1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/cputlb.h" 27 #include "exec/tb-flush.h" 28 #include "exec/memory-internal.h" 29 #include "exec/ram_addr.h" 30 #include "tcg/tcg.h" 31 #include "qemu/error-report.h" 32 #include "exec/log.h" 33 #include "exec/helper-proto-common.h" 34 #include "qemu/atomic.h" 35 #include "qemu/atomic128.h" 36 #include "exec/translate-all.h" 37 #include "trace.h" 38 #include "tb-hash.h" 39 #include "internal-common.h" 40 #include "internal-target.h" 41 #ifdef CONFIG_PLUGIN 42 #include "qemu/plugin-memory.h" 43 #endif 44 #include "tcg/tcg-ldst.h" 45 #include "tcg/oversized-guest.h" 46 47 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 48 /* #define DEBUG_TLB */ 49 /* #define DEBUG_TLB_LOG */ 50 51 #ifdef DEBUG_TLB 52 # define DEBUG_TLB_GATE 1 53 # ifdef DEBUG_TLB_LOG 54 # define DEBUG_TLB_LOG_GATE 1 55 # else 56 # define DEBUG_TLB_LOG_GATE 0 57 # endif 58 #else 59 # define DEBUG_TLB_GATE 0 60 # define DEBUG_TLB_LOG_GATE 0 61 #endif 62 63 #define tlb_debug(fmt, ...) do { \ 64 if (DEBUG_TLB_LOG_GATE) { \ 65 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 66 ## __VA_ARGS__); \ 67 } else if (DEBUG_TLB_GATE) { \ 68 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 69 } \ 70 } while (0) 71 72 #define assert_cpu_is_self(cpu) do { \ 73 if (DEBUG_TLB_GATE) { \ 74 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 75 } \ 76 } while (0) 77 78 /* run_on_cpu_data.target_ptr should always be big enough for a 79 * vaddr even on 32 bit builds 80 */ 81 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data)); 82 83 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 84 */ 85 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 86 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 87 88 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 89 { 90 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 91 } 92 93 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 94 { 95 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 96 } 97 98 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 99 size_t max_entries) 100 { 101 desc->window_begin_ns = ns; 102 desc->window_max_entries = max_entries; 103 } 104 105 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr) 106 { 107 CPUJumpCache *jc = cpu->tb_jmp_cache; 108 int i, i0; 109 110 if (unlikely(!jc)) { 111 return; 112 } 113 114 i0 = tb_jmp_cache_hash_page(page_addr); 115 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 116 qatomic_set(&jc->array[i0 + i].tb, NULL); 117 } 118 } 119 120 /** 121 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 122 * @desc: The CPUTLBDesc portion of the TLB 123 * @fast: The CPUTLBDescFast portion of the same TLB 124 * 125 * Called with tlb_lock_held. 126 * 127 * We have two main constraints when resizing a TLB: (1) we only resize it 128 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 129 * the array or unnecessarily flushing it), which means we do not control how 130 * frequently the resizing can occur; (2) we don't have access to the guest's 131 * future scheduling decisions, and therefore have to decide the magnitude of 132 * the resize based on past observations. 133 * 134 * In general, a memory-hungry process can benefit greatly from an appropriately 135 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 136 * we just have to make the TLB as large as possible; while an oversized TLB 137 * results in minimal TLB miss rates, it also takes longer to be flushed 138 * (flushes can be _very_ frequent), and the reduced locality can also hurt 139 * performance. 140 * 141 * To achieve near-optimal performance for all kinds of workloads, we: 142 * 143 * 1. Aggressively increase the size of the TLB when the use rate of the 144 * TLB being flushed is high, since it is likely that in the near future this 145 * memory-hungry process will execute again, and its memory hungriness will 146 * probably be similar. 147 * 148 * 2. Slowly reduce the size of the TLB as the use rate declines over a 149 * reasonably large time window. The rationale is that if in such a time window 150 * we have not observed a high TLB use rate, it is likely that we won't observe 151 * it in the near future. In that case, once a time window expires we downsize 152 * the TLB to match the maximum use rate observed in the window. 153 * 154 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 155 * since in that range performance is likely near-optimal. Recall that the TLB 156 * is direct mapped, so we want the use rate to be low (or at least not too 157 * high), since otherwise we are likely to have a significant amount of 158 * conflict misses. 159 */ 160 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 161 int64_t now) 162 { 163 size_t old_size = tlb_n_entries(fast); 164 size_t rate; 165 size_t new_size = old_size; 166 int64_t window_len_ms = 100; 167 int64_t window_len_ns = window_len_ms * 1000 * 1000; 168 bool window_expired = now > desc->window_begin_ns + window_len_ns; 169 170 if (desc->n_used_entries > desc->window_max_entries) { 171 desc->window_max_entries = desc->n_used_entries; 172 } 173 rate = desc->window_max_entries * 100 / old_size; 174 175 if (rate > 70) { 176 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 177 } else if (rate < 30 && window_expired) { 178 size_t ceil = pow2ceil(desc->window_max_entries); 179 size_t expected_rate = desc->window_max_entries * 100 / ceil; 180 181 /* 182 * Avoid undersizing when the max number of entries seen is just below 183 * a pow2. For instance, if max_entries == 1025, the expected use rate 184 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 185 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 186 * later. Thus, make sure that the expected use rate remains below 70%. 187 * (and since we double the size, that means the lowest rate we'd 188 * expect to get is 35%, which is still in the 30-70% range where 189 * we consider that the size is appropriate.) 190 */ 191 if (expected_rate > 70) { 192 ceil *= 2; 193 } 194 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 195 } 196 197 if (new_size == old_size) { 198 if (window_expired) { 199 tlb_window_reset(desc, now, desc->n_used_entries); 200 } 201 return; 202 } 203 204 g_free(fast->table); 205 g_free(desc->fulltlb); 206 207 tlb_window_reset(desc, now, 0); 208 /* desc->n_used_entries is cleared by the caller */ 209 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 210 fast->table = g_try_new(CPUTLBEntry, new_size); 211 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 212 213 /* 214 * If the allocations fail, try smaller sizes. We just freed some 215 * memory, so going back to half of new_size has a good chance of working. 216 * Increased memory pressure elsewhere in the system might cause the 217 * allocations to fail though, so we progressively reduce the allocation 218 * size, aborting if we cannot even allocate the smallest TLB we support. 219 */ 220 while (fast->table == NULL || desc->fulltlb == NULL) { 221 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 222 error_report("%s: %s", __func__, strerror(errno)); 223 abort(); 224 } 225 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 226 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 227 228 g_free(fast->table); 229 g_free(desc->fulltlb); 230 fast->table = g_try_new(CPUTLBEntry, new_size); 231 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 232 } 233 } 234 235 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 236 { 237 desc->n_used_entries = 0; 238 desc->large_page_addr = -1; 239 desc->large_page_mask = -1; 240 desc->vindex = 0; 241 memset(fast->table, -1, sizeof_tlb(fast)); 242 memset(desc->vtable, -1, sizeof(desc->vtable)); 243 } 244 245 static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx, 246 int64_t now) 247 { 248 CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx]; 249 CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx]; 250 251 tlb_mmu_resize_locked(desc, fast, now); 252 tlb_mmu_flush_locked(desc, fast); 253 } 254 255 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 256 { 257 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 258 259 tlb_window_reset(desc, now, 0); 260 desc->n_used_entries = 0; 261 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 262 fast->table = g_new(CPUTLBEntry, n_entries); 263 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 264 tlb_mmu_flush_locked(desc, fast); 265 } 266 267 static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx) 268 { 269 cpu->neg.tlb.d[mmu_idx].n_used_entries++; 270 } 271 272 static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx) 273 { 274 cpu->neg.tlb.d[mmu_idx].n_used_entries--; 275 } 276 277 void tlb_init(CPUState *cpu) 278 { 279 int64_t now = get_clock_realtime(); 280 int i; 281 282 qemu_spin_init(&cpu->neg.tlb.c.lock); 283 284 /* All tlbs are initialized flushed. */ 285 cpu->neg.tlb.c.dirty = 0; 286 287 for (i = 0; i < NB_MMU_MODES; i++) { 288 tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now); 289 } 290 } 291 292 void tlb_destroy(CPUState *cpu) 293 { 294 int i; 295 296 qemu_spin_destroy(&cpu->neg.tlb.c.lock); 297 for (i = 0; i < NB_MMU_MODES; i++) { 298 CPUTLBDesc *desc = &cpu->neg.tlb.d[i]; 299 CPUTLBDescFast *fast = &cpu->neg.tlb.f[i]; 300 301 g_free(fast->table); 302 g_free(desc->fulltlb); 303 } 304 } 305 306 /* flush_all_helper: run fn across all cpus 307 * 308 * If the wait flag is set then the src cpu's helper will be queued as 309 * "safe" work and the loop exited creating a synchronisation point 310 * where all queued work will be finished before execution starts 311 * again. 312 */ 313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 314 run_on_cpu_data d) 315 { 316 CPUState *cpu; 317 318 CPU_FOREACH(cpu) { 319 if (cpu != src) { 320 async_run_on_cpu(cpu, fn, d); 321 } 322 } 323 } 324 325 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 326 { 327 uint16_t asked = data.host_int; 328 uint16_t all_dirty, work, to_clean; 329 int64_t now = get_clock_realtime(); 330 331 assert_cpu_is_self(cpu); 332 333 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 334 335 qemu_spin_lock(&cpu->neg.tlb.c.lock); 336 337 all_dirty = cpu->neg.tlb.c.dirty; 338 to_clean = asked & all_dirty; 339 all_dirty &= ~to_clean; 340 cpu->neg.tlb.c.dirty = all_dirty; 341 342 for (work = to_clean; work != 0; work &= work - 1) { 343 int mmu_idx = ctz32(work); 344 tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now); 345 } 346 347 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 348 349 tcg_flush_jmp_cache(cpu); 350 351 if (to_clean == ALL_MMUIDX_BITS) { 352 qatomic_set(&cpu->neg.tlb.c.full_flush_count, 353 cpu->neg.tlb.c.full_flush_count + 1); 354 } else { 355 qatomic_set(&cpu->neg.tlb.c.part_flush_count, 356 cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean)); 357 if (to_clean != asked) { 358 qatomic_set(&cpu->neg.tlb.c.elide_flush_count, 359 cpu->neg.tlb.c.elide_flush_count + 360 ctpop16(asked & ~to_clean)); 361 } 362 } 363 } 364 365 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 366 { 367 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 368 369 if (cpu->created && !qemu_cpu_is_self(cpu)) { 370 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 371 RUN_ON_CPU_HOST_INT(idxmap)); 372 } else { 373 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 374 } 375 } 376 377 void tlb_flush(CPUState *cpu) 378 { 379 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 380 } 381 382 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 383 { 384 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 385 386 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 387 388 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 389 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 390 } 391 392 void tlb_flush_all_cpus(CPUState *src_cpu) 393 { 394 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 395 } 396 397 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 398 { 399 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 400 401 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 402 403 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 404 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 405 } 406 407 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 408 { 409 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 410 } 411 412 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 413 vaddr page, vaddr mask) 414 { 415 page &= mask; 416 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 417 418 return (page == (tlb_entry->addr_read & mask) || 419 page == (tlb_addr_write(tlb_entry) & mask) || 420 page == (tlb_entry->addr_code & mask)); 421 } 422 423 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page) 424 { 425 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 426 } 427 428 /** 429 * tlb_entry_is_empty - return true if the entry is not in use 430 * @te: pointer to CPUTLBEntry 431 */ 432 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 433 { 434 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 435 } 436 437 /* Called with tlb_c.lock held */ 438 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 439 vaddr page, 440 vaddr mask) 441 { 442 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 443 memset(tlb_entry, -1, sizeof(*tlb_entry)); 444 return true; 445 } 446 return false; 447 } 448 449 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page) 450 { 451 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 452 } 453 454 /* Called with tlb_c.lock held */ 455 static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx, 456 vaddr page, 457 vaddr mask) 458 { 459 CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx]; 460 int k; 461 462 assert_cpu_is_self(cpu); 463 for (k = 0; k < CPU_VTLB_SIZE; k++) { 464 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 465 tlb_n_used_entries_dec(cpu, mmu_idx); 466 } 467 } 468 } 469 470 static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx, 471 vaddr page) 472 { 473 tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1); 474 } 475 476 static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page) 477 { 478 vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr; 479 vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask; 480 481 /* Check if we need to flush due to large pages. */ 482 if ((page & lp_mask) == lp_addr) { 483 tlb_debug("forcing full flush midx %d (%016" 484 VADDR_PRIx "/%016" VADDR_PRIx ")\n", 485 midx, lp_addr, lp_mask); 486 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 487 } else { 488 if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) { 489 tlb_n_used_entries_dec(cpu, midx); 490 } 491 tlb_flush_vtlb_page_locked(cpu, midx, page); 492 } 493 } 494 495 /** 496 * tlb_flush_page_by_mmuidx_async_0: 497 * @cpu: cpu on which to flush 498 * @addr: page of virtual address to flush 499 * @idxmap: set of mmu_idx to flush 500 * 501 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 502 * at @addr from the tlbs indicated by @idxmap from @cpu. 503 */ 504 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 505 vaddr addr, 506 uint16_t idxmap) 507 { 508 int mmu_idx; 509 510 assert_cpu_is_self(cpu); 511 512 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap); 513 514 qemu_spin_lock(&cpu->neg.tlb.c.lock); 515 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 516 if ((idxmap >> mmu_idx) & 1) { 517 tlb_flush_page_locked(cpu, mmu_idx, addr); 518 } 519 } 520 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 521 522 /* 523 * Discard jump cache entries for any tb which might potentially 524 * overlap the flushed page, which includes the previous. 525 */ 526 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 527 tb_jmp_cache_clear_page(cpu, addr); 528 } 529 530 /** 531 * tlb_flush_page_by_mmuidx_async_1: 532 * @cpu: cpu on which to flush 533 * @data: encoded addr + idxmap 534 * 535 * Helper for tlb_flush_page_by_mmuidx and friends, called through 536 * async_run_on_cpu. The idxmap parameter is encoded in the page 537 * offset of the target_ptr field. This limits the set of mmu_idx 538 * that can be passed via this method. 539 */ 540 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 541 run_on_cpu_data data) 542 { 543 vaddr addr_and_idxmap = data.target_ptr; 544 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK; 545 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 546 547 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 548 } 549 550 typedef struct { 551 vaddr addr; 552 uint16_t idxmap; 553 } TLBFlushPageByMMUIdxData; 554 555 /** 556 * tlb_flush_page_by_mmuidx_async_2: 557 * @cpu: cpu on which to flush 558 * @data: allocated addr + idxmap 559 * 560 * Helper for tlb_flush_page_by_mmuidx and friends, called through 561 * async_run_on_cpu. The addr+idxmap parameters are stored in a 562 * TLBFlushPageByMMUIdxData structure that has been allocated 563 * specifically for this helper. Free the structure when done. 564 */ 565 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 566 run_on_cpu_data data) 567 { 568 TLBFlushPageByMMUIdxData *d = data.host_ptr; 569 570 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 571 g_free(d); 572 } 573 574 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap) 575 { 576 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap); 577 578 /* This should already be page aligned */ 579 addr &= TARGET_PAGE_MASK; 580 581 if (qemu_cpu_is_self(cpu)) { 582 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 583 } else if (idxmap < TARGET_PAGE_SIZE) { 584 /* 585 * Most targets have only a few mmu_idx. In the case where 586 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 587 * allocating memory for this operation. 588 */ 589 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 590 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 591 } else { 592 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 593 594 /* Otherwise allocate a structure, freed by the worker. */ 595 d->addr = addr; 596 d->idxmap = idxmap; 597 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 598 RUN_ON_CPU_HOST_PTR(d)); 599 } 600 } 601 602 void tlb_flush_page(CPUState *cpu, vaddr addr) 603 { 604 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 605 } 606 607 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr, 608 uint16_t idxmap) 609 { 610 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 611 612 /* This should already be page aligned */ 613 addr &= TARGET_PAGE_MASK; 614 615 /* 616 * Allocate memory to hold addr+idxmap only when needed. 617 * See tlb_flush_page_by_mmuidx for details. 618 */ 619 if (idxmap < TARGET_PAGE_SIZE) { 620 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 621 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 622 } else { 623 CPUState *dst_cpu; 624 625 /* Allocate a separate data block for each destination cpu. */ 626 CPU_FOREACH(dst_cpu) { 627 if (dst_cpu != src_cpu) { 628 TLBFlushPageByMMUIdxData *d 629 = g_new(TLBFlushPageByMMUIdxData, 1); 630 631 d->addr = addr; 632 d->idxmap = idxmap; 633 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 634 RUN_ON_CPU_HOST_PTR(d)); 635 } 636 } 637 } 638 639 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 640 } 641 642 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr) 643 { 644 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 645 } 646 647 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 648 vaddr addr, 649 uint16_t idxmap) 650 { 651 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 652 653 /* This should already be page aligned */ 654 addr &= TARGET_PAGE_MASK; 655 656 /* 657 * Allocate memory to hold addr+idxmap only when needed. 658 * See tlb_flush_page_by_mmuidx for details. 659 */ 660 if (idxmap < TARGET_PAGE_SIZE) { 661 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 662 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 663 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 664 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 665 } else { 666 CPUState *dst_cpu; 667 TLBFlushPageByMMUIdxData *d; 668 669 /* Allocate a separate data block for each destination cpu. */ 670 CPU_FOREACH(dst_cpu) { 671 if (dst_cpu != src_cpu) { 672 d = g_new(TLBFlushPageByMMUIdxData, 1); 673 d->addr = addr; 674 d->idxmap = idxmap; 675 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 676 RUN_ON_CPU_HOST_PTR(d)); 677 } 678 } 679 680 d = g_new(TLBFlushPageByMMUIdxData, 1); 681 d->addr = addr; 682 d->idxmap = idxmap; 683 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 684 RUN_ON_CPU_HOST_PTR(d)); 685 } 686 } 687 688 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr) 689 { 690 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 691 } 692 693 static void tlb_flush_range_locked(CPUState *cpu, int midx, 694 vaddr addr, vaddr len, 695 unsigned bits) 696 { 697 CPUTLBDesc *d = &cpu->neg.tlb.d[midx]; 698 CPUTLBDescFast *f = &cpu->neg.tlb.f[midx]; 699 vaddr mask = MAKE_64BIT_MASK(0, bits); 700 701 /* 702 * If @bits is smaller than the tlb size, there may be multiple entries 703 * within the TLB; otherwise all addresses that match under @mask hit 704 * the same TLB entry. 705 * TODO: Perhaps allow bits to be a few bits less than the size. 706 * For now, just flush the entire TLB. 707 * 708 * If @len is larger than the tlb size, then it will take longer to 709 * test all of the entries in the TLB than it will to flush it all. 710 */ 711 if (mask < f->mask || len > f->mask) { 712 tlb_debug("forcing full flush midx %d (" 713 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n", 714 midx, addr, mask, len); 715 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 716 return; 717 } 718 719 /* 720 * Check if we need to flush due to large pages. 721 * Because large_page_mask contains all 1's from the msb, 722 * we only need to test the end of the range. 723 */ 724 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 725 tlb_debug("forcing full flush midx %d (" 726 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n", 727 midx, d->large_page_addr, d->large_page_mask); 728 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 729 return; 730 } 731 732 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) { 733 vaddr page = addr + i; 734 CPUTLBEntry *entry = tlb_entry(cpu, midx, page); 735 736 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 737 tlb_n_used_entries_dec(cpu, midx); 738 } 739 tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask); 740 } 741 } 742 743 typedef struct { 744 vaddr addr; 745 vaddr len; 746 uint16_t idxmap; 747 uint16_t bits; 748 } TLBFlushRangeData; 749 750 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 751 TLBFlushRangeData d) 752 { 753 int mmu_idx; 754 755 assert_cpu_is_self(cpu); 756 757 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n", 758 d.addr, d.bits, d.len, d.idxmap); 759 760 qemu_spin_lock(&cpu->neg.tlb.c.lock); 761 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 762 if ((d.idxmap >> mmu_idx) & 1) { 763 tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits); 764 } 765 } 766 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 767 768 /* 769 * If the length is larger than the jump cache size, then it will take 770 * longer to clear each entry individually than it will to clear it all. 771 */ 772 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 773 tcg_flush_jmp_cache(cpu); 774 return; 775 } 776 777 /* 778 * Discard jump cache entries for any tb which might potentially 779 * overlap the flushed pages, which includes the previous. 780 */ 781 d.addr -= TARGET_PAGE_SIZE; 782 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 783 tb_jmp_cache_clear_page(cpu, d.addr); 784 d.addr += TARGET_PAGE_SIZE; 785 } 786 } 787 788 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 789 run_on_cpu_data data) 790 { 791 TLBFlushRangeData *d = data.host_ptr; 792 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 793 g_free(d); 794 } 795 796 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr, 797 vaddr len, uint16_t idxmap, 798 unsigned bits) 799 { 800 TLBFlushRangeData d; 801 802 /* 803 * If all bits are significant, and len is small, 804 * this devolves to tlb_flush_page. 805 */ 806 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 807 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 808 return; 809 } 810 /* If no page bits are significant, this devolves to tlb_flush. */ 811 if (bits < TARGET_PAGE_BITS) { 812 tlb_flush_by_mmuidx(cpu, idxmap); 813 return; 814 } 815 816 /* This should already be page aligned */ 817 d.addr = addr & TARGET_PAGE_MASK; 818 d.len = len; 819 d.idxmap = idxmap; 820 d.bits = bits; 821 822 if (qemu_cpu_is_self(cpu)) { 823 tlb_flush_range_by_mmuidx_async_0(cpu, d); 824 } else { 825 /* Otherwise allocate a structure, freed by the worker. */ 826 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 827 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 828 RUN_ON_CPU_HOST_PTR(p)); 829 } 830 } 831 832 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr, 833 uint16_t idxmap, unsigned bits) 834 { 835 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 836 } 837 838 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 839 vaddr addr, vaddr len, 840 uint16_t idxmap, unsigned bits) 841 { 842 TLBFlushRangeData d; 843 CPUState *dst_cpu; 844 845 /* 846 * If all bits are significant, and len is small, 847 * this devolves to tlb_flush_page. 848 */ 849 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 850 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 851 return; 852 } 853 /* If no page bits are significant, this devolves to tlb_flush. */ 854 if (bits < TARGET_PAGE_BITS) { 855 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 856 return; 857 } 858 859 /* This should already be page aligned */ 860 d.addr = addr & TARGET_PAGE_MASK; 861 d.len = len; 862 d.idxmap = idxmap; 863 d.bits = bits; 864 865 /* Allocate a separate data block for each destination cpu. */ 866 CPU_FOREACH(dst_cpu) { 867 if (dst_cpu != src_cpu) { 868 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 869 async_run_on_cpu(dst_cpu, 870 tlb_flush_range_by_mmuidx_async_1, 871 RUN_ON_CPU_HOST_PTR(p)); 872 } 873 } 874 875 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 876 } 877 878 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 879 vaddr addr, uint16_t idxmap, 880 unsigned bits) 881 { 882 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 883 idxmap, bits); 884 } 885 886 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 887 vaddr addr, 888 vaddr len, 889 uint16_t idxmap, 890 unsigned bits) 891 { 892 TLBFlushRangeData d, *p; 893 CPUState *dst_cpu; 894 895 /* 896 * If all bits are significant, and len is small, 897 * this devolves to tlb_flush_page. 898 */ 899 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 900 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 901 return; 902 } 903 /* If no page bits are significant, this devolves to tlb_flush. */ 904 if (bits < TARGET_PAGE_BITS) { 905 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 906 return; 907 } 908 909 /* This should already be page aligned */ 910 d.addr = addr & TARGET_PAGE_MASK; 911 d.len = len; 912 d.idxmap = idxmap; 913 d.bits = bits; 914 915 /* Allocate a separate data block for each destination cpu. */ 916 CPU_FOREACH(dst_cpu) { 917 if (dst_cpu != src_cpu) { 918 p = g_memdup(&d, sizeof(d)); 919 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 920 RUN_ON_CPU_HOST_PTR(p)); 921 } 922 } 923 924 p = g_memdup(&d, sizeof(d)); 925 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 926 RUN_ON_CPU_HOST_PTR(p)); 927 } 928 929 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 930 vaddr addr, 931 uint16_t idxmap, 932 unsigned bits) 933 { 934 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 935 idxmap, bits); 936 } 937 938 /* update the TLBs so that writes to code in the virtual page 'addr' 939 can be detected */ 940 void tlb_protect_code(ram_addr_t ram_addr) 941 { 942 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 943 TARGET_PAGE_SIZE, 944 DIRTY_MEMORY_CODE); 945 } 946 947 /* update the TLB so that writes in physical page 'phys_addr' are no longer 948 tested for self modifying code */ 949 void tlb_unprotect_code(ram_addr_t ram_addr) 950 { 951 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 952 } 953 954 955 /* 956 * Dirty write flag handling 957 * 958 * When the TCG code writes to a location it looks up the address in 959 * the TLB and uses that data to compute the final address. If any of 960 * the lower bits of the address are set then the slow path is forced. 961 * There are a number of reasons to do this but for normal RAM the 962 * most usual is detecting writes to code regions which may invalidate 963 * generated code. 964 * 965 * Other vCPUs might be reading their TLBs during guest execution, so we update 966 * te->addr_write with qatomic_set. We don't need to worry about this for 967 * oversized guests as MTTCG is disabled for them. 968 * 969 * Called with tlb_c.lock held. 970 */ 971 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 972 uintptr_t start, uintptr_t length) 973 { 974 uintptr_t addr = tlb_entry->addr_write; 975 976 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 977 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 978 addr &= TARGET_PAGE_MASK; 979 addr += tlb_entry->addend; 980 if ((addr - start) < length) { 981 #if TARGET_LONG_BITS == 32 982 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write; 983 ptr_write += HOST_BIG_ENDIAN; 984 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY); 985 #elif TCG_OVERSIZED_GUEST 986 tlb_entry->addr_write |= TLB_NOTDIRTY; 987 #else 988 qatomic_set(&tlb_entry->addr_write, 989 tlb_entry->addr_write | TLB_NOTDIRTY); 990 #endif 991 } 992 } 993 } 994 995 /* 996 * Called with tlb_c.lock held. 997 * Called only from the vCPU context, i.e. the TLB's owner thread. 998 */ 999 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 1000 { 1001 *d = *s; 1002 } 1003 1004 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1005 * the target vCPU). 1006 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1007 * thing actually updated is the target TLB entry ->addr_write flags. 1008 */ 1009 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1010 { 1011 int mmu_idx; 1012 1013 qemu_spin_lock(&cpu->neg.tlb.c.lock); 1014 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1015 unsigned int i; 1016 unsigned int n = tlb_n_entries(&cpu->neg.tlb.f[mmu_idx]); 1017 1018 for (i = 0; i < n; i++) { 1019 tlb_reset_dirty_range_locked(&cpu->neg.tlb.f[mmu_idx].table[i], 1020 start1, length); 1021 } 1022 1023 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1024 tlb_reset_dirty_range_locked(&cpu->neg.tlb.d[mmu_idx].vtable[i], 1025 start1, length); 1026 } 1027 } 1028 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 1029 } 1030 1031 /* Called with tlb_c.lock held */ 1032 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1033 vaddr addr) 1034 { 1035 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) { 1036 tlb_entry->addr_write = addr; 1037 } 1038 } 1039 1040 /* update the TLB corresponding to virtual page vaddr 1041 so that it is no longer dirty */ 1042 static void tlb_set_dirty(CPUState *cpu, vaddr addr) 1043 { 1044 int mmu_idx; 1045 1046 assert_cpu_is_self(cpu); 1047 1048 addr &= TARGET_PAGE_MASK; 1049 qemu_spin_lock(&cpu->neg.tlb.c.lock); 1050 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1051 tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr); 1052 } 1053 1054 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1055 int k; 1056 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1057 tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr); 1058 } 1059 } 1060 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 1061 } 1062 1063 /* Our TLB does not support large pages, so remember the area covered by 1064 large pages and trigger a full TLB flush if these are invalidated. */ 1065 static void tlb_add_large_page(CPUState *cpu, int mmu_idx, 1066 vaddr addr, uint64_t size) 1067 { 1068 vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr; 1069 vaddr lp_mask = ~(size - 1); 1070 1071 if (lp_addr == (vaddr)-1) { 1072 /* No previous large page. */ 1073 lp_addr = addr; 1074 } else { 1075 /* Extend the existing region to include the new page. 1076 This is a compromise between unnecessary flushes and 1077 the cost of maintaining a full variable size TLB. */ 1078 lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask; 1079 while (((lp_addr ^ addr) & lp_mask) != 0) { 1080 lp_mask <<= 1; 1081 } 1082 } 1083 cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1084 cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask; 1085 } 1086 1087 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent, 1088 vaddr address, int flags, 1089 MMUAccessType access_type, bool enable) 1090 { 1091 if (enable) { 1092 address |= flags & TLB_FLAGS_MASK; 1093 flags &= TLB_SLOW_FLAGS_MASK; 1094 if (flags) { 1095 address |= TLB_FORCE_SLOW; 1096 } 1097 } else { 1098 address = -1; 1099 flags = 0; 1100 } 1101 ent->addr_idx[access_type] = address; 1102 full->slow_flags[access_type] = flags; 1103 } 1104 1105 /* 1106 * Add a new TLB entry. At most one entry for a given virtual address 1107 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1108 * supplied size is only used by tlb_flush_page. 1109 * 1110 * Called from TCG-generated code, which is under an RCU read-side 1111 * critical section. 1112 */ 1113 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1114 vaddr addr, CPUTLBEntryFull *full) 1115 { 1116 CPUTLB *tlb = &cpu->neg.tlb; 1117 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1118 MemoryRegionSection *section; 1119 unsigned int index, read_flags, write_flags; 1120 uintptr_t addend; 1121 CPUTLBEntry *te, tn; 1122 hwaddr iotlb, xlat, sz, paddr_page; 1123 vaddr addr_page; 1124 int asidx, wp_flags, prot; 1125 bool is_ram, is_romd; 1126 1127 assert_cpu_is_self(cpu); 1128 1129 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1130 sz = TARGET_PAGE_SIZE; 1131 } else { 1132 sz = (hwaddr)1 << full->lg_page_size; 1133 tlb_add_large_page(cpu, mmu_idx, addr, sz); 1134 } 1135 addr_page = addr & TARGET_PAGE_MASK; 1136 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1137 1138 prot = full->prot; 1139 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1140 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1141 &xlat, &sz, full->attrs, &prot); 1142 assert(sz >= TARGET_PAGE_SIZE); 1143 1144 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx 1145 " prot=%x idx=%d\n", 1146 addr, full->phys_addr, prot, mmu_idx); 1147 1148 read_flags = full->tlb_fill_flags; 1149 if (full->lg_page_size < TARGET_PAGE_BITS) { 1150 /* Repeat the MMU check and TLB fill on every access. */ 1151 read_flags |= TLB_INVALID_MASK; 1152 } 1153 1154 is_ram = memory_region_is_ram(section->mr); 1155 is_romd = memory_region_is_romd(section->mr); 1156 1157 if (is_ram || is_romd) { 1158 /* RAM and ROMD both have associated host memory. */ 1159 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1160 } else { 1161 /* I/O does not; force the host address to NULL. */ 1162 addend = 0; 1163 } 1164 1165 write_flags = read_flags; 1166 if (is_ram) { 1167 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1168 assert(!(iotlb & ~TARGET_PAGE_MASK)); 1169 /* 1170 * Computing is_clean is expensive; avoid all that unless 1171 * the page is actually writable. 1172 */ 1173 if (prot & PAGE_WRITE) { 1174 if (section->readonly) { 1175 write_flags |= TLB_DISCARD_WRITE; 1176 } else if (cpu_physical_memory_is_clean(iotlb)) { 1177 write_flags |= TLB_NOTDIRTY; 1178 } 1179 } 1180 } else { 1181 /* I/O or ROMD */ 1182 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1183 /* 1184 * Writes to romd devices must go through MMIO to enable write. 1185 * Reads to romd devices go through the ram_ptr found above, 1186 * but of course reads to I/O must go through MMIO. 1187 */ 1188 write_flags |= TLB_MMIO; 1189 if (!is_romd) { 1190 read_flags = write_flags; 1191 } 1192 } 1193 1194 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page, 1195 TARGET_PAGE_SIZE); 1196 1197 index = tlb_index(cpu, mmu_idx, addr_page); 1198 te = tlb_entry(cpu, mmu_idx, addr_page); 1199 1200 /* 1201 * Hold the TLB lock for the rest of the function. We could acquire/release 1202 * the lock several times in the function, but it is faster to amortize the 1203 * acquisition cost by acquiring it just once. Note that this leads to 1204 * a longer critical section, but this is not a concern since the TLB lock 1205 * is unlikely to be contended. 1206 */ 1207 qemu_spin_lock(&tlb->c.lock); 1208 1209 /* Note that the tlb is no longer clean. */ 1210 tlb->c.dirty |= 1 << mmu_idx; 1211 1212 /* Make sure there's no cached translation for the new page. */ 1213 tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page); 1214 1215 /* 1216 * Only evict the old entry to the victim tlb if it's for a 1217 * different page; otherwise just overwrite the stale data. 1218 */ 1219 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) { 1220 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1221 CPUTLBEntry *tv = &desc->vtable[vidx]; 1222 1223 /* Evict the old entry into the victim tlb. */ 1224 copy_tlb_helper_locked(tv, te); 1225 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1226 tlb_n_used_entries_dec(cpu, mmu_idx); 1227 } 1228 1229 /* refill the tlb */ 1230 /* 1231 * When memory region is ram, iotlb contains a TARGET_PAGE_BITS 1232 * aligned ram_addr_t of the page base of the target RAM. 1233 * Otherwise, iotlb contains 1234 * - a physical section number in the lower TARGET_PAGE_BITS 1235 * - the offset within section->mr of the page base (I/O, ROMD) with the 1236 * TARGET_PAGE_BITS masked off. 1237 * We subtract addr_page (which is page aligned and thus won't 1238 * disturb the low bits) to give an offset which can be added to the 1239 * (non-page-aligned) vaddr of the eventual memory access to get 1240 * the MemoryRegion offset for the access. Note that the vaddr we 1241 * subtract here is that of the page base, and not the same as the 1242 * vaddr we add back in io_prepare()/get_page_addr_code(). 1243 */ 1244 desc->fulltlb[index] = *full; 1245 full = &desc->fulltlb[index]; 1246 full->xlat_section = iotlb - addr_page; 1247 full->phys_addr = paddr_page; 1248 1249 /* Now calculate the new entry */ 1250 tn.addend = addend - addr_page; 1251 1252 tlb_set_compare(full, &tn, addr_page, read_flags, 1253 MMU_INST_FETCH, prot & PAGE_EXEC); 1254 1255 if (wp_flags & BP_MEM_READ) { 1256 read_flags |= TLB_WATCHPOINT; 1257 } 1258 tlb_set_compare(full, &tn, addr_page, read_flags, 1259 MMU_DATA_LOAD, prot & PAGE_READ); 1260 1261 if (prot & PAGE_WRITE_INV) { 1262 write_flags |= TLB_INVALID_MASK; 1263 } 1264 if (wp_flags & BP_MEM_WRITE) { 1265 write_flags |= TLB_WATCHPOINT; 1266 } 1267 tlb_set_compare(full, &tn, addr_page, write_flags, 1268 MMU_DATA_STORE, prot & PAGE_WRITE); 1269 1270 copy_tlb_helper_locked(te, &tn); 1271 tlb_n_used_entries_inc(cpu, mmu_idx); 1272 qemu_spin_unlock(&tlb->c.lock); 1273 } 1274 1275 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr, 1276 hwaddr paddr, MemTxAttrs attrs, int prot, 1277 int mmu_idx, uint64_t size) 1278 { 1279 CPUTLBEntryFull full = { 1280 .phys_addr = paddr, 1281 .attrs = attrs, 1282 .prot = prot, 1283 .lg_page_size = ctz64(size) 1284 }; 1285 1286 assert(is_power_of_2(size)); 1287 tlb_set_page_full(cpu, mmu_idx, addr, &full); 1288 } 1289 1290 void tlb_set_page(CPUState *cpu, vaddr addr, 1291 hwaddr paddr, int prot, 1292 int mmu_idx, uint64_t size) 1293 { 1294 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED, 1295 prot, mmu_idx, size); 1296 } 1297 1298 /* 1299 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1300 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1301 * be discarded and looked up again (e.g. via tlb_entry()). 1302 */ 1303 static void tlb_fill(CPUState *cpu, vaddr addr, int size, 1304 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1305 { 1306 bool ok; 1307 1308 /* 1309 * This is not a probe, so only valid return is success; failure 1310 * should result in exception + longjmp to the cpu loop. 1311 */ 1312 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size, 1313 access_type, mmu_idx, false, retaddr); 1314 assert(ok); 1315 } 1316 1317 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1318 MMUAccessType access_type, 1319 int mmu_idx, uintptr_t retaddr) 1320 { 1321 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1322 mmu_idx, retaddr); 1323 } 1324 1325 static MemoryRegionSection * 1326 io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat, 1327 MemTxAttrs attrs, vaddr addr, uintptr_t retaddr) 1328 { 1329 MemoryRegionSection *section; 1330 hwaddr mr_offset; 1331 1332 section = iotlb_to_section(cpu, xlat, attrs); 1333 mr_offset = (xlat & TARGET_PAGE_MASK) + addr; 1334 cpu->mem_io_pc = retaddr; 1335 if (!cpu->neg.can_do_io) { 1336 cpu_io_recompile(cpu, retaddr); 1337 } 1338 1339 *out_offset = mr_offset; 1340 return section; 1341 } 1342 1343 static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr, 1344 unsigned size, MMUAccessType access_type, int mmu_idx, 1345 MemTxResult response, uintptr_t retaddr) 1346 { 1347 if (!cpu->ignore_memory_transaction_failures 1348 && cpu->cc->tcg_ops->do_transaction_failed) { 1349 hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 1350 1351 cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1352 access_type, mmu_idx, 1353 full->attrs, response, retaddr); 1354 } 1355 } 1356 1357 /* Return true if ADDR is present in the victim tlb, and has been copied 1358 back to the main tlb. */ 1359 static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index, 1360 MMUAccessType access_type, vaddr page) 1361 { 1362 size_t vidx; 1363 1364 assert_cpu_is_self(cpu); 1365 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1366 CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx]; 1367 uint64_t cmp = tlb_read_idx(vtlb, access_type); 1368 1369 if (cmp == page) { 1370 /* Found entry in victim tlb, swap tlb and iotlb. */ 1371 CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index]; 1372 1373 qemu_spin_lock(&cpu->neg.tlb.c.lock); 1374 copy_tlb_helper_locked(&tmptlb, tlb); 1375 copy_tlb_helper_locked(tlb, vtlb); 1376 copy_tlb_helper_locked(vtlb, &tmptlb); 1377 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 1378 1379 CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1380 CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx]; 1381 CPUTLBEntryFull tmpf; 1382 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1383 return true; 1384 } 1385 } 1386 return false; 1387 } 1388 1389 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1390 CPUTLBEntryFull *full, uintptr_t retaddr) 1391 { 1392 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1393 1394 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1395 1396 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1397 tb_invalidate_phys_range_fast(ram_addr, size, retaddr); 1398 } 1399 1400 /* 1401 * Set both VGA and migration bits for simplicity and to remove 1402 * the notdirty callback faster. 1403 */ 1404 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1405 1406 /* We remove the notdirty callback only if the code has been flushed. */ 1407 if (!cpu_physical_memory_is_clean(ram_addr)) { 1408 trace_memory_notdirty_set_dirty(mem_vaddr); 1409 tlb_set_dirty(cpu, mem_vaddr); 1410 } 1411 } 1412 1413 static int probe_access_internal(CPUState *cpu, vaddr addr, 1414 int fault_size, MMUAccessType access_type, 1415 int mmu_idx, bool nonfault, 1416 void **phost, CPUTLBEntryFull **pfull, 1417 uintptr_t retaddr, bool check_mem_cbs) 1418 { 1419 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1420 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr); 1421 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1422 vaddr page_addr = addr & TARGET_PAGE_MASK; 1423 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW; 1424 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu); 1425 CPUTLBEntryFull *full; 1426 1427 if (!tlb_hit_page(tlb_addr, page_addr)) { 1428 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) { 1429 if (!cpu->cc->tcg_ops->tlb_fill(cpu, addr, fault_size, access_type, 1430 mmu_idx, nonfault, retaddr)) { 1431 /* Non-faulting page table read failed. */ 1432 *phost = NULL; 1433 *pfull = NULL; 1434 return TLB_INVALID_MASK; 1435 } 1436 1437 /* TLB resize via tlb_fill may have moved the entry. */ 1438 index = tlb_index(cpu, mmu_idx, addr); 1439 entry = tlb_entry(cpu, mmu_idx, addr); 1440 1441 /* 1442 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1443 * to force the next access through tlb_fill. We've just 1444 * called tlb_fill, so we know that this entry *is* valid. 1445 */ 1446 flags &= ~TLB_INVALID_MASK; 1447 } 1448 tlb_addr = tlb_read_idx(entry, access_type); 1449 } 1450 flags &= tlb_addr; 1451 1452 *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1453 flags |= full->slow_flags[access_type]; 1454 1455 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1456 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY | TLB_CHECK_ALIGNED)) 1457 || (access_type != MMU_INST_FETCH && force_mmio)) { 1458 *phost = NULL; 1459 return TLB_MMIO; 1460 } 1461 1462 /* Everything else is RAM. */ 1463 *phost = (void *)((uintptr_t)addr + entry->addend); 1464 return flags; 1465 } 1466 1467 int probe_access_full(CPUArchState *env, vaddr addr, int size, 1468 MMUAccessType access_type, int mmu_idx, 1469 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1470 uintptr_t retaddr) 1471 { 1472 int flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1473 mmu_idx, nonfault, phost, pfull, retaddr, 1474 true); 1475 1476 /* Handle clean RAM pages. */ 1477 if (unlikely(flags & TLB_NOTDIRTY)) { 1478 int dirtysize = size == 0 ? 1 : size; 1479 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, retaddr); 1480 flags &= ~TLB_NOTDIRTY; 1481 } 1482 1483 return flags; 1484 } 1485 1486 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size, 1487 MMUAccessType access_type, int mmu_idx, 1488 void **phost, CPUTLBEntryFull **pfull) 1489 { 1490 void *discard_phost; 1491 CPUTLBEntryFull *discard_tlb; 1492 1493 /* privately handle users that don't need full results */ 1494 phost = phost ? phost : &discard_phost; 1495 pfull = pfull ? pfull : &discard_tlb; 1496 1497 int flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1498 mmu_idx, true, phost, pfull, 0, false); 1499 1500 /* Handle clean RAM pages. */ 1501 if (unlikely(flags & TLB_NOTDIRTY)) { 1502 int dirtysize = size == 0 ? 1 : size; 1503 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, 0); 1504 flags &= ~TLB_NOTDIRTY; 1505 } 1506 1507 return flags; 1508 } 1509 1510 int probe_access_flags(CPUArchState *env, vaddr addr, int size, 1511 MMUAccessType access_type, int mmu_idx, 1512 bool nonfault, void **phost, uintptr_t retaddr) 1513 { 1514 CPUTLBEntryFull *full; 1515 int flags; 1516 1517 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1518 1519 flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1520 mmu_idx, nonfault, phost, &full, retaddr, 1521 true); 1522 1523 /* Handle clean RAM pages. */ 1524 if (unlikely(flags & TLB_NOTDIRTY)) { 1525 int dirtysize = size == 0 ? 1 : size; 1526 notdirty_write(env_cpu(env), addr, dirtysize, full, retaddr); 1527 flags &= ~TLB_NOTDIRTY; 1528 } 1529 1530 return flags; 1531 } 1532 1533 void *probe_access(CPUArchState *env, vaddr addr, int size, 1534 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1535 { 1536 CPUTLBEntryFull *full; 1537 void *host; 1538 int flags; 1539 1540 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1541 1542 flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1543 mmu_idx, false, &host, &full, retaddr, 1544 true); 1545 1546 /* Per the interface, size == 0 merely faults the access. */ 1547 if (size == 0) { 1548 return NULL; 1549 } 1550 1551 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1552 /* Handle watchpoints. */ 1553 if (flags & TLB_WATCHPOINT) { 1554 int wp_access = (access_type == MMU_DATA_STORE 1555 ? BP_MEM_WRITE : BP_MEM_READ); 1556 cpu_check_watchpoint(env_cpu(env), addr, size, 1557 full->attrs, wp_access, retaddr); 1558 } 1559 1560 /* Handle clean RAM pages. */ 1561 if (flags & TLB_NOTDIRTY) { 1562 notdirty_write(env_cpu(env), addr, size, full, retaddr); 1563 } 1564 } 1565 1566 return host; 1567 } 1568 1569 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1570 MMUAccessType access_type, int mmu_idx) 1571 { 1572 CPUTLBEntryFull *full; 1573 void *host; 1574 int flags; 1575 1576 flags = probe_access_internal(env_cpu(env), addr, 0, access_type, 1577 mmu_idx, true, &host, &full, 0, false); 1578 1579 /* No combination of flags are expected by the caller. */ 1580 return flags ? NULL : host; 1581 } 1582 1583 /* 1584 * Return a ram_addr_t for the virtual address for execution. 1585 * 1586 * Return -1 if we can't translate and execute from an entire page 1587 * of RAM. This will force us to execute by loading and translating 1588 * one insn at a time, without caching. 1589 * 1590 * NOTE: This function will trigger an exception if the page is 1591 * not executable. 1592 */ 1593 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr, 1594 void **hostp) 1595 { 1596 CPUTLBEntryFull *full; 1597 void *p; 1598 1599 (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH, 1600 cpu_mmu_index(env_cpu(env), true), false, 1601 &p, &full, 0, false); 1602 if (p == NULL) { 1603 return -1; 1604 } 1605 1606 if (full->lg_page_size < TARGET_PAGE_BITS) { 1607 return -1; 1608 } 1609 1610 if (hostp) { 1611 *hostp = p; 1612 } 1613 return qemu_ram_addr_from_host_nofail(p); 1614 } 1615 1616 /* Load/store with atomicity primitives. */ 1617 #include "ldst_atomicity.c.inc" 1618 1619 #ifdef CONFIG_PLUGIN 1620 /* 1621 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1622 * This should be a hot path as we will have just looked this path up 1623 * in the softmmu lookup code (or helper). We don't handle re-fills or 1624 * checking the victim table. This is purely informational. 1625 * 1626 * The one corner case is i/o write, which can cause changes to the 1627 * address space. Those changes, and the corresponding tlb flush, 1628 * should be delayed until the next TB, so even then this ought not fail. 1629 * But check, Just in Case. 1630 */ 1631 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx, 1632 bool is_store, struct qemu_plugin_hwaddr *data) 1633 { 1634 CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr); 1635 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1636 MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD; 1637 uint64_t tlb_addr = tlb_read_idx(tlbe, access_type); 1638 CPUTLBEntryFull *full; 1639 1640 if (unlikely(!tlb_hit(tlb_addr, addr))) { 1641 return false; 1642 } 1643 1644 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1645 data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 1646 1647 /* We must have an iotlb entry for MMIO */ 1648 if (tlb_addr & TLB_MMIO) { 1649 MemoryRegionSection *section = 1650 iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK, 1651 full->attrs); 1652 data->is_io = true; 1653 data->mr = section->mr; 1654 } else { 1655 data->is_io = false; 1656 data->mr = NULL; 1657 } 1658 return true; 1659 } 1660 #endif 1661 1662 /* 1663 * Probe for a load/store operation. 1664 * Return the host address and into @flags. 1665 */ 1666 1667 typedef struct MMULookupPageData { 1668 CPUTLBEntryFull *full; 1669 void *haddr; 1670 vaddr addr; 1671 int flags; 1672 int size; 1673 } MMULookupPageData; 1674 1675 typedef struct MMULookupLocals { 1676 MMULookupPageData page[2]; 1677 MemOp memop; 1678 int mmu_idx; 1679 } MMULookupLocals; 1680 1681 /** 1682 * mmu_lookup1: translate one page 1683 * @cpu: generic cpu state 1684 * @data: lookup parameters 1685 * @mmu_idx: virtual address context 1686 * @access_type: load/store/code 1687 * @ra: return address into tcg generated code, or 0 1688 * 1689 * Resolve the translation for the one page at @data.addr, filling in 1690 * the rest of @data with the results. If the translation fails, 1691 * tlb_fill will longjmp out. Return true if the softmmu tlb for 1692 * @mmu_idx may have resized. 1693 */ 1694 static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data, 1695 int mmu_idx, MMUAccessType access_type, uintptr_t ra) 1696 { 1697 vaddr addr = data->addr; 1698 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1699 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr); 1700 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1701 bool maybe_resized = false; 1702 CPUTLBEntryFull *full; 1703 int flags; 1704 1705 /* If the TLB entry is for a different page, reload and try again. */ 1706 if (!tlb_hit(tlb_addr, addr)) { 1707 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, 1708 addr & TARGET_PAGE_MASK)) { 1709 tlb_fill(cpu, addr, data->size, access_type, mmu_idx, ra); 1710 maybe_resized = true; 1711 index = tlb_index(cpu, mmu_idx, addr); 1712 entry = tlb_entry(cpu, mmu_idx, addr); 1713 } 1714 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK; 1715 } 1716 1717 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1718 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW); 1719 flags |= full->slow_flags[access_type]; 1720 1721 data->full = full; 1722 data->flags = flags; 1723 /* Compute haddr speculatively; depending on flags it might be invalid. */ 1724 data->haddr = (void *)((uintptr_t)addr + entry->addend); 1725 1726 return maybe_resized; 1727 } 1728 1729 /** 1730 * mmu_watch_or_dirty 1731 * @cpu: generic cpu state 1732 * @data: lookup parameters 1733 * @access_type: load/store/code 1734 * @ra: return address into tcg generated code, or 0 1735 * 1736 * Trigger watchpoints for @data.addr:@data.size; 1737 * record writes to protected clean pages. 1738 */ 1739 static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data, 1740 MMUAccessType access_type, uintptr_t ra) 1741 { 1742 CPUTLBEntryFull *full = data->full; 1743 vaddr addr = data->addr; 1744 int flags = data->flags; 1745 int size = data->size; 1746 1747 /* On watchpoint hit, this will longjmp out. */ 1748 if (flags & TLB_WATCHPOINT) { 1749 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ; 1750 cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra); 1751 flags &= ~TLB_WATCHPOINT; 1752 } 1753 1754 /* Note that notdirty is only set for writes. */ 1755 if (flags & TLB_NOTDIRTY) { 1756 notdirty_write(cpu, addr, size, full, ra); 1757 flags &= ~TLB_NOTDIRTY; 1758 } 1759 data->flags = flags; 1760 } 1761 1762 /** 1763 * mmu_lookup: translate page(s) 1764 * @cpu: generic cpu state 1765 * @addr: virtual address 1766 * @oi: combined mmu_idx and MemOp 1767 * @ra: return address into tcg generated code, or 0 1768 * @access_type: load/store/code 1769 * @l: output result 1770 * 1771 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size 1772 * bytes. Return true if the lookup crosses a page boundary. 1773 */ 1774 static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi, 1775 uintptr_t ra, MMUAccessType type, MMULookupLocals *l) 1776 { 1777 unsigned a_bits; 1778 bool crosspage; 1779 int flags; 1780 1781 l->memop = get_memop(oi); 1782 l->mmu_idx = get_mmuidx(oi); 1783 1784 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES); 1785 1786 /* Handle CPU specific unaligned behaviour */ 1787 a_bits = get_alignment_bits(l->memop); 1788 if (addr & ((1 << a_bits) - 1)) { 1789 cpu_unaligned_access(cpu, addr, type, l->mmu_idx, ra); 1790 } 1791 1792 l->page[0].addr = addr; 1793 l->page[0].size = memop_size(l->memop); 1794 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK; 1795 l->page[1].size = 0; 1796 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK; 1797 1798 if (likely(!crosspage)) { 1799 mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra); 1800 1801 flags = l->page[0].flags; 1802 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1803 mmu_watch_or_dirty(cpu, &l->page[0], type, ra); 1804 } 1805 if (unlikely(flags & TLB_BSWAP)) { 1806 l->memop ^= MO_BSWAP; 1807 } 1808 } else { 1809 /* Finish compute of page crossing. */ 1810 int size0 = l->page[1].addr - addr; 1811 l->page[1].size = l->page[0].size - size0; 1812 l->page[0].size = size0; 1813 1814 /* 1815 * Lookup both pages, recognizing exceptions from either. If the 1816 * second lookup potentially resized, refresh first CPUTLBEntryFull. 1817 */ 1818 mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra); 1819 if (mmu_lookup1(cpu, &l->page[1], l->mmu_idx, type, ra)) { 1820 uintptr_t index = tlb_index(cpu, l->mmu_idx, addr); 1821 l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index]; 1822 } 1823 1824 flags = l->page[0].flags | l->page[1].flags; 1825 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1826 mmu_watch_or_dirty(cpu, &l->page[0], type, ra); 1827 mmu_watch_or_dirty(cpu, &l->page[1], type, ra); 1828 } 1829 1830 /* 1831 * Since target/sparc is the only user of TLB_BSWAP, and all 1832 * Sparc accesses are aligned, any treatment across two pages 1833 * would be arbitrary. Refuse it until there's a use. 1834 */ 1835 tcg_debug_assert((flags & TLB_BSWAP) == 0); 1836 } 1837 1838 /* 1839 * This alignment check differs from the one above, in that this is 1840 * based on the atomicity of the operation. The intended use case is 1841 * the ARM memory type field of each PTE, where access to pages with 1842 * Device memory type require alignment. 1843 */ 1844 if (unlikely(flags & TLB_CHECK_ALIGNED)) { 1845 MemOp size = l->memop & MO_SIZE; 1846 1847 switch (l->memop & MO_ATOM_MASK) { 1848 case MO_ATOM_NONE: 1849 size = MO_8; 1850 break; 1851 case MO_ATOM_IFALIGN_PAIR: 1852 case MO_ATOM_WITHIN16_PAIR: 1853 size = size ? size - 1 : 0; 1854 break; 1855 default: 1856 break; 1857 } 1858 if (addr & ((1 << size) - 1)) { 1859 cpu_unaligned_access(cpu, addr, type, l->mmu_idx, ra); 1860 } 1861 } 1862 1863 return crosspage; 1864 } 1865 1866 /* 1867 * Probe for an atomic operation. Do not allow unaligned operations, 1868 * or io operations to proceed. Return the host address. 1869 */ 1870 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi, 1871 int size, uintptr_t retaddr) 1872 { 1873 uintptr_t mmu_idx = get_mmuidx(oi); 1874 MemOp mop = get_memop(oi); 1875 int a_bits = get_alignment_bits(mop); 1876 uintptr_t index; 1877 CPUTLBEntry *tlbe; 1878 vaddr tlb_addr; 1879 void *hostaddr; 1880 CPUTLBEntryFull *full; 1881 1882 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1883 1884 /* Adjust the given return address. */ 1885 retaddr -= GETPC_ADJ; 1886 1887 /* Enforce guest required alignment. */ 1888 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1889 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1890 cpu_unaligned_access(cpu, addr, MMU_DATA_STORE, 1891 mmu_idx, retaddr); 1892 } 1893 1894 /* Enforce qemu required alignment. */ 1895 if (unlikely(addr & (size - 1))) { 1896 /* We get here if guest alignment was not requested, 1897 or was not enforced by cpu_unaligned_access above. 1898 We might widen the access and emulate, but for now 1899 mark an exception and exit the cpu loop. */ 1900 goto stop_the_world; 1901 } 1902 1903 index = tlb_index(cpu, mmu_idx, addr); 1904 tlbe = tlb_entry(cpu, mmu_idx, addr); 1905 1906 /* Check TLB entry and enforce page permissions. */ 1907 tlb_addr = tlb_addr_write(tlbe); 1908 if (!tlb_hit(tlb_addr, addr)) { 1909 if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE, 1910 addr & TARGET_PAGE_MASK)) { 1911 tlb_fill(cpu, addr, size, 1912 MMU_DATA_STORE, mmu_idx, retaddr); 1913 index = tlb_index(cpu, mmu_idx, addr); 1914 tlbe = tlb_entry(cpu, mmu_idx, addr); 1915 } 1916 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1917 } 1918 1919 /* 1920 * Let the guest notice RMW on a write-only page. 1921 * We have just verified that the page is writable. 1922 * Subpage lookups may have left TLB_INVALID_MASK set, 1923 * but addr_read will only be -1 if PAGE_READ was unset. 1924 */ 1925 if (unlikely(tlbe->addr_read == -1)) { 1926 tlb_fill(cpu, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); 1927 /* 1928 * Since we don't support reads and writes to different 1929 * addresses, and we do have the proper page loaded for 1930 * write, this shouldn't ever return. But just in case, 1931 * handle via stop-the-world. 1932 */ 1933 goto stop_the_world; 1934 } 1935 /* Collect tlb flags for read. */ 1936 tlb_addr |= tlbe->addr_read; 1937 1938 /* Notice an IO access or a needs-MMU-lookup access */ 1939 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { 1940 /* There's really nothing that can be done to 1941 support this apart from stop-the-world. */ 1942 goto stop_the_world; 1943 } 1944 1945 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1946 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1947 1948 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1949 notdirty_write(cpu, addr, size, full, retaddr); 1950 } 1951 1952 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) { 1953 int wp_flags = 0; 1954 1955 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) { 1956 wp_flags |= BP_MEM_WRITE; 1957 } 1958 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) { 1959 wp_flags |= BP_MEM_READ; 1960 } 1961 if (wp_flags) { 1962 cpu_check_watchpoint(cpu, addr, size, 1963 full->attrs, wp_flags, retaddr); 1964 } 1965 } 1966 1967 return hostaddr; 1968 1969 stop_the_world: 1970 cpu_loop_exit_atomic(cpu, retaddr); 1971 } 1972 1973 /* 1974 * Load Helpers 1975 * 1976 * We support two different access types. SOFTMMU_CODE_ACCESS is 1977 * specifically for reading instructions from system memory. It is 1978 * called by the translation loop and in some helpers where the code 1979 * is disassembled. It shouldn't be called directly by guest code. 1980 * 1981 * For the benefit of TCG generated code, we want to avoid the 1982 * complication of ABI-specific return type promotion and always 1983 * return a value extended to the register size of the host. This is 1984 * tcg_target_long, except in the case of a 32-bit host and 64-bit 1985 * data, and for that we always have uint64_t. 1986 * 1987 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 1988 */ 1989 1990 /** 1991 * do_ld_mmio_beN: 1992 * @cpu: generic cpu state 1993 * @full: page parameters 1994 * @ret_be: accumulated data 1995 * @addr: virtual address 1996 * @size: number of bytes 1997 * @mmu_idx: virtual address context 1998 * @ra: return address into tcg generated code, or 0 1999 * Context: BQL held 2000 * 2001 * Load @size bytes from @addr, which is memory-mapped i/o. 2002 * The bytes are concatenated in big-endian order with @ret_be. 2003 */ 2004 static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 2005 uint64_t ret_be, vaddr addr, int size, 2006 int mmu_idx, MMUAccessType type, uintptr_t ra, 2007 MemoryRegion *mr, hwaddr mr_offset) 2008 { 2009 do { 2010 MemOp this_mop; 2011 unsigned this_size; 2012 uint64_t val; 2013 MemTxResult r; 2014 2015 /* Read aligned pieces up to 8 bytes. */ 2016 this_mop = ctz32(size | (int)addr | 8); 2017 this_size = 1 << this_mop; 2018 this_mop |= MO_BE; 2019 2020 r = memory_region_dispatch_read(mr, mr_offset, &val, 2021 this_mop, full->attrs); 2022 if (unlikely(r != MEMTX_OK)) { 2023 io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra); 2024 } 2025 if (this_size == 8) { 2026 return val; 2027 } 2028 2029 ret_be = (ret_be << (this_size * 8)) | val; 2030 addr += this_size; 2031 mr_offset += this_size; 2032 size -= this_size; 2033 } while (size); 2034 2035 return ret_be; 2036 } 2037 2038 static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 2039 uint64_t ret_be, vaddr addr, int size, 2040 int mmu_idx, MMUAccessType type, uintptr_t ra) 2041 { 2042 MemoryRegionSection *section; 2043 MemoryRegion *mr; 2044 hwaddr mr_offset; 2045 MemTxAttrs attrs; 2046 2047 tcg_debug_assert(size > 0 && size <= 8); 2048 2049 attrs = full->attrs; 2050 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2051 mr = section->mr; 2052 2053 BQL_LOCK_GUARD(); 2054 return int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx, 2055 type, ra, mr, mr_offset); 2056 } 2057 2058 static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 2059 uint64_t ret_be, vaddr addr, int size, 2060 int mmu_idx, uintptr_t ra) 2061 { 2062 MemoryRegionSection *section; 2063 MemoryRegion *mr; 2064 hwaddr mr_offset; 2065 MemTxAttrs attrs; 2066 uint64_t a, b; 2067 2068 tcg_debug_assert(size > 8 && size <= 16); 2069 2070 attrs = full->attrs; 2071 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2072 mr = section->mr; 2073 2074 BQL_LOCK_GUARD(); 2075 a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx, 2076 MMU_DATA_LOAD, ra, mr, mr_offset); 2077 b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx, 2078 MMU_DATA_LOAD, ra, mr, mr_offset + size - 8); 2079 return int128_make128(b, a); 2080 } 2081 2082 /** 2083 * do_ld_bytes_beN 2084 * @p: translation parameters 2085 * @ret_be: accumulated data 2086 * 2087 * Load @p->size bytes from @p->haddr, which is RAM. 2088 * The bytes to concatenated in big-endian order with @ret_be. 2089 */ 2090 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) 2091 { 2092 uint8_t *haddr = p->haddr; 2093 int i, size = p->size; 2094 2095 for (i = 0; i < size; i++) { 2096 ret_be = (ret_be << 8) | haddr[i]; 2097 } 2098 return ret_be; 2099 } 2100 2101 /** 2102 * do_ld_parts_beN 2103 * @p: translation parameters 2104 * @ret_be: accumulated data 2105 * 2106 * As do_ld_bytes_beN, but atomically on each aligned part. 2107 */ 2108 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be) 2109 { 2110 void *haddr = p->haddr; 2111 int size = p->size; 2112 2113 do { 2114 uint64_t x; 2115 int n; 2116 2117 /* 2118 * Find minimum of alignment and size. 2119 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which 2120 * would have only checked the low bits of addr|size once at the start, 2121 * but is just as easy. 2122 */ 2123 switch (((uintptr_t)haddr | size) & 7) { 2124 case 4: 2125 x = cpu_to_be32(load_atomic4(haddr)); 2126 ret_be = (ret_be << 32) | x; 2127 n = 4; 2128 break; 2129 case 2: 2130 case 6: 2131 x = cpu_to_be16(load_atomic2(haddr)); 2132 ret_be = (ret_be << 16) | x; 2133 n = 2; 2134 break; 2135 default: 2136 x = *(uint8_t *)haddr; 2137 ret_be = (ret_be << 8) | x; 2138 n = 1; 2139 break; 2140 case 0: 2141 g_assert_not_reached(); 2142 } 2143 haddr += n; 2144 size -= n; 2145 } while (size != 0); 2146 return ret_be; 2147 } 2148 2149 /** 2150 * do_ld_parts_be4 2151 * @p: translation parameters 2152 * @ret_be: accumulated data 2153 * 2154 * As do_ld_bytes_beN, but with one atomic load. 2155 * Four aligned bytes are guaranteed to cover the load. 2156 */ 2157 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be) 2158 { 2159 int o = p->addr & 3; 2160 uint32_t x = load_atomic4(p->haddr - o); 2161 2162 x = cpu_to_be32(x); 2163 x <<= o * 8; 2164 x >>= (4 - p->size) * 8; 2165 return (ret_be << (p->size * 8)) | x; 2166 } 2167 2168 /** 2169 * do_ld_parts_be8 2170 * @p: translation parameters 2171 * @ret_be: accumulated data 2172 * 2173 * As do_ld_bytes_beN, but with one atomic load. 2174 * Eight aligned bytes are guaranteed to cover the load. 2175 */ 2176 static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra, 2177 MMULookupPageData *p, uint64_t ret_be) 2178 { 2179 int o = p->addr & 7; 2180 uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o); 2181 2182 x = cpu_to_be64(x); 2183 x <<= o * 8; 2184 x >>= (8 - p->size) * 8; 2185 return (ret_be << (p->size * 8)) | x; 2186 } 2187 2188 /** 2189 * do_ld_parts_be16 2190 * @p: translation parameters 2191 * @ret_be: accumulated data 2192 * 2193 * As do_ld_bytes_beN, but with one atomic load. 2194 * 16 aligned bytes are guaranteed to cover the load. 2195 */ 2196 static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra, 2197 MMULookupPageData *p, uint64_t ret_be) 2198 { 2199 int o = p->addr & 15; 2200 Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o); 2201 int size = p->size; 2202 2203 if (!HOST_BIG_ENDIAN) { 2204 y = bswap128(y); 2205 } 2206 y = int128_lshift(y, o * 8); 2207 y = int128_urshift(y, (16 - size) * 8); 2208 x = int128_make64(ret_be); 2209 x = int128_lshift(x, size * 8); 2210 return int128_or(x, y); 2211 } 2212 2213 /* 2214 * Wrapper for the above. 2215 */ 2216 static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p, 2217 uint64_t ret_be, int mmu_idx, MMUAccessType type, 2218 MemOp mop, uintptr_t ra) 2219 { 2220 MemOp atom; 2221 unsigned tmp, half_size; 2222 2223 if (unlikely(p->flags & TLB_MMIO)) { 2224 return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size, 2225 mmu_idx, type, ra); 2226 } 2227 2228 /* 2229 * It is a given that we cross a page and therefore there is no 2230 * atomicity for the load as a whole, but subobjects may need attention. 2231 */ 2232 atom = mop & MO_ATOM_MASK; 2233 switch (atom) { 2234 case MO_ATOM_SUBALIGN: 2235 return do_ld_parts_beN(p, ret_be); 2236 2237 case MO_ATOM_IFALIGN_PAIR: 2238 case MO_ATOM_WITHIN16_PAIR: 2239 tmp = mop & MO_SIZE; 2240 tmp = tmp ? tmp - 1 : 0; 2241 half_size = 1 << tmp; 2242 if (atom == MO_ATOM_IFALIGN_PAIR 2243 ? p->size == half_size 2244 : p->size >= half_size) { 2245 if (!HAVE_al8_fast && p->size < 4) { 2246 return do_ld_whole_be4(p, ret_be); 2247 } else { 2248 return do_ld_whole_be8(cpu, ra, p, ret_be); 2249 } 2250 } 2251 /* fall through */ 2252 2253 case MO_ATOM_IFALIGN: 2254 case MO_ATOM_WITHIN16: 2255 case MO_ATOM_NONE: 2256 return do_ld_bytes_beN(p, ret_be); 2257 2258 default: 2259 g_assert_not_reached(); 2260 } 2261 } 2262 2263 /* 2264 * Wrapper for the above, for 8 < size < 16. 2265 */ 2266 static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p, 2267 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra) 2268 { 2269 int size = p->size; 2270 uint64_t b; 2271 MemOp atom; 2272 2273 if (unlikely(p->flags & TLB_MMIO)) { 2274 return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra); 2275 } 2276 2277 /* 2278 * It is a given that we cross a page and therefore there is no 2279 * atomicity for the load as a whole, but subobjects may need attention. 2280 */ 2281 atom = mop & MO_ATOM_MASK; 2282 switch (atom) { 2283 case MO_ATOM_SUBALIGN: 2284 p->size = size - 8; 2285 a = do_ld_parts_beN(p, a); 2286 p->haddr += size - 8; 2287 p->size = 8; 2288 b = do_ld_parts_beN(p, 0); 2289 break; 2290 2291 case MO_ATOM_WITHIN16_PAIR: 2292 /* Since size > 8, this is the half that must be atomic. */ 2293 return do_ld_whole_be16(cpu, ra, p, a); 2294 2295 case MO_ATOM_IFALIGN_PAIR: 2296 /* 2297 * Since size > 8, both halves are misaligned, 2298 * and so neither is atomic. 2299 */ 2300 case MO_ATOM_IFALIGN: 2301 case MO_ATOM_WITHIN16: 2302 case MO_ATOM_NONE: 2303 p->size = size - 8; 2304 a = do_ld_bytes_beN(p, a); 2305 b = ldq_be_p(p->haddr + size - 8); 2306 break; 2307 2308 default: 2309 g_assert_not_reached(); 2310 } 2311 2312 return int128_make128(b, a); 2313 } 2314 2315 static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2316 MMUAccessType type, uintptr_t ra) 2317 { 2318 if (unlikely(p->flags & TLB_MMIO)) { 2319 return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra); 2320 } else { 2321 return *(uint8_t *)p->haddr; 2322 } 2323 } 2324 2325 static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2326 MMUAccessType type, MemOp memop, uintptr_t ra) 2327 { 2328 uint16_t ret; 2329 2330 if (unlikely(p->flags & TLB_MMIO)) { 2331 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra); 2332 if ((memop & MO_BSWAP) == MO_LE) { 2333 ret = bswap16(ret); 2334 } 2335 } else { 2336 /* Perform the load host endian, then swap if necessary. */ 2337 ret = load_atom_2(cpu, ra, p->haddr, memop); 2338 if (memop & MO_BSWAP) { 2339 ret = bswap16(ret); 2340 } 2341 } 2342 return ret; 2343 } 2344 2345 static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2346 MMUAccessType type, MemOp memop, uintptr_t ra) 2347 { 2348 uint32_t ret; 2349 2350 if (unlikely(p->flags & TLB_MMIO)) { 2351 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra); 2352 if ((memop & MO_BSWAP) == MO_LE) { 2353 ret = bswap32(ret); 2354 } 2355 } else { 2356 /* Perform the load host endian. */ 2357 ret = load_atom_4(cpu, ra, p->haddr, memop); 2358 if (memop & MO_BSWAP) { 2359 ret = bswap32(ret); 2360 } 2361 } 2362 return ret; 2363 } 2364 2365 static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2366 MMUAccessType type, MemOp memop, uintptr_t ra) 2367 { 2368 uint64_t ret; 2369 2370 if (unlikely(p->flags & TLB_MMIO)) { 2371 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra); 2372 if ((memop & MO_BSWAP) == MO_LE) { 2373 ret = bswap64(ret); 2374 } 2375 } else { 2376 /* Perform the load host endian. */ 2377 ret = load_atom_8(cpu, ra, p->haddr, memop); 2378 if (memop & MO_BSWAP) { 2379 ret = bswap64(ret); 2380 } 2381 } 2382 return ret; 2383 } 2384 2385 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2386 uintptr_t ra, MMUAccessType access_type) 2387 { 2388 MMULookupLocals l; 2389 bool crosspage; 2390 2391 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2392 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2393 tcg_debug_assert(!crosspage); 2394 2395 return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra); 2396 } 2397 2398 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2399 uintptr_t ra, MMUAccessType access_type) 2400 { 2401 MMULookupLocals l; 2402 bool crosspage; 2403 uint16_t ret; 2404 uint8_t a, b; 2405 2406 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2407 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2408 if (likely(!crosspage)) { 2409 return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2410 } 2411 2412 a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra); 2413 b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra); 2414 2415 if ((l.memop & MO_BSWAP) == MO_LE) { 2416 ret = a | (b << 8); 2417 } else { 2418 ret = b | (a << 8); 2419 } 2420 return ret; 2421 } 2422 2423 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2424 uintptr_t ra, MMUAccessType access_type) 2425 { 2426 MMULookupLocals l; 2427 bool crosspage; 2428 uint32_t ret; 2429 2430 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2431 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2432 if (likely(!crosspage)) { 2433 return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2434 } 2435 2436 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2437 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2438 if ((l.memop & MO_BSWAP) == MO_LE) { 2439 ret = bswap32(ret); 2440 } 2441 return ret; 2442 } 2443 2444 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2445 uintptr_t ra, MMUAccessType access_type) 2446 { 2447 MMULookupLocals l; 2448 bool crosspage; 2449 uint64_t ret; 2450 2451 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2452 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2453 if (likely(!crosspage)) { 2454 return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2455 } 2456 2457 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2458 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2459 if ((l.memop & MO_BSWAP) == MO_LE) { 2460 ret = bswap64(ret); 2461 } 2462 return ret; 2463 } 2464 2465 static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr, 2466 MemOpIdx oi, uintptr_t ra) 2467 { 2468 MMULookupLocals l; 2469 bool crosspage; 2470 uint64_t a, b; 2471 Int128 ret; 2472 int first; 2473 2474 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2475 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l); 2476 if (likely(!crosspage)) { 2477 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2478 ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16, 2479 l.mmu_idx, ra); 2480 if ((l.memop & MO_BSWAP) == MO_LE) { 2481 ret = bswap128(ret); 2482 } 2483 } else { 2484 /* Perform the load host endian. */ 2485 ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop); 2486 if (l.memop & MO_BSWAP) { 2487 ret = bswap128(ret); 2488 } 2489 } 2490 return ret; 2491 } 2492 2493 first = l.page[0].size; 2494 if (first == 8) { 2495 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64; 2496 2497 a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2498 b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2499 if ((mop8 & MO_BSWAP) == MO_LE) { 2500 ret = int128_make128(a, b); 2501 } else { 2502 ret = int128_make128(b, a); 2503 } 2504 return ret; 2505 } 2506 2507 if (first < 8) { 2508 a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, 2509 MMU_DATA_LOAD, l.memop, ra); 2510 ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra); 2511 } else { 2512 ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra); 2513 b = int128_getlo(ret); 2514 ret = int128_lshift(ret, l.page[1].size * 8); 2515 a = int128_gethi(ret); 2516 b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx, 2517 MMU_DATA_LOAD, l.memop, ra); 2518 ret = int128_make128(b, a); 2519 } 2520 if ((l.memop & MO_BSWAP) == MO_LE) { 2521 ret = bswap128(ret); 2522 } 2523 return ret; 2524 } 2525 2526 /* 2527 * Store Helpers 2528 */ 2529 2530 /** 2531 * do_st_mmio_leN: 2532 * @cpu: generic cpu state 2533 * @full: page parameters 2534 * @val_le: data to store 2535 * @addr: virtual address 2536 * @size: number of bytes 2537 * @mmu_idx: virtual address context 2538 * @ra: return address into tcg generated code, or 0 2539 * Context: BQL held 2540 * 2541 * Store @size bytes at @addr, which is memory-mapped i/o. 2542 * The bytes to store are extracted in little-endian order from @val_le; 2543 * return the bytes of @val_le beyond @p->size that have not been stored. 2544 */ 2545 static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2546 uint64_t val_le, vaddr addr, int size, 2547 int mmu_idx, uintptr_t ra, 2548 MemoryRegion *mr, hwaddr mr_offset) 2549 { 2550 do { 2551 MemOp this_mop; 2552 unsigned this_size; 2553 MemTxResult r; 2554 2555 /* Store aligned pieces up to 8 bytes. */ 2556 this_mop = ctz32(size | (int)addr | 8); 2557 this_size = 1 << this_mop; 2558 this_mop |= MO_LE; 2559 2560 r = memory_region_dispatch_write(mr, mr_offset, val_le, 2561 this_mop, full->attrs); 2562 if (unlikely(r != MEMTX_OK)) { 2563 io_failed(cpu, full, addr, this_size, MMU_DATA_STORE, 2564 mmu_idx, r, ra); 2565 } 2566 if (this_size == 8) { 2567 return 0; 2568 } 2569 2570 val_le >>= this_size * 8; 2571 addr += this_size; 2572 mr_offset += this_size; 2573 size -= this_size; 2574 } while (size); 2575 2576 return val_le; 2577 } 2578 2579 static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2580 uint64_t val_le, vaddr addr, int size, 2581 int mmu_idx, uintptr_t ra) 2582 { 2583 MemoryRegionSection *section; 2584 hwaddr mr_offset; 2585 MemoryRegion *mr; 2586 MemTxAttrs attrs; 2587 2588 tcg_debug_assert(size > 0 && size <= 8); 2589 2590 attrs = full->attrs; 2591 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2592 mr = section->mr; 2593 2594 BQL_LOCK_GUARD(); 2595 return int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx, 2596 ra, mr, mr_offset); 2597 } 2598 2599 static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2600 Int128 val_le, vaddr addr, int size, 2601 int mmu_idx, uintptr_t ra) 2602 { 2603 MemoryRegionSection *section; 2604 MemoryRegion *mr; 2605 hwaddr mr_offset; 2606 MemTxAttrs attrs; 2607 2608 tcg_debug_assert(size > 8 && size <= 16); 2609 2610 attrs = full->attrs; 2611 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2612 mr = section->mr; 2613 2614 BQL_LOCK_GUARD(); 2615 int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8, 2616 mmu_idx, ra, mr, mr_offset); 2617 return int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8, 2618 size - 8, mmu_idx, ra, mr, mr_offset + 8); 2619 } 2620 2621 /* 2622 * Wrapper for the above. 2623 */ 2624 static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p, 2625 uint64_t val_le, int mmu_idx, 2626 MemOp mop, uintptr_t ra) 2627 { 2628 MemOp atom; 2629 unsigned tmp, half_size; 2630 2631 if (unlikely(p->flags & TLB_MMIO)) { 2632 return do_st_mmio_leN(cpu, p->full, val_le, p->addr, 2633 p->size, mmu_idx, ra); 2634 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2635 return val_le >> (p->size * 8); 2636 } 2637 2638 /* 2639 * It is a given that we cross a page and therefore there is no atomicity 2640 * for the store as a whole, but subobjects may need attention. 2641 */ 2642 atom = mop & MO_ATOM_MASK; 2643 switch (atom) { 2644 case MO_ATOM_SUBALIGN: 2645 return store_parts_leN(p->haddr, p->size, val_le); 2646 2647 case MO_ATOM_IFALIGN_PAIR: 2648 case MO_ATOM_WITHIN16_PAIR: 2649 tmp = mop & MO_SIZE; 2650 tmp = tmp ? tmp - 1 : 0; 2651 half_size = 1 << tmp; 2652 if (atom == MO_ATOM_IFALIGN_PAIR 2653 ? p->size == half_size 2654 : p->size >= half_size) { 2655 if (!HAVE_al8_fast && p->size <= 4) { 2656 return store_whole_le4(p->haddr, p->size, val_le); 2657 } else if (HAVE_al8) { 2658 return store_whole_le8(p->haddr, p->size, val_le); 2659 } else { 2660 cpu_loop_exit_atomic(cpu, ra); 2661 } 2662 } 2663 /* fall through */ 2664 2665 case MO_ATOM_IFALIGN: 2666 case MO_ATOM_WITHIN16: 2667 case MO_ATOM_NONE: 2668 return store_bytes_leN(p->haddr, p->size, val_le); 2669 2670 default: 2671 g_assert_not_reached(); 2672 } 2673 } 2674 2675 /* 2676 * Wrapper for the above, for 8 < size < 16. 2677 */ 2678 static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p, 2679 Int128 val_le, int mmu_idx, 2680 MemOp mop, uintptr_t ra) 2681 { 2682 int size = p->size; 2683 MemOp atom; 2684 2685 if (unlikely(p->flags & TLB_MMIO)) { 2686 return do_st16_mmio_leN(cpu, p->full, val_le, p->addr, 2687 size, mmu_idx, ra); 2688 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2689 return int128_gethi(val_le) >> ((size - 8) * 8); 2690 } 2691 2692 /* 2693 * It is a given that we cross a page and therefore there is no atomicity 2694 * for the store as a whole, but subobjects may need attention. 2695 */ 2696 atom = mop & MO_ATOM_MASK; 2697 switch (atom) { 2698 case MO_ATOM_SUBALIGN: 2699 store_parts_leN(p->haddr, 8, int128_getlo(val_le)); 2700 return store_parts_leN(p->haddr + 8, p->size - 8, 2701 int128_gethi(val_le)); 2702 2703 case MO_ATOM_WITHIN16_PAIR: 2704 /* Since size > 8, this is the half that must be atomic. */ 2705 if (!HAVE_CMPXCHG128) { 2706 cpu_loop_exit_atomic(cpu, ra); 2707 } 2708 return store_whole_le16(p->haddr, p->size, val_le); 2709 2710 case MO_ATOM_IFALIGN_PAIR: 2711 /* 2712 * Since size > 8, both halves are misaligned, 2713 * and so neither is atomic. 2714 */ 2715 case MO_ATOM_IFALIGN: 2716 case MO_ATOM_WITHIN16: 2717 case MO_ATOM_NONE: 2718 stq_le_p(p->haddr, int128_getlo(val_le)); 2719 return store_bytes_leN(p->haddr + 8, p->size - 8, 2720 int128_gethi(val_le)); 2721 2722 default: 2723 g_assert_not_reached(); 2724 } 2725 } 2726 2727 static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val, 2728 int mmu_idx, uintptr_t ra) 2729 { 2730 if (unlikely(p->flags & TLB_MMIO)) { 2731 do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra); 2732 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2733 /* nothing */ 2734 } else { 2735 *(uint8_t *)p->haddr = val; 2736 } 2737 } 2738 2739 static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val, 2740 int mmu_idx, MemOp memop, uintptr_t ra) 2741 { 2742 if (unlikely(p->flags & TLB_MMIO)) { 2743 if ((memop & MO_BSWAP) != MO_LE) { 2744 val = bswap16(val); 2745 } 2746 do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra); 2747 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2748 /* nothing */ 2749 } else { 2750 /* Swap to host endian if necessary, then store. */ 2751 if (memop & MO_BSWAP) { 2752 val = bswap16(val); 2753 } 2754 store_atom_2(cpu, ra, p->haddr, memop, val); 2755 } 2756 } 2757 2758 static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val, 2759 int mmu_idx, MemOp memop, uintptr_t ra) 2760 { 2761 if (unlikely(p->flags & TLB_MMIO)) { 2762 if ((memop & MO_BSWAP) != MO_LE) { 2763 val = bswap32(val); 2764 } 2765 do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra); 2766 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2767 /* nothing */ 2768 } else { 2769 /* Swap to host endian if necessary, then store. */ 2770 if (memop & MO_BSWAP) { 2771 val = bswap32(val); 2772 } 2773 store_atom_4(cpu, ra, p->haddr, memop, val); 2774 } 2775 } 2776 2777 static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val, 2778 int mmu_idx, MemOp memop, uintptr_t ra) 2779 { 2780 if (unlikely(p->flags & TLB_MMIO)) { 2781 if ((memop & MO_BSWAP) != MO_LE) { 2782 val = bswap64(val); 2783 } 2784 do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra); 2785 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2786 /* nothing */ 2787 } else { 2788 /* Swap to host endian if necessary, then store. */ 2789 if (memop & MO_BSWAP) { 2790 val = bswap64(val); 2791 } 2792 store_atom_8(cpu, ra, p->haddr, memop, val); 2793 } 2794 } 2795 2796 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val, 2797 MemOpIdx oi, uintptr_t ra) 2798 { 2799 MMULookupLocals l; 2800 bool crosspage; 2801 2802 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2803 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2804 tcg_debug_assert(!crosspage); 2805 2806 do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra); 2807 } 2808 2809 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val, 2810 MemOpIdx oi, uintptr_t ra) 2811 { 2812 MMULookupLocals l; 2813 bool crosspage; 2814 uint8_t a, b; 2815 2816 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2817 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2818 if (likely(!crosspage)) { 2819 do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2820 return; 2821 } 2822 2823 if ((l.memop & MO_BSWAP) == MO_LE) { 2824 a = val, b = val >> 8; 2825 } else { 2826 b = val, a = val >> 8; 2827 } 2828 do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra); 2829 do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra); 2830 } 2831 2832 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val, 2833 MemOpIdx oi, uintptr_t ra) 2834 { 2835 MMULookupLocals l; 2836 bool crosspage; 2837 2838 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2839 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2840 if (likely(!crosspage)) { 2841 do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2842 return; 2843 } 2844 2845 /* Swap to little endian for simplicity, then store by bytes. */ 2846 if ((l.memop & MO_BSWAP) != MO_LE) { 2847 val = bswap32(val); 2848 } 2849 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2850 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2851 } 2852 2853 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val, 2854 MemOpIdx oi, uintptr_t ra) 2855 { 2856 MMULookupLocals l; 2857 bool crosspage; 2858 2859 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2860 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2861 if (likely(!crosspage)) { 2862 do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2863 return; 2864 } 2865 2866 /* Swap to little endian for simplicity, then store by bytes. */ 2867 if ((l.memop & MO_BSWAP) != MO_LE) { 2868 val = bswap64(val); 2869 } 2870 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2871 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2872 } 2873 2874 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val, 2875 MemOpIdx oi, uintptr_t ra) 2876 { 2877 MMULookupLocals l; 2878 bool crosspage; 2879 uint64_t a, b; 2880 int first; 2881 2882 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2883 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2884 if (likely(!crosspage)) { 2885 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2886 if ((l.memop & MO_BSWAP) != MO_LE) { 2887 val = bswap128(val); 2888 } 2889 do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra); 2890 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) { 2891 /* nothing */ 2892 } else { 2893 /* Swap to host endian if necessary, then store. */ 2894 if (l.memop & MO_BSWAP) { 2895 val = bswap128(val); 2896 } 2897 store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val); 2898 } 2899 return; 2900 } 2901 2902 first = l.page[0].size; 2903 if (first == 8) { 2904 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64; 2905 2906 if (l.memop & MO_BSWAP) { 2907 val = bswap128(val); 2908 } 2909 if (HOST_BIG_ENDIAN) { 2910 b = int128_getlo(val), a = int128_gethi(val); 2911 } else { 2912 a = int128_getlo(val), b = int128_gethi(val); 2913 } 2914 do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra); 2915 do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra); 2916 return; 2917 } 2918 2919 if ((l.memop & MO_BSWAP) != MO_LE) { 2920 val = bswap128(val); 2921 } 2922 if (first < 8) { 2923 do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra); 2924 val = int128_urshift(val, first * 8); 2925 do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2926 } else { 2927 b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2928 do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra); 2929 } 2930 } 2931 2932 #include "ldst_common.c.inc" 2933 2934 /* 2935 * First set of functions passes in OI and RETADDR. 2936 * This makes them callable from other helpers. 2937 */ 2938 2939 #define ATOMIC_NAME(X) \ 2940 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 2941 2942 #define ATOMIC_MMU_CLEANUP 2943 2944 #include "atomic_common.c.inc" 2945 2946 #define DATA_SIZE 1 2947 #include "atomic_template.h" 2948 2949 #define DATA_SIZE 2 2950 #include "atomic_template.h" 2951 2952 #define DATA_SIZE 4 2953 #include "atomic_template.h" 2954 2955 #ifdef CONFIG_ATOMIC64 2956 #define DATA_SIZE 8 2957 #include "atomic_template.h" 2958 #endif 2959 2960 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128 2961 #define DATA_SIZE 16 2962 #include "atomic_template.h" 2963 #endif 2964 2965 /* Code access functions. */ 2966 2967 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 2968 { 2969 CPUState *cs = env_cpu(env); 2970 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(cs, true)); 2971 return do_ld1_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 2972 } 2973 2974 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 2975 { 2976 CPUState *cs = env_cpu(env); 2977 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(cs, true)); 2978 return do_ld2_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 2979 } 2980 2981 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 2982 { 2983 CPUState *cs = env_cpu(env); 2984 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(cs, true)); 2985 return do_ld4_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 2986 } 2987 2988 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 2989 { 2990 CPUState *cs = env_cpu(env); 2991 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(cs, true)); 2992 return do_ld8_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 2993 } 2994 2995 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, 2996 MemOpIdx oi, uintptr_t retaddr) 2997 { 2998 return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 2999 } 3000 3001 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, 3002 MemOpIdx oi, uintptr_t retaddr) 3003 { 3004 return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 3005 } 3006 3007 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, 3008 MemOpIdx oi, uintptr_t retaddr) 3009 { 3010 return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 3011 } 3012 3013 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, 3014 MemOpIdx oi, uintptr_t retaddr) 3015 { 3016 return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 3017 } 3018