xref: /openbmc/qemu/accel/tcg/cputlb.c (revision 50b107c5)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/address-spaces.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "tcg/tcg.h"
31 #include "qemu/error-report.h"
32 #include "exec/log.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/atomic.h"
35 #include "qemu/atomic128.h"
36 
37 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
38 /* #define DEBUG_TLB */
39 /* #define DEBUG_TLB_LOG */
40 
41 #ifdef DEBUG_TLB
42 # define DEBUG_TLB_GATE 1
43 # ifdef DEBUG_TLB_LOG
44 #  define DEBUG_TLB_LOG_GATE 1
45 # else
46 #  define DEBUG_TLB_LOG_GATE 0
47 # endif
48 #else
49 # define DEBUG_TLB_GATE 0
50 # define DEBUG_TLB_LOG_GATE 0
51 #endif
52 
53 #define tlb_debug(fmt, ...) do { \
54     if (DEBUG_TLB_LOG_GATE) { \
55         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
56                       ## __VA_ARGS__); \
57     } else if (DEBUG_TLB_GATE) { \
58         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
59     } \
60 } while (0)
61 
62 #define assert_cpu_is_self(cpu) do {                              \
63         if (DEBUG_TLB_GATE) {                                     \
64             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
65         }                                                         \
66     } while (0)
67 
68 /* run_on_cpu_data.target_ptr should always be big enough for a
69  * target_ulong even on 32 bit builds */
70 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
71 
72 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
73  */
74 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
75 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
76 
77 static inline size_t sizeof_tlb(CPUArchState *env, uintptr_t mmu_idx)
78 {
79     return env_tlb(env)->f[mmu_idx].mask + (1 << CPU_TLB_ENTRY_BITS);
80 }
81 
82 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
83                              size_t max_entries)
84 {
85     desc->window_begin_ns = ns;
86     desc->window_max_entries = max_entries;
87 }
88 
89 static void tlb_dyn_init(CPUArchState *env)
90 {
91     int i;
92 
93     for (i = 0; i < NB_MMU_MODES; i++) {
94         CPUTLBDesc *desc = &env_tlb(env)->d[i];
95         size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
96 
97         tlb_window_reset(desc, get_clock_realtime(), 0);
98         desc->n_used_entries = 0;
99         env_tlb(env)->f[i].mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
100         env_tlb(env)->f[i].table = g_new(CPUTLBEntry, n_entries);
101         env_tlb(env)->d[i].iotlb = g_new(CPUIOTLBEntry, n_entries);
102     }
103 }
104 
105 /**
106  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
107  * @env: CPU that owns the TLB
108  * @mmu_idx: MMU index of the TLB
109  *
110  * Called with tlb_lock_held.
111  *
112  * We have two main constraints when resizing a TLB: (1) we only resize it
113  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
114  * the array or unnecessarily flushing it), which means we do not control how
115  * frequently the resizing can occur; (2) we don't have access to the guest's
116  * future scheduling decisions, and therefore have to decide the magnitude of
117  * the resize based on past observations.
118  *
119  * In general, a memory-hungry process can benefit greatly from an appropriately
120  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
121  * we just have to make the TLB as large as possible; while an oversized TLB
122  * results in minimal TLB miss rates, it also takes longer to be flushed
123  * (flushes can be _very_ frequent), and the reduced locality can also hurt
124  * performance.
125  *
126  * To achieve near-optimal performance for all kinds of workloads, we:
127  *
128  * 1. Aggressively increase the size of the TLB when the use rate of the
129  * TLB being flushed is high, since it is likely that in the near future this
130  * memory-hungry process will execute again, and its memory hungriness will
131  * probably be similar.
132  *
133  * 2. Slowly reduce the size of the TLB as the use rate declines over a
134  * reasonably large time window. The rationale is that if in such a time window
135  * we have not observed a high TLB use rate, it is likely that we won't observe
136  * it in the near future. In that case, once a time window expires we downsize
137  * the TLB to match the maximum use rate observed in the window.
138  *
139  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
140  * since in that range performance is likely near-optimal. Recall that the TLB
141  * is direct mapped, so we want the use rate to be low (or at least not too
142  * high), since otherwise we are likely to have a significant amount of
143  * conflict misses.
144  */
145 static void tlb_mmu_resize_locked(CPUArchState *env, int mmu_idx)
146 {
147     CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
148     size_t old_size = tlb_n_entries(env, mmu_idx);
149     size_t rate;
150     size_t new_size = old_size;
151     int64_t now = get_clock_realtime();
152     int64_t window_len_ms = 100;
153     int64_t window_len_ns = window_len_ms * 1000 * 1000;
154     bool window_expired = now > desc->window_begin_ns + window_len_ns;
155 
156     if (desc->n_used_entries > desc->window_max_entries) {
157         desc->window_max_entries = desc->n_used_entries;
158     }
159     rate = desc->window_max_entries * 100 / old_size;
160 
161     if (rate > 70) {
162         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
163     } else if (rate < 30 && window_expired) {
164         size_t ceil = pow2ceil(desc->window_max_entries);
165         size_t expected_rate = desc->window_max_entries * 100 / ceil;
166 
167         /*
168          * Avoid undersizing when the max number of entries seen is just below
169          * a pow2. For instance, if max_entries == 1025, the expected use rate
170          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
171          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
172          * later. Thus, make sure that the expected use rate remains below 70%.
173          * (and since we double the size, that means the lowest rate we'd
174          * expect to get is 35%, which is still in the 30-70% range where
175          * we consider that the size is appropriate.)
176          */
177         if (expected_rate > 70) {
178             ceil *= 2;
179         }
180         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
181     }
182 
183     if (new_size == old_size) {
184         if (window_expired) {
185             tlb_window_reset(desc, now, desc->n_used_entries);
186         }
187         return;
188     }
189 
190     g_free(env_tlb(env)->f[mmu_idx].table);
191     g_free(env_tlb(env)->d[mmu_idx].iotlb);
192 
193     tlb_window_reset(desc, now, 0);
194     /* desc->n_used_entries is cleared by the caller */
195     env_tlb(env)->f[mmu_idx].mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
196     env_tlb(env)->f[mmu_idx].table = g_try_new(CPUTLBEntry, new_size);
197     env_tlb(env)->d[mmu_idx].iotlb = g_try_new(CPUIOTLBEntry, new_size);
198     /*
199      * If the allocations fail, try smaller sizes. We just freed some
200      * memory, so going back to half of new_size has a good chance of working.
201      * Increased memory pressure elsewhere in the system might cause the
202      * allocations to fail though, so we progressively reduce the allocation
203      * size, aborting if we cannot even allocate the smallest TLB we support.
204      */
205     while (env_tlb(env)->f[mmu_idx].table == NULL ||
206            env_tlb(env)->d[mmu_idx].iotlb == NULL) {
207         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
208             error_report("%s: %s", __func__, strerror(errno));
209             abort();
210         }
211         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
212         env_tlb(env)->f[mmu_idx].mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
213 
214         g_free(env_tlb(env)->f[mmu_idx].table);
215         g_free(env_tlb(env)->d[mmu_idx].iotlb);
216         env_tlb(env)->f[mmu_idx].table = g_try_new(CPUTLBEntry, new_size);
217         env_tlb(env)->d[mmu_idx].iotlb = g_try_new(CPUIOTLBEntry, new_size);
218     }
219 }
220 
221 static inline void tlb_table_flush_by_mmuidx(CPUArchState *env, int mmu_idx)
222 {
223     tlb_mmu_resize_locked(env, mmu_idx);
224     memset(env_tlb(env)->f[mmu_idx].table, -1, sizeof_tlb(env, mmu_idx));
225     env_tlb(env)->d[mmu_idx].n_used_entries = 0;
226 }
227 
228 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
229 {
230     env_tlb(env)->d[mmu_idx].n_used_entries++;
231 }
232 
233 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
234 {
235     env_tlb(env)->d[mmu_idx].n_used_entries--;
236 }
237 
238 void tlb_init(CPUState *cpu)
239 {
240     CPUArchState *env = cpu->env_ptr;
241 
242     qemu_spin_init(&env_tlb(env)->c.lock);
243 
244     /* Ensure that cpu_reset performs a full flush.  */
245     env_tlb(env)->c.dirty = ALL_MMUIDX_BITS;
246 
247     tlb_dyn_init(env);
248 }
249 
250 /* flush_all_helper: run fn across all cpus
251  *
252  * If the wait flag is set then the src cpu's helper will be queued as
253  * "safe" work and the loop exited creating a synchronisation point
254  * where all queued work will be finished before execution starts
255  * again.
256  */
257 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
258                              run_on_cpu_data d)
259 {
260     CPUState *cpu;
261 
262     CPU_FOREACH(cpu) {
263         if (cpu != src) {
264             async_run_on_cpu(cpu, fn, d);
265         }
266     }
267 }
268 
269 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
270 {
271     CPUState *cpu;
272     size_t full = 0, part = 0, elide = 0;
273 
274     CPU_FOREACH(cpu) {
275         CPUArchState *env = cpu->env_ptr;
276 
277         full += atomic_read(&env_tlb(env)->c.full_flush_count);
278         part += atomic_read(&env_tlb(env)->c.part_flush_count);
279         elide += atomic_read(&env_tlb(env)->c.elide_flush_count);
280     }
281     *pfull = full;
282     *ppart = part;
283     *pelide = elide;
284 }
285 
286 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx)
287 {
288     tlb_table_flush_by_mmuidx(env, mmu_idx);
289     env_tlb(env)->d[mmu_idx].large_page_addr = -1;
290     env_tlb(env)->d[mmu_idx].large_page_mask = -1;
291     env_tlb(env)->d[mmu_idx].vindex = 0;
292     memset(env_tlb(env)->d[mmu_idx].vtable, -1,
293            sizeof(env_tlb(env)->d[0].vtable));
294 }
295 
296 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
297 {
298     CPUArchState *env = cpu->env_ptr;
299     uint16_t asked = data.host_int;
300     uint16_t all_dirty, work, to_clean;
301 
302     assert_cpu_is_self(cpu);
303 
304     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
305 
306     qemu_spin_lock(&env_tlb(env)->c.lock);
307 
308     all_dirty = env_tlb(env)->c.dirty;
309     to_clean = asked & all_dirty;
310     all_dirty &= ~to_clean;
311     env_tlb(env)->c.dirty = all_dirty;
312 
313     for (work = to_clean; work != 0; work &= work - 1) {
314         int mmu_idx = ctz32(work);
315         tlb_flush_one_mmuidx_locked(env, mmu_idx);
316     }
317 
318     qemu_spin_unlock(&env_tlb(env)->c.lock);
319 
320     cpu_tb_jmp_cache_clear(cpu);
321 
322     if (to_clean == ALL_MMUIDX_BITS) {
323         atomic_set(&env_tlb(env)->c.full_flush_count,
324                    env_tlb(env)->c.full_flush_count + 1);
325     } else {
326         atomic_set(&env_tlb(env)->c.part_flush_count,
327                    env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
328         if (to_clean != asked) {
329             atomic_set(&env_tlb(env)->c.elide_flush_count,
330                        env_tlb(env)->c.elide_flush_count +
331                        ctpop16(asked & ~to_clean));
332         }
333     }
334 }
335 
336 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
337 {
338     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
339 
340     if (cpu->created && !qemu_cpu_is_self(cpu)) {
341         async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
342                          RUN_ON_CPU_HOST_INT(idxmap));
343     } else {
344         tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
345     }
346 }
347 
348 void tlb_flush(CPUState *cpu)
349 {
350     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
351 }
352 
353 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
354 {
355     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
356 
357     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
358 
359     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
360     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
361 }
362 
363 void tlb_flush_all_cpus(CPUState *src_cpu)
364 {
365     tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
366 }
367 
368 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
369 {
370     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
371 
372     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
373 
374     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
375     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
376 }
377 
378 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
379 {
380     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
381 }
382 
383 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
384                                         target_ulong page)
385 {
386     return tlb_hit_page(tlb_entry->addr_read, page) ||
387            tlb_hit_page(tlb_addr_write(tlb_entry), page) ||
388            tlb_hit_page(tlb_entry->addr_code, page);
389 }
390 
391 /**
392  * tlb_entry_is_empty - return true if the entry is not in use
393  * @te: pointer to CPUTLBEntry
394  */
395 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
396 {
397     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
398 }
399 
400 /* Called with tlb_c.lock held */
401 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
402                                           target_ulong page)
403 {
404     if (tlb_hit_page_anyprot(tlb_entry, page)) {
405         memset(tlb_entry, -1, sizeof(*tlb_entry));
406         return true;
407     }
408     return false;
409 }
410 
411 /* Called with tlb_c.lock held */
412 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
413                                               target_ulong page)
414 {
415     CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
416     int k;
417 
418     assert_cpu_is_self(env_cpu(env));
419     for (k = 0; k < CPU_VTLB_SIZE; k++) {
420         if (tlb_flush_entry_locked(&d->vtable[k], page)) {
421             tlb_n_used_entries_dec(env, mmu_idx);
422         }
423     }
424 }
425 
426 static void tlb_flush_page_locked(CPUArchState *env, int midx,
427                                   target_ulong page)
428 {
429     target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
430     target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
431 
432     /* Check if we need to flush due to large pages.  */
433     if ((page & lp_mask) == lp_addr) {
434         tlb_debug("forcing full flush midx %d ("
435                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
436                   midx, lp_addr, lp_mask);
437         tlb_flush_one_mmuidx_locked(env, midx);
438     } else {
439         if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
440             tlb_n_used_entries_dec(env, midx);
441         }
442         tlb_flush_vtlb_page_locked(env, midx, page);
443     }
444 }
445 
446 /* As we are going to hijack the bottom bits of the page address for a
447  * mmuidx bit mask we need to fail to build if we can't do that
448  */
449 QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN);
450 
451 static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu,
452                                                 run_on_cpu_data data)
453 {
454     CPUArchState *env = cpu->env_ptr;
455     target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
456     target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
457     unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
458     int mmu_idx;
459 
460     assert_cpu_is_self(cpu);
461 
462     tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%lx\n",
463               addr, mmu_idx_bitmap);
464 
465     qemu_spin_lock(&env_tlb(env)->c.lock);
466     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
467         if (test_bit(mmu_idx, &mmu_idx_bitmap)) {
468             tlb_flush_page_locked(env, mmu_idx, addr);
469         }
470     }
471     qemu_spin_unlock(&env_tlb(env)->c.lock);
472 
473     tb_flush_jmp_cache(cpu, addr);
474 }
475 
476 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
477 {
478     target_ulong addr_and_mmu_idx;
479 
480     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
481 
482     /* This should already be page aligned */
483     addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
484     addr_and_mmu_idx |= idxmap;
485 
486     if (!qemu_cpu_is_self(cpu)) {
487         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_work,
488                          RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
489     } else {
490         tlb_flush_page_by_mmuidx_async_work(
491             cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
492     }
493 }
494 
495 void tlb_flush_page(CPUState *cpu, target_ulong addr)
496 {
497     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
498 }
499 
500 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
501                                        uint16_t idxmap)
502 {
503     const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work;
504     target_ulong addr_and_mmu_idx;
505 
506     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
507 
508     /* This should already be page aligned */
509     addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
510     addr_and_mmu_idx |= idxmap;
511 
512     flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
513     fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
514 }
515 
516 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
517 {
518     tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
519 }
520 
521 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
522                                               target_ulong addr,
523                                               uint16_t idxmap)
524 {
525     const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work;
526     target_ulong addr_and_mmu_idx;
527 
528     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
529 
530     /* This should already be page aligned */
531     addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
532     addr_and_mmu_idx |= idxmap;
533 
534     flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
535     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
536 }
537 
538 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
539 {
540     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
541 }
542 
543 /* update the TLBs so that writes to code in the virtual page 'addr'
544    can be detected */
545 void tlb_protect_code(ram_addr_t ram_addr)
546 {
547     cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
548                                              DIRTY_MEMORY_CODE);
549 }
550 
551 /* update the TLB so that writes in physical page 'phys_addr' are no longer
552    tested for self modifying code */
553 void tlb_unprotect_code(ram_addr_t ram_addr)
554 {
555     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
556 }
557 
558 
559 /*
560  * Dirty write flag handling
561  *
562  * When the TCG code writes to a location it looks up the address in
563  * the TLB and uses that data to compute the final address. If any of
564  * the lower bits of the address are set then the slow path is forced.
565  * There are a number of reasons to do this but for normal RAM the
566  * most usual is detecting writes to code regions which may invalidate
567  * generated code.
568  *
569  * Other vCPUs might be reading their TLBs during guest execution, so we update
570  * te->addr_write with atomic_set. We don't need to worry about this for
571  * oversized guests as MTTCG is disabled for them.
572  *
573  * Called with tlb_c.lock held.
574  */
575 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
576                                          uintptr_t start, uintptr_t length)
577 {
578     uintptr_t addr = tlb_entry->addr_write;
579 
580     if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
581         addr &= TARGET_PAGE_MASK;
582         addr += tlb_entry->addend;
583         if ((addr - start) < length) {
584 #if TCG_OVERSIZED_GUEST
585             tlb_entry->addr_write |= TLB_NOTDIRTY;
586 #else
587             atomic_set(&tlb_entry->addr_write,
588                        tlb_entry->addr_write | TLB_NOTDIRTY);
589 #endif
590         }
591     }
592 }
593 
594 /*
595  * Called with tlb_c.lock held.
596  * Called only from the vCPU context, i.e. the TLB's owner thread.
597  */
598 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
599 {
600     *d = *s;
601 }
602 
603 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
604  * the target vCPU).
605  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
606  * thing actually updated is the target TLB entry ->addr_write flags.
607  */
608 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
609 {
610     CPUArchState *env;
611 
612     int mmu_idx;
613 
614     env = cpu->env_ptr;
615     qemu_spin_lock(&env_tlb(env)->c.lock);
616     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
617         unsigned int i;
618         unsigned int n = tlb_n_entries(env, mmu_idx);
619 
620         for (i = 0; i < n; i++) {
621             tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
622                                          start1, length);
623         }
624 
625         for (i = 0; i < CPU_VTLB_SIZE; i++) {
626             tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
627                                          start1, length);
628         }
629     }
630     qemu_spin_unlock(&env_tlb(env)->c.lock);
631 }
632 
633 /* Called with tlb_c.lock held */
634 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
635                                          target_ulong vaddr)
636 {
637     if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
638         tlb_entry->addr_write = vaddr;
639     }
640 }
641 
642 /* update the TLB corresponding to virtual page vaddr
643    so that it is no longer dirty */
644 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
645 {
646     CPUArchState *env = cpu->env_ptr;
647     int mmu_idx;
648 
649     assert_cpu_is_self(cpu);
650 
651     vaddr &= TARGET_PAGE_MASK;
652     qemu_spin_lock(&env_tlb(env)->c.lock);
653     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
654         tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
655     }
656 
657     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
658         int k;
659         for (k = 0; k < CPU_VTLB_SIZE; k++) {
660             tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
661         }
662     }
663     qemu_spin_unlock(&env_tlb(env)->c.lock);
664 }
665 
666 /* Our TLB does not support large pages, so remember the area covered by
667    large pages and trigger a full TLB flush if these are invalidated.  */
668 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
669                                target_ulong vaddr, target_ulong size)
670 {
671     target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
672     target_ulong lp_mask = ~(size - 1);
673 
674     if (lp_addr == (target_ulong)-1) {
675         /* No previous large page.  */
676         lp_addr = vaddr;
677     } else {
678         /* Extend the existing region to include the new page.
679            This is a compromise between unnecessary flushes and
680            the cost of maintaining a full variable size TLB.  */
681         lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
682         while (((lp_addr ^ vaddr) & lp_mask) != 0) {
683             lp_mask <<= 1;
684         }
685     }
686     env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
687     env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
688 }
689 
690 /* Add a new TLB entry. At most one entry for a given virtual address
691  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
692  * supplied size is only used by tlb_flush_page.
693  *
694  * Called from TCG-generated code, which is under an RCU read-side
695  * critical section.
696  */
697 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
698                              hwaddr paddr, MemTxAttrs attrs, int prot,
699                              int mmu_idx, target_ulong size)
700 {
701     CPUArchState *env = cpu->env_ptr;
702     CPUTLB *tlb = env_tlb(env);
703     CPUTLBDesc *desc = &tlb->d[mmu_idx];
704     MemoryRegionSection *section;
705     unsigned int index;
706     target_ulong address;
707     target_ulong code_address;
708     uintptr_t addend;
709     CPUTLBEntry *te, tn;
710     hwaddr iotlb, xlat, sz, paddr_page;
711     target_ulong vaddr_page;
712     int asidx = cpu_asidx_from_attrs(cpu, attrs);
713     int wp_flags;
714 
715     assert_cpu_is_self(cpu);
716 
717     if (size <= TARGET_PAGE_SIZE) {
718         sz = TARGET_PAGE_SIZE;
719     } else {
720         tlb_add_large_page(env, mmu_idx, vaddr, size);
721         sz = size;
722     }
723     vaddr_page = vaddr & TARGET_PAGE_MASK;
724     paddr_page = paddr & TARGET_PAGE_MASK;
725 
726     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
727                                                 &xlat, &sz, attrs, &prot);
728     assert(sz >= TARGET_PAGE_SIZE);
729 
730     tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
731               " prot=%x idx=%d\n",
732               vaddr, paddr, prot, mmu_idx);
733 
734     address = vaddr_page;
735     if (size < TARGET_PAGE_SIZE) {
736         /* Repeat the MMU check and TLB fill on every access.  */
737         address |= TLB_INVALID_MASK;
738     }
739     if (attrs.byte_swap) {
740         /* Force the access through the I/O slow path.  */
741         address |= TLB_MMIO;
742     }
743     if (!memory_region_is_ram(section->mr) &&
744         !memory_region_is_romd(section->mr)) {
745         /* IO memory case */
746         address |= TLB_MMIO;
747         addend = 0;
748     } else {
749         /* TLB_MMIO for rom/romd handled below */
750         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
751     }
752 
753     code_address = address;
754     iotlb = memory_region_section_get_iotlb(cpu, section, vaddr_page,
755                                             paddr_page, xlat, prot, &address);
756     wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
757                                               TARGET_PAGE_SIZE);
758 
759     index = tlb_index(env, mmu_idx, vaddr_page);
760     te = tlb_entry(env, mmu_idx, vaddr_page);
761 
762     /*
763      * Hold the TLB lock for the rest of the function. We could acquire/release
764      * the lock several times in the function, but it is faster to amortize the
765      * acquisition cost by acquiring it just once. Note that this leads to
766      * a longer critical section, but this is not a concern since the TLB lock
767      * is unlikely to be contended.
768      */
769     qemu_spin_lock(&tlb->c.lock);
770 
771     /* Note that the tlb is no longer clean.  */
772     tlb->c.dirty |= 1 << mmu_idx;
773 
774     /* Make sure there's no cached translation for the new page.  */
775     tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
776 
777     /*
778      * Only evict the old entry to the victim tlb if it's for a
779      * different page; otherwise just overwrite the stale data.
780      */
781     if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
782         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
783         CPUTLBEntry *tv = &desc->vtable[vidx];
784 
785         /* Evict the old entry into the victim tlb.  */
786         copy_tlb_helper_locked(tv, te);
787         desc->viotlb[vidx] = desc->iotlb[index];
788         tlb_n_used_entries_dec(env, mmu_idx);
789     }
790 
791     /* refill the tlb */
792     /*
793      * At this point iotlb contains a physical section number in the lower
794      * TARGET_PAGE_BITS, and either
795      *  + the ram_addr_t of the page base of the target RAM (if NOTDIRTY or ROM)
796      *  + the offset within section->mr of the page base (otherwise)
797      * We subtract the vaddr_page (which is page aligned and thus won't
798      * disturb the low bits) to give an offset which can be added to the
799      * (non-page-aligned) vaddr of the eventual memory access to get
800      * the MemoryRegion offset for the access. Note that the vaddr we
801      * subtract here is that of the page base, and not the same as the
802      * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
803      */
804     desc->iotlb[index].addr = iotlb - vaddr_page;
805     desc->iotlb[index].attrs = attrs;
806 
807     /* Now calculate the new entry */
808     tn.addend = addend - vaddr_page;
809     if (prot & PAGE_READ) {
810         tn.addr_read = address;
811         if (wp_flags & BP_MEM_READ) {
812             tn.addr_read |= TLB_WATCHPOINT;
813         }
814     } else {
815         tn.addr_read = -1;
816     }
817 
818     if (prot & PAGE_EXEC) {
819         tn.addr_code = code_address;
820     } else {
821         tn.addr_code = -1;
822     }
823 
824     tn.addr_write = -1;
825     if (prot & PAGE_WRITE) {
826         if ((memory_region_is_ram(section->mr) && section->readonly)
827             || memory_region_is_romd(section->mr)) {
828             /* Write access calls the I/O callback.  */
829             tn.addr_write = address | TLB_MMIO;
830         } else if (memory_region_is_ram(section->mr)
831                    && cpu_physical_memory_is_clean(
832                        memory_region_get_ram_addr(section->mr) + xlat)) {
833             tn.addr_write = address | TLB_NOTDIRTY;
834         } else {
835             tn.addr_write = address;
836         }
837         if (prot & PAGE_WRITE_INV) {
838             tn.addr_write |= TLB_INVALID_MASK;
839         }
840         if (wp_flags & BP_MEM_WRITE) {
841             tn.addr_write |= TLB_WATCHPOINT;
842         }
843     }
844 
845     copy_tlb_helper_locked(te, &tn);
846     tlb_n_used_entries_inc(env, mmu_idx);
847     qemu_spin_unlock(&tlb->c.lock);
848 }
849 
850 /* Add a new TLB entry, but without specifying the memory
851  * transaction attributes to be used.
852  */
853 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
854                   hwaddr paddr, int prot,
855                   int mmu_idx, target_ulong size)
856 {
857     tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
858                             prot, mmu_idx, size);
859 }
860 
861 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
862 {
863     ram_addr_t ram_addr;
864 
865     ram_addr = qemu_ram_addr_from_host(ptr);
866     if (ram_addr == RAM_ADDR_INVALID) {
867         error_report("Bad ram pointer %p", ptr);
868         abort();
869     }
870     return ram_addr;
871 }
872 
873 /*
874  * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
875  * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
876  * be discarded and looked up again (e.g. via tlb_entry()).
877  */
878 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
879                      MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
880 {
881     CPUClass *cc = CPU_GET_CLASS(cpu);
882     bool ok;
883 
884     /*
885      * This is not a probe, so only valid return is success; failure
886      * should result in exception + longjmp to the cpu loop.
887      */
888     ok = cc->tlb_fill(cpu, addr, size, access_type, mmu_idx, false, retaddr);
889     assert(ok);
890 }
891 
892 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
893                          int mmu_idx, target_ulong addr, uintptr_t retaddr,
894                          MMUAccessType access_type, MemOp op)
895 {
896     CPUState *cpu = env_cpu(env);
897     hwaddr mr_offset;
898     MemoryRegionSection *section;
899     MemoryRegion *mr;
900     uint64_t val;
901     bool locked = false;
902     MemTxResult r;
903 
904     if (iotlbentry->attrs.byte_swap) {
905         op ^= MO_BSWAP;
906     }
907 
908     section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
909     mr = section->mr;
910     mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
911     cpu->mem_io_pc = retaddr;
912     if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
913         cpu_io_recompile(cpu, retaddr);
914     }
915 
916     cpu->mem_io_vaddr = addr;
917     cpu->mem_io_access_type = access_type;
918 
919     if (mr->global_locking && !qemu_mutex_iothread_locked()) {
920         qemu_mutex_lock_iothread();
921         locked = true;
922     }
923     r = memory_region_dispatch_read(mr, mr_offset, &val, op, iotlbentry->attrs);
924     if (r != MEMTX_OK) {
925         hwaddr physaddr = mr_offset +
926             section->offset_within_address_space -
927             section->offset_within_region;
928 
929         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
930                                mmu_idx, iotlbentry->attrs, r, retaddr);
931     }
932     if (locked) {
933         qemu_mutex_unlock_iothread();
934     }
935 
936     return val;
937 }
938 
939 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
940                       int mmu_idx, uint64_t val, target_ulong addr,
941                       uintptr_t retaddr, MemOp op)
942 {
943     CPUState *cpu = env_cpu(env);
944     hwaddr mr_offset;
945     MemoryRegionSection *section;
946     MemoryRegion *mr;
947     bool locked = false;
948     MemTxResult r;
949 
950     if (iotlbentry->attrs.byte_swap) {
951         op ^= MO_BSWAP;
952     }
953 
954     section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
955     mr = section->mr;
956     mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
957     if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
958         cpu_io_recompile(cpu, retaddr);
959     }
960     cpu->mem_io_vaddr = addr;
961     cpu->mem_io_pc = retaddr;
962 
963     if (mr->global_locking && !qemu_mutex_iothread_locked()) {
964         qemu_mutex_lock_iothread();
965         locked = true;
966     }
967     r = memory_region_dispatch_write(mr, mr_offset, val, op, iotlbentry->attrs);
968     if (r != MEMTX_OK) {
969         hwaddr physaddr = mr_offset +
970             section->offset_within_address_space -
971             section->offset_within_region;
972 
973         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
974                                MMU_DATA_STORE, mmu_idx, iotlbentry->attrs, r,
975                                retaddr);
976     }
977     if (locked) {
978         qemu_mutex_unlock_iothread();
979     }
980 }
981 
982 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
983 {
984 #if TCG_OVERSIZED_GUEST
985     return *(target_ulong *)((uintptr_t)entry + ofs);
986 #else
987     /* ofs might correspond to .addr_write, so use atomic_read */
988     return atomic_read((target_ulong *)((uintptr_t)entry + ofs));
989 #endif
990 }
991 
992 /* Return true if ADDR is present in the victim tlb, and has been copied
993    back to the main tlb.  */
994 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
995                            size_t elt_ofs, target_ulong page)
996 {
997     size_t vidx;
998 
999     assert_cpu_is_self(env_cpu(env));
1000     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1001         CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1002         target_ulong cmp;
1003 
1004         /* elt_ofs might correspond to .addr_write, so use atomic_read */
1005 #if TCG_OVERSIZED_GUEST
1006         cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
1007 #else
1008         cmp = atomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
1009 #endif
1010 
1011         if (cmp == page) {
1012             /* Found entry in victim tlb, swap tlb and iotlb.  */
1013             CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1014 
1015             qemu_spin_lock(&env_tlb(env)->c.lock);
1016             copy_tlb_helper_locked(&tmptlb, tlb);
1017             copy_tlb_helper_locked(tlb, vtlb);
1018             copy_tlb_helper_locked(vtlb, &tmptlb);
1019             qemu_spin_unlock(&env_tlb(env)->c.lock);
1020 
1021             CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
1022             CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
1023             tmpio = *io; *io = *vio; *vio = tmpio;
1024             return true;
1025         }
1026     }
1027     return false;
1028 }
1029 
1030 /* Macro to call the above, with local variables from the use context.  */
1031 #define VICTIM_TLB_HIT(TY, ADDR) \
1032   victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1033                  (ADDR) & TARGET_PAGE_MASK)
1034 
1035 /*
1036  * Return a ram_addr_t for the virtual address for execution.
1037  *
1038  * Return -1 if we can't translate and execute from an entire page
1039  * of RAM.  This will force us to execute by loading and translating
1040  * one insn at a time, without caching.
1041  *
1042  * NOTE: This function will trigger an exception if the page is
1043  * not executable.
1044  */
1045 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
1046 {
1047     uintptr_t mmu_idx = cpu_mmu_index(env, true);
1048     uintptr_t index = tlb_index(env, mmu_idx, addr);
1049     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1050     void *p;
1051 
1052     if (unlikely(!tlb_hit(entry->addr_code, addr))) {
1053         if (!VICTIM_TLB_HIT(addr_code, addr)) {
1054             tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
1055             index = tlb_index(env, mmu_idx, addr);
1056             entry = tlb_entry(env, mmu_idx, addr);
1057 
1058             if (unlikely(entry->addr_code & TLB_INVALID_MASK)) {
1059                 /*
1060                  * The MMU protection covers a smaller range than a target
1061                  * page, so we must redo the MMU check for every insn.
1062                  */
1063                 return -1;
1064             }
1065         }
1066         assert(tlb_hit(entry->addr_code, addr));
1067     }
1068 
1069     if (unlikely(entry->addr_code & TLB_MMIO)) {
1070         /* The region is not backed by RAM.  */
1071         return -1;
1072     }
1073 
1074     p = (void *)((uintptr_t)addr + entry->addend);
1075     return qemu_ram_addr_from_host_nofail(p);
1076 }
1077 
1078 /* Probe for whether the specified guest write access is permitted.
1079  * If it is not permitted then an exception will be taken in the same
1080  * way as if this were a real write access (and we will not return).
1081  * Otherwise the function will return, and there will be a valid
1082  * entry in the TLB for this access.
1083  */
1084 void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx,
1085                  uintptr_t retaddr)
1086 {
1087     uintptr_t index = tlb_index(env, mmu_idx, addr);
1088     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1089 
1090     if (!tlb_hit(tlb_addr_write(entry), addr)) {
1091         /* TLB entry is for a different page */
1092         if (!VICTIM_TLB_HIT(addr_write, addr)) {
1093             tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
1094                      mmu_idx, retaddr);
1095         }
1096     }
1097 }
1098 
1099 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1100                         MMUAccessType access_type, int mmu_idx)
1101 {
1102     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1103     uintptr_t tlb_addr, page;
1104     size_t elt_ofs;
1105 
1106     switch (access_type) {
1107     case MMU_DATA_LOAD:
1108         elt_ofs = offsetof(CPUTLBEntry, addr_read);
1109         break;
1110     case MMU_DATA_STORE:
1111         elt_ofs = offsetof(CPUTLBEntry, addr_write);
1112         break;
1113     case MMU_INST_FETCH:
1114         elt_ofs = offsetof(CPUTLBEntry, addr_code);
1115         break;
1116     default:
1117         g_assert_not_reached();
1118     }
1119 
1120     page = addr & TARGET_PAGE_MASK;
1121     tlb_addr = tlb_read_ofs(entry, elt_ofs);
1122 
1123     if (!tlb_hit_page(tlb_addr, page)) {
1124         uintptr_t index = tlb_index(env, mmu_idx, addr);
1125 
1126         if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page)) {
1127             CPUState *cs = env_cpu(env);
1128             CPUClass *cc = CPU_GET_CLASS(cs);
1129 
1130             if (!cc->tlb_fill(cs, addr, 0, access_type, mmu_idx, true, 0)) {
1131                 /* Non-faulting page table read failed.  */
1132                 return NULL;
1133             }
1134 
1135             /* TLB resize via tlb_fill may have moved the entry.  */
1136             entry = tlb_entry(env, mmu_idx, addr);
1137         }
1138         tlb_addr = tlb_read_ofs(entry, elt_ofs);
1139     }
1140 
1141     if (tlb_addr & ~TARGET_PAGE_MASK) {
1142         /* IO access */
1143         return NULL;
1144     }
1145 
1146     return (void *)((uintptr_t)addr + entry->addend);
1147 }
1148 
1149 /* Probe for a read-modify-write atomic operation.  Do not allow unaligned
1150  * operations, or io operations to proceed.  Return the host address.  */
1151 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1152                                TCGMemOpIdx oi, uintptr_t retaddr,
1153                                NotDirtyInfo *ndi)
1154 {
1155     size_t mmu_idx = get_mmuidx(oi);
1156     uintptr_t index = tlb_index(env, mmu_idx, addr);
1157     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1158     target_ulong tlb_addr = tlb_addr_write(tlbe);
1159     MemOp mop = get_memop(oi);
1160     int a_bits = get_alignment_bits(mop);
1161     int s_bits = mop & MO_SIZE;
1162     void *hostaddr;
1163 
1164     /* Adjust the given return address.  */
1165     retaddr -= GETPC_ADJ;
1166 
1167     /* Enforce guest required alignment.  */
1168     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1169         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1170         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1171                              mmu_idx, retaddr);
1172     }
1173 
1174     /* Enforce qemu required alignment.  */
1175     if (unlikely(addr & ((1 << s_bits) - 1))) {
1176         /* We get here if guest alignment was not requested,
1177            or was not enforced by cpu_unaligned_access above.
1178            We might widen the access and emulate, but for now
1179            mark an exception and exit the cpu loop.  */
1180         goto stop_the_world;
1181     }
1182 
1183     /* Check TLB entry and enforce page permissions.  */
1184     if (!tlb_hit(tlb_addr, addr)) {
1185         if (!VICTIM_TLB_HIT(addr_write, addr)) {
1186             tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_STORE,
1187                      mmu_idx, retaddr);
1188             index = tlb_index(env, mmu_idx, addr);
1189             tlbe = tlb_entry(env, mmu_idx, addr);
1190         }
1191         tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1192     }
1193 
1194     /* Notice an IO access or a needs-MMU-lookup access */
1195     if (unlikely(tlb_addr & TLB_MMIO)) {
1196         /* There's really nothing that can be done to
1197            support this apart from stop-the-world.  */
1198         goto stop_the_world;
1199     }
1200 
1201     /* Let the guest notice RMW on a write-only page.  */
1202     if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1203         tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_LOAD,
1204                  mmu_idx, retaddr);
1205         /* Since we don't support reads and writes to different addresses,
1206            and we do have the proper page loaded for write, this shouldn't
1207            ever return.  But just in case, handle via stop-the-world.  */
1208         goto stop_the_world;
1209     }
1210 
1211     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1212 
1213     ndi->active = false;
1214     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1215         ndi->active = true;
1216         memory_notdirty_write_prepare(ndi, env_cpu(env), addr,
1217                                       qemu_ram_addr_from_host_nofail(hostaddr),
1218                                       1 << s_bits);
1219     }
1220 
1221     return hostaddr;
1222 
1223  stop_the_world:
1224     cpu_loop_exit_atomic(env_cpu(env), retaddr);
1225 }
1226 
1227 /*
1228  * Load Helpers
1229  *
1230  * We support two different access types. SOFTMMU_CODE_ACCESS is
1231  * specifically for reading instructions from system memory. It is
1232  * called by the translation loop and in some helpers where the code
1233  * is disassembled. It shouldn't be called directly by guest code.
1234  */
1235 
1236 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
1237                                 TCGMemOpIdx oi, uintptr_t retaddr);
1238 
1239 static inline uint64_t __attribute__((always_inline))
1240 load_helper(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1241             uintptr_t retaddr, MemOp op, bool code_read,
1242             FullLoadHelper *full_load)
1243 {
1244     uintptr_t mmu_idx = get_mmuidx(oi);
1245     uintptr_t index = tlb_index(env, mmu_idx, addr);
1246     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1247     target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1248     const size_t tlb_off = code_read ?
1249         offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
1250     const MMUAccessType access_type =
1251         code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
1252     unsigned a_bits = get_alignment_bits(get_memop(oi));
1253     void *haddr;
1254     uint64_t res;
1255     size_t size = memop_size(op);
1256 
1257     /* Handle CPU specific unaligned behaviour */
1258     if (addr & ((1 << a_bits) - 1)) {
1259         cpu_unaligned_access(env_cpu(env), addr, access_type,
1260                              mmu_idx, retaddr);
1261     }
1262 
1263     /* If the TLB entry is for a different page, reload and try again.  */
1264     if (!tlb_hit(tlb_addr, addr)) {
1265         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1266                             addr & TARGET_PAGE_MASK)) {
1267             tlb_fill(env_cpu(env), addr, size,
1268                      access_type, mmu_idx, retaddr);
1269             index = tlb_index(env, mmu_idx, addr);
1270             entry = tlb_entry(env, mmu_idx, addr);
1271         }
1272         tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1273         tlb_addr &= ~TLB_INVALID_MASK;
1274     }
1275 
1276     /* Handle anything that isn't just a straight memory access.  */
1277     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1278         CPUIOTLBEntry *iotlbentry;
1279 
1280         /* For anything that is unaligned, recurse through full_load.  */
1281         if ((addr & (size - 1)) != 0) {
1282             goto do_unaligned_access;
1283         }
1284 
1285         iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1286 
1287         /* Handle watchpoints.  */
1288         if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1289             /* On watchpoint hit, this will longjmp out.  */
1290             cpu_check_watchpoint(env_cpu(env), addr, size,
1291                                  iotlbentry->attrs, BP_MEM_READ, retaddr);
1292 
1293             /* The backing page may or may not require I/O.  */
1294             tlb_addr &= ~TLB_WATCHPOINT;
1295             if ((tlb_addr & ~TARGET_PAGE_MASK) == 0) {
1296                 goto do_aligned_access;
1297             }
1298         }
1299 
1300         /* Handle I/O access.  */
1301         return io_readx(env, iotlbentry, mmu_idx, addr,
1302                         retaddr, access_type, op);
1303     }
1304 
1305     /* Handle slow unaligned access (it spans two pages or IO).  */
1306     if (size > 1
1307         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1308                     >= TARGET_PAGE_SIZE)) {
1309         target_ulong addr1, addr2;
1310         uint64_t r1, r2;
1311         unsigned shift;
1312     do_unaligned_access:
1313         addr1 = addr & ~((target_ulong)size - 1);
1314         addr2 = addr1 + size;
1315         r1 = full_load(env, addr1, oi, retaddr);
1316         r2 = full_load(env, addr2, oi, retaddr);
1317         shift = (addr & (size - 1)) * 8;
1318 
1319         if (memop_big_endian(op)) {
1320             /* Big-endian combine.  */
1321             res = (r1 << shift) | (r2 >> ((size * 8) - shift));
1322         } else {
1323             /* Little-endian combine.  */
1324             res = (r1 >> shift) | (r2 << ((size * 8) - shift));
1325         }
1326         return res & MAKE_64BIT_MASK(0, size * 8);
1327     }
1328 
1329  do_aligned_access:
1330     haddr = (void *)((uintptr_t)addr + entry->addend);
1331     switch (op) {
1332     case MO_UB:
1333         res = ldub_p(haddr);
1334         break;
1335     case MO_BEUW:
1336         res = lduw_be_p(haddr);
1337         break;
1338     case MO_LEUW:
1339         res = lduw_le_p(haddr);
1340         break;
1341     case MO_BEUL:
1342         res = (uint32_t)ldl_be_p(haddr);
1343         break;
1344     case MO_LEUL:
1345         res = (uint32_t)ldl_le_p(haddr);
1346         break;
1347     case MO_BEQ:
1348         res = ldq_be_p(haddr);
1349         break;
1350     case MO_LEQ:
1351         res = ldq_le_p(haddr);
1352         break;
1353     default:
1354         g_assert_not_reached();
1355     }
1356 
1357     return res;
1358 }
1359 
1360 /*
1361  * For the benefit of TCG generated code, we want to avoid the
1362  * complication of ABI-specific return type promotion and always
1363  * return a value extended to the register size of the host. This is
1364  * tcg_target_long, except in the case of a 32-bit host and 64-bit
1365  * data, and for that we always have uint64_t.
1366  *
1367  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1368  */
1369 
1370 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
1371                               TCGMemOpIdx oi, uintptr_t retaddr)
1372 {
1373     return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu);
1374 }
1375 
1376 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
1377                                      TCGMemOpIdx oi, uintptr_t retaddr)
1378 {
1379     return full_ldub_mmu(env, addr, oi, retaddr);
1380 }
1381 
1382 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
1383                                  TCGMemOpIdx oi, uintptr_t retaddr)
1384 {
1385     return load_helper(env, addr, oi, retaddr, MO_LEUW, false,
1386                        full_le_lduw_mmu);
1387 }
1388 
1389 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
1390                                     TCGMemOpIdx oi, uintptr_t retaddr)
1391 {
1392     return full_le_lduw_mmu(env, addr, oi, retaddr);
1393 }
1394 
1395 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
1396                                  TCGMemOpIdx oi, uintptr_t retaddr)
1397 {
1398     return load_helper(env, addr, oi, retaddr, MO_BEUW, false,
1399                        full_be_lduw_mmu);
1400 }
1401 
1402 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
1403                                     TCGMemOpIdx oi, uintptr_t retaddr)
1404 {
1405     return full_be_lduw_mmu(env, addr, oi, retaddr);
1406 }
1407 
1408 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
1409                                  TCGMemOpIdx oi, uintptr_t retaddr)
1410 {
1411     return load_helper(env, addr, oi, retaddr, MO_LEUL, false,
1412                        full_le_ldul_mmu);
1413 }
1414 
1415 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
1416                                     TCGMemOpIdx oi, uintptr_t retaddr)
1417 {
1418     return full_le_ldul_mmu(env, addr, oi, retaddr);
1419 }
1420 
1421 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
1422                                  TCGMemOpIdx oi, uintptr_t retaddr)
1423 {
1424     return load_helper(env, addr, oi, retaddr, MO_BEUL, false,
1425                        full_be_ldul_mmu);
1426 }
1427 
1428 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
1429                                     TCGMemOpIdx oi, uintptr_t retaddr)
1430 {
1431     return full_be_ldul_mmu(env, addr, oi, retaddr);
1432 }
1433 
1434 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
1435                            TCGMemOpIdx oi, uintptr_t retaddr)
1436 {
1437     return load_helper(env, addr, oi, retaddr, MO_LEQ, false,
1438                        helper_le_ldq_mmu);
1439 }
1440 
1441 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
1442                            TCGMemOpIdx oi, uintptr_t retaddr)
1443 {
1444     return load_helper(env, addr, oi, retaddr, MO_BEQ, false,
1445                        helper_be_ldq_mmu);
1446 }
1447 
1448 /*
1449  * Provide signed versions of the load routines as well.  We can of course
1450  * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
1451  */
1452 
1453 
1454 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
1455                                      TCGMemOpIdx oi, uintptr_t retaddr)
1456 {
1457     return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
1458 }
1459 
1460 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
1461                                     TCGMemOpIdx oi, uintptr_t retaddr)
1462 {
1463     return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
1464 }
1465 
1466 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
1467                                     TCGMemOpIdx oi, uintptr_t retaddr)
1468 {
1469     return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
1470 }
1471 
1472 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
1473                                     TCGMemOpIdx oi, uintptr_t retaddr)
1474 {
1475     return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
1476 }
1477 
1478 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
1479                                     TCGMemOpIdx oi, uintptr_t retaddr)
1480 {
1481     return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
1482 }
1483 
1484 /*
1485  * Store Helpers
1486  */
1487 
1488 static inline void __attribute__((always_inline))
1489 store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
1490              TCGMemOpIdx oi, uintptr_t retaddr, MemOp op)
1491 {
1492     uintptr_t mmu_idx = get_mmuidx(oi);
1493     uintptr_t index = tlb_index(env, mmu_idx, addr);
1494     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1495     target_ulong tlb_addr = tlb_addr_write(entry);
1496     const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
1497     unsigned a_bits = get_alignment_bits(get_memop(oi));
1498     void *haddr;
1499     size_t size = memop_size(op);
1500 
1501     /* Handle CPU specific unaligned behaviour */
1502     if (addr & ((1 << a_bits) - 1)) {
1503         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1504                              mmu_idx, retaddr);
1505     }
1506 
1507     /* If the TLB entry is for a different page, reload and try again.  */
1508     if (!tlb_hit(tlb_addr, addr)) {
1509         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1510             addr & TARGET_PAGE_MASK)) {
1511             tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
1512                      mmu_idx, retaddr);
1513             index = tlb_index(env, mmu_idx, addr);
1514             entry = tlb_entry(env, mmu_idx, addr);
1515         }
1516         tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
1517     }
1518 
1519     /* Handle anything that isn't just a straight memory access.  */
1520     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1521         CPUIOTLBEntry *iotlbentry;
1522 
1523         /* For anything that is unaligned, recurse through byte stores.  */
1524         if ((addr & (size - 1)) != 0) {
1525             goto do_unaligned_access;
1526         }
1527 
1528         iotlbentry = &env_tlb(env)->d[mmu_idx].iotlb[index];
1529 
1530         /* Handle watchpoints.  */
1531         if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1532             /* On watchpoint hit, this will longjmp out.  */
1533             cpu_check_watchpoint(env_cpu(env), addr, size,
1534                                  iotlbentry->attrs, BP_MEM_WRITE, retaddr);
1535 
1536             /* The backing page may or may not require I/O.  */
1537             tlb_addr &= ~TLB_WATCHPOINT;
1538             if ((tlb_addr & ~TARGET_PAGE_MASK) == 0) {
1539                 goto do_aligned_access;
1540             }
1541         }
1542 
1543         /* Handle I/O access.  */
1544         io_writex(env, iotlbentry, mmu_idx, val, addr, retaddr, op);
1545         return;
1546     }
1547 
1548     /* Handle slow unaligned access (it spans two pages or IO).  */
1549     if (size > 1
1550         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1551                      >= TARGET_PAGE_SIZE)) {
1552         int i;
1553         uintptr_t index2;
1554         CPUTLBEntry *entry2;
1555         target_ulong page2, tlb_addr2;
1556         size_t size2;
1557 
1558     do_unaligned_access:
1559         /*
1560          * Ensure the second page is in the TLB.  Note that the first page
1561          * is already guaranteed to be filled, and that the second page
1562          * cannot evict the first.
1563          */
1564         page2 = (addr + size) & TARGET_PAGE_MASK;
1565         size2 = (addr + size) & ~TARGET_PAGE_MASK;
1566         index2 = tlb_index(env, mmu_idx, page2);
1567         entry2 = tlb_entry(env, mmu_idx, page2);
1568         tlb_addr2 = tlb_addr_write(entry2);
1569         if (!tlb_hit_page(tlb_addr2, page2)) {
1570             if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) {
1571                 tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE,
1572                          mmu_idx, retaddr);
1573                 index2 = tlb_index(env, mmu_idx, page2);
1574                 entry2 = tlb_entry(env, mmu_idx, page2);
1575             }
1576             tlb_addr2 = tlb_addr_write(entry2);
1577         }
1578 
1579         /*
1580          * Handle watchpoints.  Since this may trap, all checks
1581          * must happen before any store.
1582          */
1583         if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1584             cpu_check_watchpoint(env_cpu(env), addr, size - size2,
1585                                  env_tlb(env)->d[mmu_idx].iotlb[index].attrs,
1586                                  BP_MEM_WRITE, retaddr);
1587         }
1588         if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) {
1589             cpu_check_watchpoint(env_cpu(env), page2, size2,
1590                                  env_tlb(env)->d[mmu_idx].iotlb[index2].attrs,
1591                                  BP_MEM_WRITE, retaddr);
1592         }
1593 
1594         /*
1595          * XXX: not efficient, but simple.
1596          * This loop must go in the forward direction to avoid issues
1597          * with self-modifying code in Windows 64-bit.
1598          */
1599         for (i = 0; i < size; ++i) {
1600             uint8_t val8;
1601             if (memop_big_endian(op)) {
1602                 /* Big-endian extract.  */
1603                 val8 = val >> (((size - 1) * 8) - (i * 8));
1604             } else {
1605                 /* Little-endian extract.  */
1606                 val8 = val >> (i * 8);
1607             }
1608             helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
1609         }
1610         return;
1611     }
1612 
1613  do_aligned_access:
1614     haddr = (void *)((uintptr_t)addr + entry->addend);
1615     switch (op) {
1616     case MO_UB:
1617         stb_p(haddr, val);
1618         break;
1619     case MO_BEUW:
1620         stw_be_p(haddr, val);
1621         break;
1622     case MO_LEUW:
1623         stw_le_p(haddr, val);
1624         break;
1625     case MO_BEUL:
1626         stl_be_p(haddr, val);
1627         break;
1628     case MO_LEUL:
1629         stl_le_p(haddr, val);
1630         break;
1631     case MO_BEQ:
1632         stq_be_p(haddr, val);
1633         break;
1634     case MO_LEQ:
1635         stq_le_p(haddr, val);
1636         break;
1637     default:
1638         g_assert_not_reached();
1639         break;
1640     }
1641 }
1642 
1643 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
1644                         TCGMemOpIdx oi, uintptr_t retaddr)
1645 {
1646     store_helper(env, addr, val, oi, retaddr, MO_UB);
1647 }
1648 
1649 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
1650                        TCGMemOpIdx oi, uintptr_t retaddr)
1651 {
1652     store_helper(env, addr, val, oi, retaddr, MO_LEUW);
1653 }
1654 
1655 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
1656                        TCGMemOpIdx oi, uintptr_t retaddr)
1657 {
1658     store_helper(env, addr, val, oi, retaddr, MO_BEUW);
1659 }
1660 
1661 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
1662                        TCGMemOpIdx oi, uintptr_t retaddr)
1663 {
1664     store_helper(env, addr, val, oi, retaddr, MO_LEUL);
1665 }
1666 
1667 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
1668                        TCGMemOpIdx oi, uintptr_t retaddr)
1669 {
1670     store_helper(env, addr, val, oi, retaddr, MO_BEUL);
1671 }
1672 
1673 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
1674                        TCGMemOpIdx oi, uintptr_t retaddr)
1675 {
1676     store_helper(env, addr, val, oi, retaddr, MO_LEQ);
1677 }
1678 
1679 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
1680                        TCGMemOpIdx oi, uintptr_t retaddr)
1681 {
1682     store_helper(env, addr, val, oi, retaddr, MO_BEQ);
1683 }
1684 
1685 /* First set of helpers allows passing in of OI and RETADDR.  This makes
1686    them callable from other helpers.  */
1687 
1688 #define EXTRA_ARGS     , TCGMemOpIdx oi, uintptr_t retaddr
1689 #define ATOMIC_NAME(X) \
1690     HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
1691 #define ATOMIC_MMU_DECLS NotDirtyInfo ndi
1692 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr, &ndi)
1693 #define ATOMIC_MMU_CLEANUP                              \
1694     do {                                                \
1695         if (unlikely(ndi.active)) {                     \
1696             memory_notdirty_write_complete(&ndi);       \
1697         }                                               \
1698     } while (0)
1699 
1700 #define DATA_SIZE 1
1701 #include "atomic_template.h"
1702 
1703 #define DATA_SIZE 2
1704 #include "atomic_template.h"
1705 
1706 #define DATA_SIZE 4
1707 #include "atomic_template.h"
1708 
1709 #ifdef CONFIG_ATOMIC64
1710 #define DATA_SIZE 8
1711 #include "atomic_template.h"
1712 #endif
1713 
1714 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
1715 #define DATA_SIZE 16
1716 #include "atomic_template.h"
1717 #endif
1718 
1719 /* Second set of helpers are directly callable from TCG as helpers.  */
1720 
1721 #undef EXTRA_ARGS
1722 #undef ATOMIC_NAME
1723 #undef ATOMIC_MMU_LOOKUP
1724 #define EXTRA_ARGS         , TCGMemOpIdx oi
1725 #define ATOMIC_NAME(X)     HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
1726 #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, oi, GETPC(), &ndi)
1727 
1728 #define DATA_SIZE 1
1729 #include "atomic_template.h"
1730 
1731 #define DATA_SIZE 2
1732 #include "atomic_template.h"
1733 
1734 #define DATA_SIZE 4
1735 #include "atomic_template.h"
1736 
1737 #ifdef CONFIG_ATOMIC64
1738 #define DATA_SIZE 8
1739 #include "atomic_template.h"
1740 #endif
1741 
1742 /* Code access functions.  */
1743 
1744 static uint64_t full_ldub_cmmu(CPUArchState *env, target_ulong addr,
1745                                TCGMemOpIdx oi, uintptr_t retaddr)
1746 {
1747     return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_cmmu);
1748 }
1749 
1750 uint8_t helper_ret_ldb_cmmu(CPUArchState *env, target_ulong addr,
1751                             TCGMemOpIdx oi, uintptr_t retaddr)
1752 {
1753     return full_ldub_cmmu(env, addr, oi, retaddr);
1754 }
1755 
1756 static uint64_t full_le_lduw_cmmu(CPUArchState *env, target_ulong addr,
1757                                   TCGMemOpIdx oi, uintptr_t retaddr)
1758 {
1759     return load_helper(env, addr, oi, retaddr, MO_LEUW, true,
1760                        full_le_lduw_cmmu);
1761 }
1762 
1763 uint16_t helper_le_ldw_cmmu(CPUArchState *env, target_ulong addr,
1764                             TCGMemOpIdx oi, uintptr_t retaddr)
1765 {
1766     return full_le_lduw_cmmu(env, addr, oi, retaddr);
1767 }
1768 
1769 static uint64_t full_be_lduw_cmmu(CPUArchState *env, target_ulong addr,
1770                                   TCGMemOpIdx oi, uintptr_t retaddr)
1771 {
1772     return load_helper(env, addr, oi, retaddr, MO_BEUW, true,
1773                        full_be_lduw_cmmu);
1774 }
1775 
1776 uint16_t helper_be_ldw_cmmu(CPUArchState *env, target_ulong addr,
1777                             TCGMemOpIdx oi, uintptr_t retaddr)
1778 {
1779     return full_be_lduw_cmmu(env, addr, oi, retaddr);
1780 }
1781 
1782 static uint64_t full_le_ldul_cmmu(CPUArchState *env, target_ulong addr,
1783                                   TCGMemOpIdx oi, uintptr_t retaddr)
1784 {
1785     return load_helper(env, addr, oi, retaddr, MO_LEUL, true,
1786                        full_le_ldul_cmmu);
1787 }
1788 
1789 uint32_t helper_le_ldl_cmmu(CPUArchState *env, target_ulong addr,
1790                             TCGMemOpIdx oi, uintptr_t retaddr)
1791 {
1792     return full_le_ldul_cmmu(env, addr, oi, retaddr);
1793 }
1794 
1795 static uint64_t full_be_ldul_cmmu(CPUArchState *env, target_ulong addr,
1796                                   TCGMemOpIdx oi, uintptr_t retaddr)
1797 {
1798     return load_helper(env, addr, oi, retaddr, MO_BEUL, true,
1799                        full_be_ldul_cmmu);
1800 }
1801 
1802 uint32_t helper_be_ldl_cmmu(CPUArchState *env, target_ulong addr,
1803                             TCGMemOpIdx oi, uintptr_t retaddr)
1804 {
1805     return full_be_ldul_cmmu(env, addr, oi, retaddr);
1806 }
1807 
1808 uint64_t helper_le_ldq_cmmu(CPUArchState *env, target_ulong addr,
1809                             TCGMemOpIdx oi, uintptr_t retaddr)
1810 {
1811     return load_helper(env, addr, oi, retaddr, MO_LEQ, true,
1812                        helper_le_ldq_cmmu);
1813 }
1814 
1815 uint64_t helper_be_ldq_cmmu(CPUArchState *env, target_ulong addr,
1816                             TCGMemOpIdx oi, uintptr_t retaddr)
1817 {
1818     return load_helper(env, addr, oi, retaddr, MO_BEQ, true,
1819                        helper_be_ldq_cmmu);
1820 }
1821