cpu_ldst.h 2997 */ 2998 2999 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) 3000 { 3001 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 3002 } 3003 3004 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 3005 MemOpIdx oi, uintptr_t retaddr) 3006 { 3007 helper_stb_mmu(env, addr, val, oi, retaddr); 3008 plugin_store_cb(env, addr, oi); 3009 } 3010 3011 void cpu_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 3012 MemOpIdx oi, uintptr_t retaddr) 3013 { 3014 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 3015 do_st2_mmu(env, addr, val, oi, retaddr); 3016 plugin_store_cb(env, addr, oi); 3017 } 3018 3019 void cpu_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 3020 MemOpIdx oi, uintptr_t retaddr) 3021 { 3022 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 3023 do_st4_mmu(env, addr, val, oi, retaddr); 3024 plugin_store_cb(env, addr, oi); 3025 } 3026 3027 void cpu_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 3028 MemOpIdx oi, uintptr_t retaddr) 3029 { 3030 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 3031 do_st8_mmu(env, addr, val, oi, retaddr); 3032 plugin_store_cb(env, addr, oi); 3033 } 3034 3035 void cpu_st16_mmu(CPUArchState *env, target_ulong addr, Int128 val, 3036 MemOpIdx oi, uintptr_t retaddr) 3037 { 3038 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 3039 do_st16_mmu(env, addr, val, oi, retaddr); 3040 plugin_store_cb(env, addr, oi); 3041 } 3042 3043 #include "ldst_common.c.inc" 3044 3045 /* 3046 * First set of functions passes in OI and RETADDR. 3047 * This makes them callable from other helpers. 3048 */ 3049 3050 #define ATOMIC_NAME(X) \ 3051 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 3052 3053 #define ATOMIC_MMU_CLEANUP 3054 3055 #include "atomic_common.c.inc" 3056 3057 #define DATA_SIZE 1 3058 #include "atomic_template.h" 3059 3060 #define DATA_SIZE 2 3061 #include "atomic_template.h" 3062 3063 #define DATA_SIZE 4 3064 #include "atomic_template.h" 3065 3066 #ifdef CONFIG_ATOMIC64 3067 #define DATA_SIZE 8 3068 #include "atomic_template.h" 3069 #endif 3070 3071 #if defined(CONFIG_ATOMIC128) || defined(CONFIG_CMPXCHG128) 3072 #define DATA_SIZE 16 3073 #include "atomic_template.h" 3074 #endif 3075 3076 /* Code access functions. */ 3077 3078 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 3079 { 3080 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); 3081 return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3082 } 3083 3084 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 3085 { 3086 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); 3087 return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3088 } 3089 3090 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 3091 { 3092 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); 3093 return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3094 } 3095 3096 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 3097 { 3098 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true)); 3099 return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3100 } 3101 3102 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, 3103 MemOpIdx oi, uintptr_t retaddr) 3104 { 3105 return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3106 } 3107 3108 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, 3109 MemOpIdx oi, uintptr_t retaddr) 3110 { 3111 return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3112 } 3113 3114 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, 3115 MemOpIdx oi, uintptr_t retaddr) 3116 { 3117 return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3118 } 3119 3120 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, 3121 MemOpIdx oi, uintptr_t retaddr) 3122 { 3123 return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3124 } 3125