1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/cputlb.h" 27 #include "exec/memory-internal.h" 28 #include "exec/ram_addr.h" 29 #include "tcg/tcg.h" 30 #include "qemu/error-report.h" 31 #include "exec/log.h" 32 #include "exec/helper-proto-common.h" 33 #include "qemu/atomic.h" 34 #include "qemu/atomic128.h" 35 #include "exec/translate-all.h" 36 #include "trace.h" 37 #include "tb-hash.h" 38 #include "internal.h" 39 #ifdef CONFIG_PLUGIN 40 #include "qemu/plugin-memory.h" 41 #endif 42 #include "tcg/tcg-ldst.h" 43 #include "tcg/oversized-guest.h" 44 45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 46 /* #define DEBUG_TLB */ 47 /* #define DEBUG_TLB_LOG */ 48 49 #ifdef DEBUG_TLB 50 # define DEBUG_TLB_GATE 1 51 # ifdef DEBUG_TLB_LOG 52 # define DEBUG_TLB_LOG_GATE 1 53 # else 54 # define DEBUG_TLB_LOG_GATE 0 55 # endif 56 #else 57 # define DEBUG_TLB_GATE 0 58 # define DEBUG_TLB_LOG_GATE 0 59 #endif 60 61 #define tlb_debug(fmt, ...) do { \ 62 if (DEBUG_TLB_LOG_GATE) { \ 63 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 64 ## __VA_ARGS__); \ 65 } else if (DEBUG_TLB_GATE) { \ 66 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 67 } \ 68 } while (0) 69 70 #define assert_cpu_is_self(cpu) do { \ 71 if (DEBUG_TLB_GATE) { \ 72 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 73 } \ 74 } while (0) 75 76 /* run_on_cpu_data.target_ptr should always be big enough for a 77 * target_ulong even on 32 bit builds */ 78 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); 79 80 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 81 */ 82 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 83 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 84 85 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 86 { 87 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 88 } 89 90 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 91 { 92 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 93 } 94 95 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 96 size_t max_entries) 97 { 98 desc->window_begin_ns = ns; 99 desc->window_max_entries = max_entries; 100 } 101 102 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr) 103 { 104 CPUJumpCache *jc = cpu->tb_jmp_cache; 105 int i, i0; 106 107 if (unlikely(!jc)) { 108 return; 109 } 110 111 i0 = tb_jmp_cache_hash_page(page_addr); 112 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 113 qatomic_set(&jc->array[i0 + i].tb, NULL); 114 } 115 } 116 117 /** 118 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 119 * @desc: The CPUTLBDesc portion of the TLB 120 * @fast: The CPUTLBDescFast portion of the same TLB 121 * 122 * Called with tlb_lock_held. 123 * 124 * We have two main constraints when resizing a TLB: (1) we only resize it 125 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 126 * the array or unnecessarily flushing it), which means we do not control how 127 * frequently the resizing can occur; (2) we don't have access to the guest's 128 * future scheduling decisions, and therefore have to decide the magnitude of 129 * the resize based on past observations. 130 * 131 * In general, a memory-hungry process can benefit greatly from an appropriately 132 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 133 * we just have to make the TLB as large as possible; while an oversized TLB 134 * results in minimal TLB miss rates, it also takes longer to be flushed 135 * (flushes can be _very_ frequent), and the reduced locality can also hurt 136 * performance. 137 * 138 * To achieve near-optimal performance for all kinds of workloads, we: 139 * 140 * 1. Aggressively increase the size of the TLB when the use rate of the 141 * TLB being flushed is high, since it is likely that in the near future this 142 * memory-hungry process will execute again, and its memory hungriness will 143 * probably be similar. 144 * 145 * 2. Slowly reduce the size of the TLB as the use rate declines over a 146 * reasonably large time window. The rationale is that if in such a time window 147 * we have not observed a high TLB use rate, it is likely that we won't observe 148 * it in the near future. In that case, once a time window expires we downsize 149 * the TLB to match the maximum use rate observed in the window. 150 * 151 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 152 * since in that range performance is likely near-optimal. Recall that the TLB 153 * is direct mapped, so we want the use rate to be low (or at least not too 154 * high), since otherwise we are likely to have a significant amount of 155 * conflict misses. 156 */ 157 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 158 int64_t now) 159 { 160 size_t old_size = tlb_n_entries(fast); 161 size_t rate; 162 size_t new_size = old_size; 163 int64_t window_len_ms = 100; 164 int64_t window_len_ns = window_len_ms * 1000 * 1000; 165 bool window_expired = now > desc->window_begin_ns + window_len_ns; 166 167 if (desc->n_used_entries > desc->window_max_entries) { 168 desc->window_max_entries = desc->n_used_entries; 169 } 170 rate = desc->window_max_entries * 100 / old_size; 171 172 if (rate > 70) { 173 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 174 } else if (rate < 30 && window_expired) { 175 size_t ceil = pow2ceil(desc->window_max_entries); 176 size_t expected_rate = desc->window_max_entries * 100 / ceil; 177 178 /* 179 * Avoid undersizing when the max number of entries seen is just below 180 * a pow2. For instance, if max_entries == 1025, the expected use rate 181 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 182 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 183 * later. Thus, make sure that the expected use rate remains below 70%. 184 * (and since we double the size, that means the lowest rate we'd 185 * expect to get is 35%, which is still in the 30-70% range where 186 * we consider that the size is appropriate.) 187 */ 188 if (expected_rate > 70) { 189 ceil *= 2; 190 } 191 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 192 } 193 194 if (new_size == old_size) { 195 if (window_expired) { 196 tlb_window_reset(desc, now, desc->n_used_entries); 197 } 198 return; 199 } 200 201 g_free(fast->table); 202 g_free(desc->fulltlb); 203 204 tlb_window_reset(desc, now, 0); 205 /* desc->n_used_entries is cleared by the caller */ 206 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 207 fast->table = g_try_new(CPUTLBEntry, new_size); 208 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 209 210 /* 211 * If the allocations fail, try smaller sizes. We just freed some 212 * memory, so going back to half of new_size has a good chance of working. 213 * Increased memory pressure elsewhere in the system might cause the 214 * allocations to fail though, so we progressively reduce the allocation 215 * size, aborting if we cannot even allocate the smallest TLB we support. 216 */ 217 while (fast->table == NULL || desc->fulltlb == NULL) { 218 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 219 error_report("%s: %s", __func__, strerror(errno)); 220 abort(); 221 } 222 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 223 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 224 225 g_free(fast->table); 226 g_free(desc->fulltlb); 227 fast->table = g_try_new(CPUTLBEntry, new_size); 228 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 229 } 230 } 231 232 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 233 { 234 desc->n_used_entries = 0; 235 desc->large_page_addr = -1; 236 desc->large_page_mask = -1; 237 desc->vindex = 0; 238 memset(fast->table, -1, sizeof_tlb(fast)); 239 memset(desc->vtable, -1, sizeof(desc->vtable)); 240 } 241 242 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx, 243 int64_t now) 244 { 245 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; 246 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx]; 247 248 tlb_mmu_resize_locked(desc, fast, now); 249 tlb_mmu_flush_locked(desc, fast); 250 } 251 252 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 253 { 254 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 255 256 tlb_window_reset(desc, now, 0); 257 desc->n_used_entries = 0; 258 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 259 fast->table = g_new(CPUTLBEntry, n_entries); 260 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 261 tlb_mmu_flush_locked(desc, fast); 262 } 263 264 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 265 { 266 env_tlb(env)->d[mmu_idx].n_used_entries++; 267 } 268 269 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 270 { 271 env_tlb(env)->d[mmu_idx].n_used_entries--; 272 } 273 274 void tlb_init(CPUState *cpu) 275 { 276 CPUArchState *env = cpu->env_ptr; 277 int64_t now = get_clock_realtime(); 278 int i; 279 280 qemu_spin_init(&env_tlb(env)->c.lock); 281 282 /* All tlbs are initialized flushed. */ 283 env_tlb(env)->c.dirty = 0; 284 285 for (i = 0; i < NB_MMU_MODES; i++) { 286 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now); 287 } 288 } 289 290 void tlb_destroy(CPUState *cpu) 291 { 292 CPUArchState *env = cpu->env_ptr; 293 int i; 294 295 qemu_spin_destroy(&env_tlb(env)->c.lock); 296 for (i = 0; i < NB_MMU_MODES; i++) { 297 CPUTLBDesc *desc = &env_tlb(env)->d[i]; 298 CPUTLBDescFast *fast = &env_tlb(env)->f[i]; 299 300 g_free(fast->table); 301 g_free(desc->fulltlb); 302 } 303 } 304 305 /* flush_all_helper: run fn across all cpus 306 * 307 * If the wait flag is set then the src cpu's helper will be queued as 308 * "safe" work and the loop exited creating a synchronisation point 309 * where all queued work will be finished before execution starts 310 * again. 311 */ 312 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 313 run_on_cpu_data d) 314 { 315 CPUState *cpu; 316 317 CPU_FOREACH(cpu) { 318 if (cpu != src) { 319 async_run_on_cpu(cpu, fn, d); 320 } 321 } 322 } 323 324 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 325 { 326 CPUState *cpu; 327 size_t full = 0, part = 0, elide = 0; 328 329 CPU_FOREACH(cpu) { 330 CPUArchState *env = cpu->env_ptr; 331 332 full += qatomic_read(&env_tlb(env)->c.full_flush_count); 333 part += qatomic_read(&env_tlb(env)->c.part_flush_count); 334 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count); 335 } 336 *pfull = full; 337 *ppart = part; 338 *pelide = elide; 339 } 340 341 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 342 { 343 CPUArchState *env = cpu->env_ptr; 344 uint16_t asked = data.host_int; 345 uint16_t all_dirty, work, to_clean; 346 int64_t now = get_clock_realtime(); 347 348 assert_cpu_is_self(cpu); 349 350 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 351 352 qemu_spin_lock(&env_tlb(env)->c.lock); 353 354 all_dirty = env_tlb(env)->c.dirty; 355 to_clean = asked & all_dirty; 356 all_dirty &= ~to_clean; 357 env_tlb(env)->c.dirty = all_dirty; 358 359 for (work = to_clean; work != 0; work &= work - 1) { 360 int mmu_idx = ctz32(work); 361 tlb_flush_one_mmuidx_locked(env, mmu_idx, now); 362 } 363 364 qemu_spin_unlock(&env_tlb(env)->c.lock); 365 366 tcg_flush_jmp_cache(cpu); 367 368 if (to_clean == ALL_MMUIDX_BITS) { 369 qatomic_set(&env_tlb(env)->c.full_flush_count, 370 env_tlb(env)->c.full_flush_count + 1); 371 } else { 372 qatomic_set(&env_tlb(env)->c.part_flush_count, 373 env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); 374 if (to_clean != asked) { 375 qatomic_set(&env_tlb(env)->c.elide_flush_count, 376 env_tlb(env)->c.elide_flush_count + 377 ctpop16(asked & ~to_clean)); 378 } 379 } 380 } 381 382 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 383 { 384 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 385 386 if (cpu->created && !qemu_cpu_is_self(cpu)) { 387 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 388 RUN_ON_CPU_HOST_INT(idxmap)); 389 } else { 390 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 391 } 392 } 393 394 void tlb_flush(CPUState *cpu) 395 { 396 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 397 } 398 399 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 400 { 401 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 402 403 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 404 405 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 406 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 407 } 408 409 void tlb_flush_all_cpus(CPUState *src_cpu) 410 { 411 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 412 } 413 414 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 415 { 416 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 417 418 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 419 420 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 421 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 422 } 423 424 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 425 { 426 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 427 } 428 429 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 430 vaddr page, vaddr mask) 431 { 432 page &= mask; 433 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 434 435 return (page == (tlb_entry->addr_read & mask) || 436 page == (tlb_addr_write(tlb_entry) & mask) || 437 page == (tlb_entry->addr_code & mask)); 438 } 439 440 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page) 441 { 442 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 443 } 444 445 /** 446 * tlb_entry_is_empty - return true if the entry is not in use 447 * @te: pointer to CPUTLBEntry 448 */ 449 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 450 { 451 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 452 } 453 454 /* Called with tlb_c.lock held */ 455 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 456 vaddr page, 457 vaddr mask) 458 { 459 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 460 memset(tlb_entry, -1, sizeof(*tlb_entry)); 461 return true; 462 } 463 return false; 464 } 465 466 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page) 467 { 468 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 469 } 470 471 /* Called with tlb_c.lock held */ 472 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx, 473 vaddr page, 474 vaddr mask) 475 { 476 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; 477 int k; 478 479 assert_cpu_is_self(env_cpu(env)); 480 for (k = 0; k < CPU_VTLB_SIZE; k++) { 481 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 482 tlb_n_used_entries_dec(env, mmu_idx); 483 } 484 } 485 } 486 487 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 488 vaddr page) 489 { 490 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1); 491 } 492 493 static void tlb_flush_page_locked(CPUArchState *env, int midx, vaddr page) 494 { 495 vaddr lp_addr = env_tlb(env)->d[midx].large_page_addr; 496 vaddr lp_mask = env_tlb(env)->d[midx].large_page_mask; 497 498 /* Check if we need to flush due to large pages. */ 499 if ((page & lp_mask) == lp_addr) { 500 tlb_debug("forcing full flush midx %d (%016" 501 VADDR_PRIx "/%016" VADDR_PRIx ")\n", 502 midx, lp_addr, lp_mask); 503 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 504 } else { 505 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 506 tlb_n_used_entries_dec(env, midx); 507 } 508 tlb_flush_vtlb_page_locked(env, midx, page); 509 } 510 } 511 512 /** 513 * tlb_flush_page_by_mmuidx_async_0: 514 * @cpu: cpu on which to flush 515 * @addr: page of virtual address to flush 516 * @idxmap: set of mmu_idx to flush 517 * 518 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 519 * at @addr from the tlbs indicated by @idxmap from @cpu. 520 */ 521 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 522 vaddr addr, 523 uint16_t idxmap) 524 { 525 CPUArchState *env = cpu->env_ptr; 526 int mmu_idx; 527 528 assert_cpu_is_self(cpu); 529 530 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap); 531 532 qemu_spin_lock(&env_tlb(env)->c.lock); 533 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 534 if ((idxmap >> mmu_idx) & 1) { 535 tlb_flush_page_locked(env, mmu_idx, addr); 536 } 537 } 538 qemu_spin_unlock(&env_tlb(env)->c.lock); 539 540 /* 541 * Discard jump cache entries for any tb which might potentially 542 * overlap the flushed page, which includes the previous. 543 */ 544 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 545 tb_jmp_cache_clear_page(cpu, addr); 546 } 547 548 /** 549 * tlb_flush_page_by_mmuidx_async_1: 550 * @cpu: cpu on which to flush 551 * @data: encoded addr + idxmap 552 * 553 * Helper for tlb_flush_page_by_mmuidx and friends, called through 554 * async_run_on_cpu. The idxmap parameter is encoded in the page 555 * offset of the target_ptr field. This limits the set of mmu_idx 556 * that can be passed via this method. 557 */ 558 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 559 run_on_cpu_data data) 560 { 561 vaddr addr_and_idxmap = data.target_ptr; 562 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK; 563 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 564 565 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 566 } 567 568 typedef struct { 569 vaddr addr; 570 uint16_t idxmap; 571 } TLBFlushPageByMMUIdxData; 572 573 /** 574 * tlb_flush_page_by_mmuidx_async_2: 575 * @cpu: cpu on which to flush 576 * @data: allocated addr + idxmap 577 * 578 * Helper for tlb_flush_page_by_mmuidx and friends, called through 579 * async_run_on_cpu. The addr+idxmap parameters are stored in a 580 * TLBFlushPageByMMUIdxData structure that has been allocated 581 * specifically for this helper. Free the structure when done. 582 */ 583 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 584 run_on_cpu_data data) 585 { 586 TLBFlushPageByMMUIdxData *d = data.host_ptr; 587 588 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 589 g_free(d); 590 } 591 592 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap) 593 { 594 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap); 595 596 /* This should already be page aligned */ 597 addr &= TARGET_PAGE_MASK; 598 599 if (qemu_cpu_is_self(cpu)) { 600 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 601 } else if (idxmap < TARGET_PAGE_SIZE) { 602 /* 603 * Most targets have only a few mmu_idx. In the case where 604 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 605 * allocating memory for this operation. 606 */ 607 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 608 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 609 } else { 610 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 611 612 /* Otherwise allocate a structure, freed by the worker. */ 613 d->addr = addr; 614 d->idxmap = idxmap; 615 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 616 RUN_ON_CPU_HOST_PTR(d)); 617 } 618 } 619 620 void tlb_flush_page(CPUState *cpu, vaddr addr) 621 { 622 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 623 } 624 625 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr, 626 uint16_t idxmap) 627 { 628 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 629 630 /* This should already be page aligned */ 631 addr &= TARGET_PAGE_MASK; 632 633 /* 634 * Allocate memory to hold addr+idxmap only when needed. 635 * See tlb_flush_page_by_mmuidx for details. 636 */ 637 if (idxmap < TARGET_PAGE_SIZE) { 638 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 639 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 640 } else { 641 CPUState *dst_cpu; 642 643 /* Allocate a separate data block for each destination cpu. */ 644 CPU_FOREACH(dst_cpu) { 645 if (dst_cpu != src_cpu) { 646 TLBFlushPageByMMUIdxData *d 647 = g_new(TLBFlushPageByMMUIdxData, 1); 648 649 d->addr = addr; 650 d->idxmap = idxmap; 651 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 652 RUN_ON_CPU_HOST_PTR(d)); 653 } 654 } 655 } 656 657 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 658 } 659 660 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr) 661 { 662 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 663 } 664 665 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 666 vaddr addr, 667 uint16_t idxmap) 668 { 669 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 670 671 /* This should already be page aligned */ 672 addr &= TARGET_PAGE_MASK; 673 674 /* 675 * Allocate memory to hold addr+idxmap only when needed. 676 * See tlb_flush_page_by_mmuidx for details. 677 */ 678 if (idxmap < TARGET_PAGE_SIZE) { 679 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 680 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 681 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 682 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 683 } else { 684 CPUState *dst_cpu; 685 TLBFlushPageByMMUIdxData *d; 686 687 /* Allocate a separate data block for each destination cpu. */ 688 CPU_FOREACH(dst_cpu) { 689 if (dst_cpu != src_cpu) { 690 d = g_new(TLBFlushPageByMMUIdxData, 1); 691 d->addr = addr; 692 d->idxmap = idxmap; 693 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 694 RUN_ON_CPU_HOST_PTR(d)); 695 } 696 } 697 698 d = g_new(TLBFlushPageByMMUIdxData, 1); 699 d->addr = addr; 700 d->idxmap = idxmap; 701 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 702 RUN_ON_CPU_HOST_PTR(d)); 703 } 704 } 705 706 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr) 707 { 708 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 709 } 710 711 static void tlb_flush_range_locked(CPUArchState *env, int midx, 712 vaddr addr, vaddr len, 713 unsigned bits) 714 { 715 CPUTLBDesc *d = &env_tlb(env)->d[midx]; 716 CPUTLBDescFast *f = &env_tlb(env)->f[midx]; 717 vaddr mask = MAKE_64BIT_MASK(0, bits); 718 719 /* 720 * If @bits is smaller than the tlb size, there may be multiple entries 721 * within the TLB; otherwise all addresses that match under @mask hit 722 * the same TLB entry. 723 * TODO: Perhaps allow bits to be a few bits less than the size. 724 * For now, just flush the entire TLB. 725 * 726 * If @len is larger than the tlb size, then it will take longer to 727 * test all of the entries in the TLB than it will to flush it all. 728 */ 729 if (mask < f->mask || len > f->mask) { 730 tlb_debug("forcing full flush midx %d (" 731 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n", 732 midx, addr, mask, len); 733 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 734 return; 735 } 736 737 /* 738 * Check if we need to flush due to large pages. 739 * Because large_page_mask contains all 1's from the msb, 740 * we only need to test the end of the range. 741 */ 742 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 743 tlb_debug("forcing full flush midx %d (" 744 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n", 745 midx, d->large_page_addr, d->large_page_mask); 746 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 747 return; 748 } 749 750 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) { 751 vaddr page = addr + i; 752 CPUTLBEntry *entry = tlb_entry(env, midx, page); 753 754 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 755 tlb_n_used_entries_dec(env, midx); 756 } 757 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask); 758 } 759 } 760 761 typedef struct { 762 vaddr addr; 763 vaddr len; 764 uint16_t idxmap; 765 uint16_t bits; 766 } TLBFlushRangeData; 767 768 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 769 TLBFlushRangeData d) 770 { 771 CPUArchState *env = cpu->env_ptr; 772 int mmu_idx; 773 774 assert_cpu_is_self(cpu); 775 776 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n", 777 d.addr, d.bits, d.len, d.idxmap); 778 779 qemu_spin_lock(&env_tlb(env)->c.lock); 780 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 781 if ((d.idxmap >> mmu_idx) & 1) { 782 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits); 783 } 784 } 785 qemu_spin_unlock(&env_tlb(env)->c.lock); 786 787 /* 788 * If the length is larger than the jump cache size, then it will take 789 * longer to clear each entry individually than it will to clear it all. 790 */ 791 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 792 tcg_flush_jmp_cache(cpu); 793 return; 794 } 795 796 /* 797 * Discard jump cache entries for any tb which might potentially 798 * overlap the flushed pages, which includes the previous. 799 */ 800 d.addr -= TARGET_PAGE_SIZE; 801 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 802 tb_jmp_cache_clear_page(cpu, d.addr); 803 d.addr += TARGET_PAGE_SIZE; 804 } 805 } 806 807 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 808 run_on_cpu_data data) 809 { 810 TLBFlushRangeData *d = data.host_ptr; 811 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 812 g_free(d); 813 } 814 815 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr, 816 vaddr len, uint16_t idxmap, 817 unsigned bits) 818 { 819 TLBFlushRangeData d; 820 821 /* 822 * If all bits are significant, and len is small, 823 * this devolves to tlb_flush_page. 824 */ 825 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 826 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 827 return; 828 } 829 /* If no page bits are significant, this devolves to tlb_flush. */ 830 if (bits < TARGET_PAGE_BITS) { 831 tlb_flush_by_mmuidx(cpu, idxmap); 832 return; 833 } 834 835 /* This should already be page aligned */ 836 d.addr = addr & TARGET_PAGE_MASK; 837 d.len = len; 838 d.idxmap = idxmap; 839 d.bits = bits; 840 841 if (qemu_cpu_is_self(cpu)) { 842 tlb_flush_range_by_mmuidx_async_0(cpu, d); 843 } else { 844 /* Otherwise allocate a structure, freed by the worker. */ 845 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 846 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 847 RUN_ON_CPU_HOST_PTR(p)); 848 } 849 } 850 851 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr, 852 uint16_t idxmap, unsigned bits) 853 { 854 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 855 } 856 857 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 858 vaddr addr, vaddr len, 859 uint16_t idxmap, unsigned bits) 860 { 861 TLBFlushRangeData d; 862 CPUState *dst_cpu; 863 864 /* 865 * If all bits are significant, and len is small, 866 * this devolves to tlb_flush_page. 867 */ 868 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 869 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 870 return; 871 } 872 /* If no page bits are significant, this devolves to tlb_flush. */ 873 if (bits < TARGET_PAGE_BITS) { 874 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 875 return; 876 } 877 878 /* This should already be page aligned */ 879 d.addr = addr & TARGET_PAGE_MASK; 880 d.len = len; 881 d.idxmap = idxmap; 882 d.bits = bits; 883 884 /* Allocate a separate data block for each destination cpu. */ 885 CPU_FOREACH(dst_cpu) { 886 if (dst_cpu != src_cpu) { 887 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 888 async_run_on_cpu(dst_cpu, 889 tlb_flush_range_by_mmuidx_async_1, 890 RUN_ON_CPU_HOST_PTR(p)); 891 } 892 } 893 894 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 895 } 896 897 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 898 vaddr addr, uint16_t idxmap, 899 unsigned bits) 900 { 901 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 902 idxmap, bits); 903 } 904 905 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 906 vaddr addr, 907 vaddr len, 908 uint16_t idxmap, 909 unsigned bits) 910 { 911 TLBFlushRangeData d, *p; 912 CPUState *dst_cpu; 913 914 /* 915 * If all bits are significant, and len is small, 916 * this devolves to tlb_flush_page. 917 */ 918 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 919 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 920 return; 921 } 922 /* If no page bits are significant, this devolves to tlb_flush. */ 923 if (bits < TARGET_PAGE_BITS) { 924 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 925 return; 926 } 927 928 /* This should already be page aligned */ 929 d.addr = addr & TARGET_PAGE_MASK; 930 d.len = len; 931 d.idxmap = idxmap; 932 d.bits = bits; 933 934 /* Allocate a separate data block for each destination cpu. */ 935 CPU_FOREACH(dst_cpu) { 936 if (dst_cpu != src_cpu) { 937 p = g_memdup(&d, sizeof(d)); 938 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 939 RUN_ON_CPU_HOST_PTR(p)); 940 } 941 } 942 943 p = g_memdup(&d, sizeof(d)); 944 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 945 RUN_ON_CPU_HOST_PTR(p)); 946 } 947 948 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 949 vaddr addr, 950 uint16_t idxmap, 951 unsigned bits) 952 { 953 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 954 idxmap, bits); 955 } 956 957 /* update the TLBs so that writes to code in the virtual page 'addr' 958 can be detected */ 959 void tlb_protect_code(ram_addr_t ram_addr) 960 { 961 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 962 TARGET_PAGE_SIZE, 963 DIRTY_MEMORY_CODE); 964 } 965 966 /* update the TLB so that writes in physical page 'phys_addr' are no longer 967 tested for self modifying code */ 968 void tlb_unprotect_code(ram_addr_t ram_addr) 969 { 970 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 971 } 972 973 974 /* 975 * Dirty write flag handling 976 * 977 * When the TCG code writes to a location it looks up the address in 978 * the TLB and uses that data to compute the final address. If any of 979 * the lower bits of the address are set then the slow path is forced. 980 * There are a number of reasons to do this but for normal RAM the 981 * most usual is detecting writes to code regions which may invalidate 982 * generated code. 983 * 984 * Other vCPUs might be reading their TLBs during guest execution, so we update 985 * te->addr_write with qatomic_set. We don't need to worry about this for 986 * oversized guests as MTTCG is disabled for them. 987 * 988 * Called with tlb_c.lock held. 989 */ 990 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 991 uintptr_t start, uintptr_t length) 992 { 993 uintptr_t addr = tlb_entry->addr_write; 994 995 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 996 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 997 addr &= TARGET_PAGE_MASK; 998 addr += tlb_entry->addend; 999 if ((addr - start) < length) { 1000 #if TARGET_LONG_BITS == 32 1001 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write; 1002 ptr_write += HOST_BIG_ENDIAN; 1003 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY); 1004 #elif TCG_OVERSIZED_GUEST 1005 tlb_entry->addr_write |= TLB_NOTDIRTY; 1006 #else 1007 qatomic_set(&tlb_entry->addr_write, 1008 tlb_entry->addr_write | TLB_NOTDIRTY); 1009 #endif 1010 } 1011 } 1012 } 1013 1014 /* 1015 * Called with tlb_c.lock held. 1016 * Called only from the vCPU context, i.e. the TLB's owner thread. 1017 */ 1018 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 1019 { 1020 *d = *s; 1021 } 1022 1023 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1024 * the target vCPU). 1025 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1026 * thing actually updated is the target TLB entry ->addr_write flags. 1027 */ 1028 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1029 { 1030 CPUArchState *env; 1031 1032 int mmu_idx; 1033 1034 env = cpu->env_ptr; 1035 qemu_spin_lock(&env_tlb(env)->c.lock); 1036 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1037 unsigned int i; 1038 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]); 1039 1040 for (i = 0; i < n; i++) { 1041 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], 1042 start1, length); 1043 } 1044 1045 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1046 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], 1047 start1, length); 1048 } 1049 } 1050 qemu_spin_unlock(&env_tlb(env)->c.lock); 1051 } 1052 1053 /* Called with tlb_c.lock held */ 1054 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1055 vaddr addr) 1056 { 1057 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) { 1058 tlb_entry->addr_write = addr; 1059 } 1060 } 1061 1062 /* update the TLB corresponding to virtual page vaddr 1063 so that it is no longer dirty */ 1064 void tlb_set_dirty(CPUState *cpu, vaddr addr) 1065 { 1066 CPUArchState *env = cpu->env_ptr; 1067 int mmu_idx; 1068 1069 assert_cpu_is_self(cpu); 1070 1071 addr &= TARGET_PAGE_MASK; 1072 qemu_spin_lock(&env_tlb(env)->c.lock); 1073 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1074 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, addr), addr); 1075 } 1076 1077 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1078 int k; 1079 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1080 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], addr); 1081 } 1082 } 1083 qemu_spin_unlock(&env_tlb(env)->c.lock); 1084 } 1085 1086 /* Our TLB does not support large pages, so remember the area covered by 1087 large pages and trigger a full TLB flush if these are invalidated. */ 1088 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 1089 vaddr addr, uint64_t size) 1090 { 1091 vaddr lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; 1092 vaddr lp_mask = ~(size - 1); 1093 1094 if (lp_addr == (vaddr)-1) { 1095 /* No previous large page. */ 1096 lp_addr = addr; 1097 } else { 1098 /* Extend the existing region to include the new page. 1099 This is a compromise between unnecessary flushes and 1100 the cost of maintaining a full variable size TLB. */ 1101 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; 1102 while (((lp_addr ^ addr) & lp_mask) != 0) { 1103 lp_mask <<= 1; 1104 } 1105 } 1106 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1107 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; 1108 } 1109 1110 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent, 1111 target_ulong address, int flags, 1112 MMUAccessType access_type, bool enable) 1113 { 1114 if (enable) { 1115 address |= flags & TLB_FLAGS_MASK; 1116 flags &= TLB_SLOW_FLAGS_MASK; 1117 if (flags) { 1118 address |= TLB_FORCE_SLOW; 1119 } 1120 } else { 1121 address = -1; 1122 flags = 0; 1123 } 1124 ent->addr_idx[access_type] = address; 1125 full->slow_flags[access_type] = flags; 1126 } 1127 1128 /* 1129 * Add a new TLB entry. At most one entry for a given virtual address 1130 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1131 * supplied size is only used by tlb_flush_page. 1132 * 1133 * Called from TCG-generated code, which is under an RCU read-side 1134 * critical section. 1135 */ 1136 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1137 vaddr addr, CPUTLBEntryFull *full) 1138 { 1139 CPUArchState *env = cpu->env_ptr; 1140 CPUTLB *tlb = env_tlb(env); 1141 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1142 MemoryRegionSection *section; 1143 unsigned int index, read_flags, write_flags; 1144 uintptr_t addend; 1145 CPUTLBEntry *te, tn; 1146 hwaddr iotlb, xlat, sz, paddr_page; 1147 vaddr addr_page; 1148 int asidx, wp_flags, prot; 1149 bool is_ram, is_romd; 1150 1151 assert_cpu_is_self(cpu); 1152 1153 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1154 sz = TARGET_PAGE_SIZE; 1155 } else { 1156 sz = (hwaddr)1 << full->lg_page_size; 1157 tlb_add_large_page(env, mmu_idx, addr, sz); 1158 } 1159 addr_page = addr & TARGET_PAGE_MASK; 1160 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1161 1162 prot = full->prot; 1163 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1164 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1165 &xlat, &sz, full->attrs, &prot); 1166 assert(sz >= TARGET_PAGE_SIZE); 1167 1168 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx 1169 " prot=%x idx=%d\n", 1170 addr, full->phys_addr, prot, mmu_idx); 1171 1172 read_flags = 0; 1173 if (full->lg_page_size < TARGET_PAGE_BITS) { 1174 /* Repeat the MMU check and TLB fill on every access. */ 1175 read_flags |= TLB_INVALID_MASK; 1176 } 1177 if (full->attrs.byte_swap) { 1178 read_flags |= TLB_BSWAP; 1179 } 1180 1181 is_ram = memory_region_is_ram(section->mr); 1182 is_romd = memory_region_is_romd(section->mr); 1183 1184 if (is_ram || is_romd) { 1185 /* RAM and ROMD both have associated host memory. */ 1186 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1187 } else { 1188 /* I/O does not; force the host address to NULL. */ 1189 addend = 0; 1190 } 1191 1192 write_flags = read_flags; 1193 if (is_ram) { 1194 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1195 /* 1196 * Computing is_clean is expensive; avoid all that unless 1197 * the page is actually writable. 1198 */ 1199 if (prot & PAGE_WRITE) { 1200 if (section->readonly) { 1201 write_flags |= TLB_DISCARD_WRITE; 1202 } else if (cpu_physical_memory_is_clean(iotlb)) { 1203 write_flags |= TLB_NOTDIRTY; 1204 } 1205 } 1206 } else { 1207 /* I/O or ROMD */ 1208 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1209 /* 1210 * Writes to romd devices must go through MMIO to enable write. 1211 * Reads to romd devices go through the ram_ptr found above, 1212 * but of course reads to I/O must go through MMIO. 1213 */ 1214 write_flags |= TLB_MMIO; 1215 if (!is_romd) { 1216 read_flags = write_flags; 1217 } 1218 } 1219 1220 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page, 1221 TARGET_PAGE_SIZE); 1222 1223 index = tlb_index(env, mmu_idx, addr_page); 1224 te = tlb_entry(env, mmu_idx, addr_page); 1225 1226 /* 1227 * Hold the TLB lock for the rest of the function. We could acquire/release 1228 * the lock several times in the function, but it is faster to amortize the 1229 * acquisition cost by acquiring it just once. Note that this leads to 1230 * a longer critical section, but this is not a concern since the TLB lock 1231 * is unlikely to be contended. 1232 */ 1233 qemu_spin_lock(&tlb->c.lock); 1234 1235 /* Note that the tlb is no longer clean. */ 1236 tlb->c.dirty |= 1 << mmu_idx; 1237 1238 /* Make sure there's no cached translation for the new page. */ 1239 tlb_flush_vtlb_page_locked(env, mmu_idx, addr_page); 1240 1241 /* 1242 * Only evict the old entry to the victim tlb if it's for a 1243 * different page; otherwise just overwrite the stale data. 1244 */ 1245 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) { 1246 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1247 CPUTLBEntry *tv = &desc->vtable[vidx]; 1248 1249 /* Evict the old entry into the victim tlb. */ 1250 copy_tlb_helper_locked(tv, te); 1251 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1252 tlb_n_used_entries_dec(env, mmu_idx); 1253 } 1254 1255 /* refill the tlb */ 1256 /* 1257 * At this point iotlb contains a physical section number in the lower 1258 * TARGET_PAGE_BITS, and either 1259 * + the ram_addr_t of the page base of the target RAM (RAM) 1260 * + the offset within section->mr of the page base (I/O, ROMD) 1261 * We subtract addr_page (which is page aligned and thus won't 1262 * disturb the low bits) to give an offset which can be added to the 1263 * (non-page-aligned) vaddr of the eventual memory access to get 1264 * the MemoryRegion offset for the access. Note that the vaddr we 1265 * subtract here is that of the page base, and not the same as the 1266 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 1267 */ 1268 desc->fulltlb[index] = *full; 1269 full = &desc->fulltlb[index]; 1270 full->xlat_section = iotlb - addr_page; 1271 full->phys_addr = paddr_page; 1272 1273 /* Now calculate the new entry */ 1274 tn.addend = addend - addr_page; 1275 1276 tlb_set_compare(full, &tn, addr_page, read_flags, 1277 MMU_INST_FETCH, prot & PAGE_EXEC); 1278 1279 if (wp_flags & BP_MEM_READ) { 1280 read_flags |= TLB_WATCHPOINT; 1281 } 1282 tlb_set_compare(full, &tn, addr_page, read_flags, 1283 MMU_DATA_LOAD, prot & PAGE_READ); 1284 1285 if (prot & PAGE_WRITE_INV) { 1286 write_flags |= TLB_INVALID_MASK; 1287 } 1288 if (wp_flags & BP_MEM_WRITE) { 1289 write_flags |= TLB_WATCHPOINT; 1290 } 1291 tlb_set_compare(full, &tn, addr_page, write_flags, 1292 MMU_DATA_STORE, prot & PAGE_WRITE); 1293 1294 copy_tlb_helper_locked(te, &tn); 1295 tlb_n_used_entries_inc(env, mmu_idx); 1296 qemu_spin_unlock(&tlb->c.lock); 1297 } 1298 1299 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr, 1300 hwaddr paddr, MemTxAttrs attrs, int prot, 1301 int mmu_idx, uint64_t size) 1302 { 1303 CPUTLBEntryFull full = { 1304 .phys_addr = paddr, 1305 .attrs = attrs, 1306 .prot = prot, 1307 .lg_page_size = ctz64(size) 1308 }; 1309 1310 assert(is_power_of_2(size)); 1311 tlb_set_page_full(cpu, mmu_idx, addr, &full); 1312 } 1313 1314 void tlb_set_page(CPUState *cpu, vaddr addr, 1315 hwaddr paddr, int prot, 1316 int mmu_idx, uint64_t size) 1317 { 1318 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED, 1319 prot, mmu_idx, size); 1320 } 1321 1322 /* 1323 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1324 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1325 * be discarded and looked up again (e.g. via tlb_entry()). 1326 */ 1327 static void tlb_fill(CPUState *cpu, vaddr addr, int size, 1328 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1329 { 1330 bool ok; 1331 1332 /* 1333 * This is not a probe, so only valid return is success; failure 1334 * should result in exception + longjmp to the cpu loop. 1335 */ 1336 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size, 1337 access_type, mmu_idx, false, retaddr); 1338 assert(ok); 1339 } 1340 1341 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1342 MMUAccessType access_type, 1343 int mmu_idx, uintptr_t retaddr) 1344 { 1345 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1346 mmu_idx, retaddr); 1347 } 1348 1349 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 1350 vaddr addr, unsigned size, 1351 MMUAccessType access_type, 1352 int mmu_idx, MemTxAttrs attrs, 1353 MemTxResult response, 1354 uintptr_t retaddr) 1355 { 1356 CPUClass *cc = CPU_GET_CLASS(cpu); 1357 1358 if (!cpu->ignore_memory_transaction_failures && 1359 cc->tcg_ops->do_transaction_failed) { 1360 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1361 access_type, mmu_idx, attrs, 1362 response, retaddr); 1363 } 1364 } 1365 1366 /* 1367 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin. 1368 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match 1369 * because of the side effect of io_writex changing memory layout. 1370 */ 1371 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section, 1372 hwaddr mr_offset) 1373 { 1374 #ifdef CONFIG_PLUGIN 1375 SavedIOTLB *saved = &cs->saved_iotlb; 1376 saved->section = section; 1377 saved->mr_offset = mr_offset; 1378 #endif 1379 } 1380 1381 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full, 1382 int mmu_idx, vaddr addr, uintptr_t retaddr, 1383 MMUAccessType access_type, MemOp op) 1384 { 1385 CPUState *cpu = env_cpu(env); 1386 hwaddr mr_offset; 1387 MemoryRegionSection *section; 1388 MemoryRegion *mr; 1389 uint64_t val; 1390 MemTxResult r; 1391 1392 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1393 mr = section->mr; 1394 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1395 cpu->mem_io_pc = retaddr; 1396 if (!cpu->can_do_io) { 1397 cpu_io_recompile(cpu, retaddr); 1398 } 1399 1400 /* 1401 * The memory_region_dispatch may trigger a flush/resize 1402 * so for plugins we save the iotlb_data just in case. 1403 */ 1404 save_iotlb_data(cpu, section, mr_offset); 1405 1406 { 1407 QEMU_IOTHREAD_LOCK_GUARD(); 1408 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs); 1409 } 1410 1411 if (r != MEMTX_OK) { 1412 hwaddr physaddr = mr_offset + 1413 section->offset_within_address_space - 1414 section->offset_within_region; 1415 1416 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, 1417 mmu_idx, full->attrs, r, retaddr); 1418 } 1419 return val; 1420 } 1421 1422 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full, 1423 int mmu_idx, uint64_t val, vaddr addr, 1424 uintptr_t retaddr, MemOp op) 1425 { 1426 CPUState *cpu = env_cpu(env); 1427 hwaddr mr_offset; 1428 MemoryRegionSection *section; 1429 MemoryRegion *mr; 1430 MemTxResult r; 1431 1432 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1433 mr = section->mr; 1434 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1435 if (!cpu->can_do_io) { 1436 cpu_io_recompile(cpu, retaddr); 1437 } 1438 cpu->mem_io_pc = retaddr; 1439 1440 /* 1441 * The memory_region_dispatch may trigger a flush/resize 1442 * so for plugins we save the iotlb_data just in case. 1443 */ 1444 save_iotlb_data(cpu, section, mr_offset); 1445 1446 { 1447 QEMU_IOTHREAD_LOCK_GUARD(); 1448 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs); 1449 } 1450 1451 if (r != MEMTX_OK) { 1452 hwaddr physaddr = mr_offset + 1453 section->offset_within_address_space - 1454 section->offset_within_region; 1455 1456 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), 1457 MMU_DATA_STORE, mmu_idx, full->attrs, r, 1458 retaddr); 1459 } 1460 } 1461 1462 /* Return true if ADDR is present in the victim tlb, and has been copied 1463 back to the main tlb. */ 1464 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 1465 MMUAccessType access_type, vaddr page) 1466 { 1467 size_t vidx; 1468 1469 assert_cpu_is_self(env_cpu(env)); 1470 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1471 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; 1472 uint64_t cmp = tlb_read_idx(vtlb, access_type); 1473 1474 if (cmp == page) { 1475 /* Found entry in victim tlb, swap tlb and iotlb. */ 1476 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; 1477 1478 qemu_spin_lock(&env_tlb(env)->c.lock); 1479 copy_tlb_helper_locked(&tmptlb, tlb); 1480 copy_tlb_helper_locked(tlb, vtlb); 1481 copy_tlb_helper_locked(vtlb, &tmptlb); 1482 qemu_spin_unlock(&env_tlb(env)->c.lock); 1483 1484 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1485 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx]; 1486 CPUTLBEntryFull tmpf; 1487 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1488 return true; 1489 } 1490 } 1491 return false; 1492 } 1493 1494 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1495 CPUTLBEntryFull *full, uintptr_t retaddr) 1496 { 1497 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1498 1499 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1500 1501 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1502 tb_invalidate_phys_range_fast(ram_addr, size, retaddr); 1503 } 1504 1505 /* 1506 * Set both VGA and migration bits for simplicity and to remove 1507 * the notdirty callback faster. 1508 */ 1509 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1510 1511 /* We remove the notdirty callback only if the code has been flushed. */ 1512 if (!cpu_physical_memory_is_clean(ram_addr)) { 1513 trace_memory_notdirty_set_dirty(mem_vaddr); 1514 tlb_set_dirty(cpu, mem_vaddr); 1515 } 1516 } 1517 1518 static int probe_access_internal(CPUArchState *env, vaddr addr, 1519 int fault_size, MMUAccessType access_type, 1520 int mmu_idx, bool nonfault, 1521 void **phost, CPUTLBEntryFull **pfull, 1522 uintptr_t retaddr, bool check_mem_cbs) 1523 { 1524 uintptr_t index = tlb_index(env, mmu_idx, addr); 1525 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1526 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1527 vaddr page_addr = addr & TARGET_PAGE_MASK; 1528 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW; 1529 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(env_cpu(env)); 1530 CPUTLBEntryFull *full; 1531 1532 if (!tlb_hit_page(tlb_addr, page_addr)) { 1533 if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) { 1534 CPUState *cs = env_cpu(env); 1535 1536 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type, 1537 mmu_idx, nonfault, retaddr)) { 1538 /* Non-faulting page table read failed. */ 1539 *phost = NULL; 1540 *pfull = NULL; 1541 return TLB_INVALID_MASK; 1542 } 1543 1544 /* TLB resize via tlb_fill may have moved the entry. */ 1545 index = tlb_index(env, mmu_idx, addr); 1546 entry = tlb_entry(env, mmu_idx, addr); 1547 1548 /* 1549 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1550 * to force the next access through tlb_fill. We've just 1551 * called tlb_fill, so we know that this entry *is* valid. 1552 */ 1553 flags &= ~TLB_INVALID_MASK; 1554 } 1555 tlb_addr = tlb_read_idx(entry, access_type); 1556 } 1557 flags &= tlb_addr; 1558 1559 *pfull = full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1560 flags |= full->slow_flags[access_type]; 1561 1562 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1563 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY)) 1564 || 1565 (access_type != MMU_INST_FETCH && force_mmio)) { 1566 *phost = NULL; 1567 return TLB_MMIO; 1568 } 1569 1570 /* Everything else is RAM. */ 1571 *phost = (void *)((uintptr_t)addr + entry->addend); 1572 return flags; 1573 } 1574 1575 int probe_access_full(CPUArchState *env, vaddr addr, int size, 1576 MMUAccessType access_type, int mmu_idx, 1577 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1578 uintptr_t retaddr) 1579 { 1580 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1581 nonfault, phost, pfull, retaddr, true); 1582 1583 /* Handle clean RAM pages. */ 1584 if (unlikely(flags & TLB_NOTDIRTY)) { 1585 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr); 1586 flags &= ~TLB_NOTDIRTY; 1587 } 1588 1589 return flags; 1590 } 1591 1592 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size, 1593 MMUAccessType access_type, int mmu_idx, 1594 void **phost, CPUTLBEntryFull **pfull) 1595 { 1596 void *discard_phost; 1597 CPUTLBEntryFull *discard_tlb; 1598 1599 /* privately handle users that don't need full results */ 1600 phost = phost ? phost : &discard_phost; 1601 pfull = pfull ? pfull : &discard_tlb; 1602 1603 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1604 true, phost, pfull, 0, false); 1605 1606 /* Handle clean RAM pages. */ 1607 if (unlikely(flags & TLB_NOTDIRTY)) { 1608 notdirty_write(env_cpu(env), addr, 1, *pfull, 0); 1609 flags &= ~TLB_NOTDIRTY; 1610 } 1611 1612 return flags; 1613 } 1614 1615 int probe_access_flags(CPUArchState *env, vaddr addr, int size, 1616 MMUAccessType access_type, int mmu_idx, 1617 bool nonfault, void **phost, uintptr_t retaddr) 1618 { 1619 CPUTLBEntryFull *full; 1620 int flags; 1621 1622 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1623 1624 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1625 nonfault, phost, &full, retaddr, true); 1626 1627 /* Handle clean RAM pages. */ 1628 if (unlikely(flags & TLB_NOTDIRTY)) { 1629 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1630 flags &= ~TLB_NOTDIRTY; 1631 } 1632 1633 return flags; 1634 } 1635 1636 void *probe_access(CPUArchState *env, vaddr addr, int size, 1637 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1638 { 1639 CPUTLBEntryFull *full; 1640 void *host; 1641 int flags; 1642 1643 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1644 1645 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1646 false, &host, &full, retaddr, true); 1647 1648 /* Per the interface, size == 0 merely faults the access. */ 1649 if (size == 0) { 1650 return NULL; 1651 } 1652 1653 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1654 /* Handle watchpoints. */ 1655 if (flags & TLB_WATCHPOINT) { 1656 int wp_access = (access_type == MMU_DATA_STORE 1657 ? BP_MEM_WRITE : BP_MEM_READ); 1658 cpu_check_watchpoint(env_cpu(env), addr, size, 1659 full->attrs, wp_access, retaddr); 1660 } 1661 1662 /* Handle clean RAM pages. */ 1663 if (flags & TLB_NOTDIRTY) { 1664 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1665 } 1666 } 1667 1668 return host; 1669 } 1670 1671 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1672 MMUAccessType access_type, int mmu_idx) 1673 { 1674 CPUTLBEntryFull *full; 1675 void *host; 1676 int flags; 1677 1678 flags = probe_access_internal(env, addr, 0, access_type, 1679 mmu_idx, true, &host, &full, 0, false); 1680 1681 /* No combination of flags are expected by the caller. */ 1682 return flags ? NULL : host; 1683 } 1684 1685 /* 1686 * Return a ram_addr_t for the virtual address for execution. 1687 * 1688 * Return -1 if we can't translate and execute from an entire page 1689 * of RAM. This will force us to execute by loading and translating 1690 * one insn at a time, without caching. 1691 * 1692 * NOTE: This function will trigger an exception if the page is 1693 * not executable. 1694 */ 1695 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr, 1696 void **hostp) 1697 { 1698 CPUTLBEntryFull *full; 1699 void *p; 1700 1701 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH, 1702 cpu_mmu_index(env, true), false, 1703 &p, &full, 0, false); 1704 if (p == NULL) { 1705 return -1; 1706 } 1707 1708 if (full->lg_page_size < TARGET_PAGE_BITS) { 1709 return -1; 1710 } 1711 1712 if (hostp) { 1713 *hostp = p; 1714 } 1715 return qemu_ram_addr_from_host_nofail(p); 1716 } 1717 1718 /* Load/store with atomicity primitives. */ 1719 #include "ldst_atomicity.c.inc" 1720 1721 #ifdef CONFIG_PLUGIN 1722 /* 1723 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1724 * This should be a hot path as we will have just looked this path up 1725 * in the softmmu lookup code (or helper). We don't handle re-fills or 1726 * checking the victim table. This is purely informational. 1727 * 1728 * This almost never fails as the memory access being instrumented 1729 * should have just filled the TLB. The one corner case is io_writex 1730 * which can cause TLB flushes and potential resizing of the TLBs 1731 * losing the information we need. In those cases we need to recover 1732 * data from a copy of the CPUTLBEntryFull. As long as this always occurs 1733 * from the same thread (which a mem callback will be) this is safe. 1734 */ 1735 1736 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx, 1737 bool is_store, struct qemu_plugin_hwaddr *data) 1738 { 1739 CPUArchState *env = cpu->env_ptr; 1740 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1741 uintptr_t index = tlb_index(env, mmu_idx, addr); 1742 uint64_t tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read; 1743 1744 if (likely(tlb_hit(tlb_addr, addr))) { 1745 /* We must have an iotlb entry for MMIO */ 1746 if (tlb_addr & TLB_MMIO) { 1747 CPUTLBEntryFull *full; 1748 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1749 data->is_io = true; 1750 data->v.io.section = 1751 iotlb_to_section(cpu, full->xlat_section, full->attrs); 1752 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1753 } else { 1754 data->is_io = false; 1755 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1756 } 1757 return true; 1758 } else { 1759 SavedIOTLB *saved = &cpu->saved_iotlb; 1760 data->is_io = true; 1761 data->v.io.section = saved->section; 1762 data->v.io.offset = saved->mr_offset; 1763 return true; 1764 } 1765 } 1766 1767 #endif 1768 1769 /* 1770 * Probe for a load/store operation. 1771 * Return the host address and into @flags. 1772 */ 1773 1774 typedef struct MMULookupPageData { 1775 CPUTLBEntryFull *full; 1776 void *haddr; 1777 vaddr addr; 1778 int flags; 1779 int size; 1780 } MMULookupPageData; 1781 1782 typedef struct MMULookupLocals { 1783 MMULookupPageData page[2]; 1784 MemOp memop; 1785 int mmu_idx; 1786 } MMULookupLocals; 1787 1788 /** 1789 * mmu_lookup1: translate one page 1790 * @env: cpu context 1791 * @data: lookup parameters 1792 * @mmu_idx: virtual address context 1793 * @access_type: load/store/code 1794 * @ra: return address into tcg generated code, or 0 1795 * 1796 * Resolve the translation for the one page at @data.addr, filling in 1797 * the rest of @data with the results. If the translation fails, 1798 * tlb_fill will longjmp out. Return true if the softmmu tlb for 1799 * @mmu_idx may have resized. 1800 */ 1801 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data, 1802 int mmu_idx, MMUAccessType access_type, uintptr_t ra) 1803 { 1804 vaddr addr = data->addr; 1805 uintptr_t index = tlb_index(env, mmu_idx, addr); 1806 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1807 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1808 bool maybe_resized = false; 1809 CPUTLBEntryFull *full; 1810 int flags; 1811 1812 /* If the TLB entry is for a different page, reload and try again. */ 1813 if (!tlb_hit(tlb_addr, addr)) { 1814 if (!victim_tlb_hit(env, mmu_idx, index, access_type, 1815 addr & TARGET_PAGE_MASK)) { 1816 tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra); 1817 maybe_resized = true; 1818 index = tlb_index(env, mmu_idx, addr); 1819 entry = tlb_entry(env, mmu_idx, addr); 1820 } 1821 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK; 1822 } 1823 1824 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1825 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW); 1826 flags |= full->slow_flags[access_type]; 1827 1828 data->full = full; 1829 data->flags = flags; 1830 /* Compute haddr speculatively; depending on flags it might be invalid. */ 1831 data->haddr = (void *)((uintptr_t)addr + entry->addend); 1832 1833 return maybe_resized; 1834 } 1835 1836 /** 1837 * mmu_watch_or_dirty 1838 * @env: cpu context 1839 * @data: lookup parameters 1840 * @access_type: load/store/code 1841 * @ra: return address into tcg generated code, or 0 1842 * 1843 * Trigger watchpoints for @data.addr:@data.size; 1844 * record writes to protected clean pages. 1845 */ 1846 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data, 1847 MMUAccessType access_type, uintptr_t ra) 1848 { 1849 CPUTLBEntryFull *full = data->full; 1850 vaddr addr = data->addr; 1851 int flags = data->flags; 1852 int size = data->size; 1853 1854 /* On watchpoint hit, this will longjmp out. */ 1855 if (flags & TLB_WATCHPOINT) { 1856 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ; 1857 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra); 1858 flags &= ~TLB_WATCHPOINT; 1859 } 1860 1861 /* Note that notdirty is only set for writes. */ 1862 if (flags & TLB_NOTDIRTY) { 1863 notdirty_write(env_cpu(env), addr, size, full, ra); 1864 flags &= ~TLB_NOTDIRTY; 1865 } 1866 data->flags = flags; 1867 } 1868 1869 /** 1870 * mmu_lookup: translate page(s) 1871 * @env: cpu context 1872 * @addr: virtual address 1873 * @oi: combined mmu_idx and MemOp 1874 * @ra: return address into tcg generated code, or 0 1875 * @access_type: load/store/code 1876 * @l: output result 1877 * 1878 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size 1879 * bytes. Return true if the lookup crosses a page boundary. 1880 */ 1881 static bool mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi, 1882 uintptr_t ra, MMUAccessType type, MMULookupLocals *l) 1883 { 1884 unsigned a_bits; 1885 bool crosspage; 1886 int flags; 1887 1888 l->memop = get_memop(oi); 1889 l->mmu_idx = get_mmuidx(oi); 1890 1891 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES); 1892 1893 /* Handle CPU specific unaligned behaviour */ 1894 a_bits = get_alignment_bits(l->memop); 1895 if (addr & ((1 << a_bits) - 1)) { 1896 cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra); 1897 } 1898 1899 l->page[0].addr = addr; 1900 l->page[0].size = memop_size(l->memop); 1901 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK; 1902 l->page[1].size = 0; 1903 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK; 1904 1905 if (likely(!crosspage)) { 1906 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); 1907 1908 flags = l->page[0].flags; 1909 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1910 mmu_watch_or_dirty(env, &l->page[0], type, ra); 1911 } 1912 if (unlikely(flags & TLB_BSWAP)) { 1913 l->memop ^= MO_BSWAP; 1914 } 1915 } else { 1916 /* Finish compute of page crossing. */ 1917 int size0 = l->page[1].addr - addr; 1918 l->page[1].size = l->page[0].size - size0; 1919 l->page[0].size = size0; 1920 1921 /* 1922 * Lookup both pages, recognizing exceptions from either. If the 1923 * second lookup potentially resized, refresh first CPUTLBEntryFull. 1924 */ 1925 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); 1926 if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) { 1927 uintptr_t index = tlb_index(env, l->mmu_idx, addr); 1928 l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index]; 1929 } 1930 1931 flags = l->page[0].flags | l->page[1].flags; 1932 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1933 mmu_watch_or_dirty(env, &l->page[0], type, ra); 1934 mmu_watch_or_dirty(env, &l->page[1], type, ra); 1935 } 1936 1937 /* 1938 * Since target/sparc is the only user of TLB_BSWAP, and all 1939 * Sparc accesses are aligned, any treatment across two pages 1940 * would be arbitrary. Refuse it until there's a use. 1941 */ 1942 tcg_debug_assert((flags & TLB_BSWAP) == 0); 1943 } 1944 1945 return crosspage; 1946 } 1947 1948 /* 1949 * Probe for an atomic operation. Do not allow unaligned operations, 1950 * or io operations to proceed. Return the host address. 1951 */ 1952 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi, 1953 int size, uintptr_t retaddr) 1954 { 1955 uintptr_t mmu_idx = get_mmuidx(oi); 1956 MemOp mop = get_memop(oi); 1957 int a_bits = get_alignment_bits(mop); 1958 uintptr_t index; 1959 CPUTLBEntry *tlbe; 1960 vaddr tlb_addr; 1961 void *hostaddr; 1962 CPUTLBEntryFull *full; 1963 1964 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1965 1966 /* Adjust the given return address. */ 1967 retaddr -= GETPC_ADJ; 1968 1969 /* Enforce guest required alignment. */ 1970 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1971 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1972 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1973 mmu_idx, retaddr); 1974 } 1975 1976 /* Enforce qemu required alignment. */ 1977 if (unlikely(addr & (size - 1))) { 1978 /* We get here if guest alignment was not requested, 1979 or was not enforced by cpu_unaligned_access above. 1980 We might widen the access and emulate, but for now 1981 mark an exception and exit the cpu loop. */ 1982 goto stop_the_world; 1983 } 1984 1985 index = tlb_index(env, mmu_idx, addr); 1986 tlbe = tlb_entry(env, mmu_idx, addr); 1987 1988 /* Check TLB entry and enforce page permissions. */ 1989 tlb_addr = tlb_addr_write(tlbe); 1990 if (!tlb_hit(tlb_addr, addr)) { 1991 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE, 1992 addr & TARGET_PAGE_MASK)) { 1993 tlb_fill(env_cpu(env), addr, size, 1994 MMU_DATA_STORE, mmu_idx, retaddr); 1995 index = tlb_index(env, mmu_idx, addr); 1996 tlbe = tlb_entry(env, mmu_idx, addr); 1997 } 1998 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1999 } 2000 2001 /* 2002 * Let the guest notice RMW on a write-only page. 2003 * We have just verified that the page is writable. 2004 * Subpage lookups may have left TLB_INVALID_MASK set, 2005 * but addr_read will only be -1 if PAGE_READ was unset. 2006 */ 2007 if (unlikely(tlbe->addr_read == -1)) { 2008 tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); 2009 /* 2010 * Since we don't support reads and writes to different 2011 * addresses, and we do have the proper page loaded for 2012 * write, this shouldn't ever return. But just in case, 2013 * handle via stop-the-world. 2014 */ 2015 goto stop_the_world; 2016 } 2017 /* Collect tlb flags for read. */ 2018 tlb_addr |= tlbe->addr_read; 2019 2020 /* Notice an IO access or a needs-MMU-lookup access */ 2021 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { 2022 /* There's really nothing that can be done to 2023 support this apart from stop-the-world. */ 2024 goto stop_the_world; 2025 } 2026 2027 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 2028 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 2029 2030 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 2031 notdirty_write(env_cpu(env), addr, size, full, retaddr); 2032 } 2033 2034 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) { 2035 int wp_flags = 0; 2036 2037 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) { 2038 wp_flags |= BP_MEM_WRITE; 2039 } 2040 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) { 2041 wp_flags |= BP_MEM_READ; 2042 } 2043 if (wp_flags) { 2044 cpu_check_watchpoint(env_cpu(env), addr, size, 2045 full->attrs, wp_flags, retaddr); 2046 } 2047 } 2048 2049 return hostaddr; 2050 2051 stop_the_world: 2052 cpu_loop_exit_atomic(env_cpu(env), retaddr); 2053 } 2054 2055 /* 2056 * Load Helpers 2057 * 2058 * We support two different access types. SOFTMMU_CODE_ACCESS is 2059 * specifically for reading instructions from system memory. It is 2060 * called by the translation loop and in some helpers where the code 2061 * is disassembled. It shouldn't be called directly by guest code. 2062 * 2063 * For the benefit of TCG generated code, we want to avoid the 2064 * complication of ABI-specific return type promotion and always 2065 * return a value extended to the register size of the host. This is 2066 * tcg_target_long, except in the case of a 32-bit host and 64-bit 2067 * data, and for that we always have uint64_t. 2068 * 2069 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 2070 */ 2071 2072 /** 2073 * do_ld_mmio_beN: 2074 * @env: cpu context 2075 * @full: page parameters 2076 * @ret_be: accumulated data 2077 * @addr: virtual address 2078 * @size: number of bytes 2079 * @mmu_idx: virtual address context 2080 * @ra: return address into tcg generated code, or 0 2081 * Context: iothread lock held 2082 * 2083 * Load @size bytes from @addr, which is memory-mapped i/o. 2084 * The bytes are concatenated in big-endian order with @ret_be. 2085 */ 2086 static uint64_t do_ld_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full, 2087 uint64_t ret_be, vaddr addr, int size, 2088 int mmu_idx, MMUAccessType type, uintptr_t ra) 2089 { 2090 uint64_t t; 2091 2092 tcg_debug_assert(size > 0 && size <= 8); 2093 do { 2094 /* Read aligned pieces up to 8 bytes. */ 2095 switch ((size | (int)addr) & 7) { 2096 case 1: 2097 case 3: 2098 case 5: 2099 case 7: 2100 t = io_readx(env, full, mmu_idx, addr, ra, type, MO_UB); 2101 ret_be = (ret_be << 8) | t; 2102 size -= 1; 2103 addr += 1; 2104 break; 2105 case 2: 2106 case 6: 2107 t = io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUW); 2108 ret_be = (ret_be << 16) | t; 2109 size -= 2; 2110 addr += 2; 2111 break; 2112 case 4: 2113 t = io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUL); 2114 ret_be = (ret_be << 32) | t; 2115 size -= 4; 2116 addr += 4; 2117 break; 2118 case 0: 2119 return io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUQ); 2120 default: 2121 qemu_build_not_reached(); 2122 } 2123 } while (size); 2124 return ret_be; 2125 } 2126 2127 /** 2128 * do_ld_bytes_beN 2129 * @p: translation parameters 2130 * @ret_be: accumulated data 2131 * 2132 * Load @p->size bytes from @p->haddr, which is RAM. 2133 * The bytes to concatenated in big-endian order with @ret_be. 2134 */ 2135 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) 2136 { 2137 uint8_t *haddr = p->haddr; 2138 int i, size = p->size; 2139 2140 for (i = 0; i < size; i++) { 2141 ret_be = (ret_be << 8) | haddr[i]; 2142 } 2143 return ret_be; 2144 } 2145 2146 /** 2147 * do_ld_parts_beN 2148 * @p: translation parameters 2149 * @ret_be: accumulated data 2150 * 2151 * As do_ld_bytes_beN, but atomically on each aligned part. 2152 */ 2153 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be) 2154 { 2155 void *haddr = p->haddr; 2156 int size = p->size; 2157 2158 do { 2159 uint64_t x; 2160 int n; 2161 2162 /* 2163 * Find minimum of alignment and size. 2164 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which 2165 * would have only checked the low bits of addr|size once at the start, 2166 * but is just as easy. 2167 */ 2168 switch (((uintptr_t)haddr | size) & 7) { 2169 case 4: 2170 x = cpu_to_be32(load_atomic4(haddr)); 2171 ret_be = (ret_be << 32) | x; 2172 n = 4; 2173 break; 2174 case 2: 2175 case 6: 2176 x = cpu_to_be16(load_atomic2(haddr)); 2177 ret_be = (ret_be << 16) | x; 2178 n = 2; 2179 break; 2180 default: 2181 x = *(uint8_t *)haddr; 2182 ret_be = (ret_be << 8) | x; 2183 n = 1; 2184 break; 2185 case 0: 2186 g_assert_not_reached(); 2187 } 2188 haddr += n; 2189 size -= n; 2190 } while (size != 0); 2191 return ret_be; 2192 } 2193 2194 /** 2195 * do_ld_parts_be4 2196 * @p: translation parameters 2197 * @ret_be: accumulated data 2198 * 2199 * As do_ld_bytes_beN, but with one atomic load. 2200 * Four aligned bytes are guaranteed to cover the load. 2201 */ 2202 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be) 2203 { 2204 int o = p->addr & 3; 2205 uint32_t x = load_atomic4(p->haddr - o); 2206 2207 x = cpu_to_be32(x); 2208 x <<= o * 8; 2209 x >>= (4 - p->size) * 8; 2210 return (ret_be << (p->size * 8)) | x; 2211 } 2212 2213 /** 2214 * do_ld_parts_be8 2215 * @p: translation parameters 2216 * @ret_be: accumulated data 2217 * 2218 * As do_ld_bytes_beN, but with one atomic load. 2219 * Eight aligned bytes are guaranteed to cover the load. 2220 */ 2221 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra, 2222 MMULookupPageData *p, uint64_t ret_be) 2223 { 2224 int o = p->addr & 7; 2225 uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o); 2226 2227 x = cpu_to_be64(x); 2228 x <<= o * 8; 2229 x >>= (8 - p->size) * 8; 2230 return (ret_be << (p->size * 8)) | x; 2231 } 2232 2233 /** 2234 * do_ld_parts_be16 2235 * @p: translation parameters 2236 * @ret_be: accumulated data 2237 * 2238 * As do_ld_bytes_beN, but with one atomic load. 2239 * 16 aligned bytes are guaranteed to cover the load. 2240 */ 2241 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra, 2242 MMULookupPageData *p, uint64_t ret_be) 2243 { 2244 int o = p->addr & 15; 2245 Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o); 2246 int size = p->size; 2247 2248 if (!HOST_BIG_ENDIAN) { 2249 y = bswap128(y); 2250 } 2251 y = int128_lshift(y, o * 8); 2252 y = int128_urshift(y, (16 - size) * 8); 2253 x = int128_make64(ret_be); 2254 x = int128_lshift(x, size * 8); 2255 return int128_or(x, y); 2256 } 2257 2258 /* 2259 * Wrapper for the above. 2260 */ 2261 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p, 2262 uint64_t ret_be, int mmu_idx, MMUAccessType type, 2263 MemOp mop, uintptr_t ra) 2264 { 2265 MemOp atom; 2266 unsigned tmp, half_size; 2267 2268 if (unlikely(p->flags & TLB_MMIO)) { 2269 QEMU_IOTHREAD_LOCK_GUARD(); 2270 return do_ld_mmio_beN(env, p->full, ret_be, p->addr, p->size, 2271 mmu_idx, type, ra); 2272 } 2273 2274 /* 2275 * It is a given that we cross a page and therefore there is no 2276 * atomicity for the load as a whole, but subobjects may need attention. 2277 */ 2278 atom = mop & MO_ATOM_MASK; 2279 switch (atom) { 2280 case MO_ATOM_SUBALIGN: 2281 return do_ld_parts_beN(p, ret_be); 2282 2283 case MO_ATOM_IFALIGN_PAIR: 2284 case MO_ATOM_WITHIN16_PAIR: 2285 tmp = mop & MO_SIZE; 2286 tmp = tmp ? tmp - 1 : 0; 2287 half_size = 1 << tmp; 2288 if (atom == MO_ATOM_IFALIGN_PAIR 2289 ? p->size == half_size 2290 : p->size >= half_size) { 2291 if (!HAVE_al8_fast && p->size < 4) { 2292 return do_ld_whole_be4(p, ret_be); 2293 } else { 2294 return do_ld_whole_be8(env, ra, p, ret_be); 2295 } 2296 } 2297 /* fall through */ 2298 2299 case MO_ATOM_IFALIGN: 2300 case MO_ATOM_WITHIN16: 2301 case MO_ATOM_NONE: 2302 return do_ld_bytes_beN(p, ret_be); 2303 2304 default: 2305 g_assert_not_reached(); 2306 } 2307 } 2308 2309 /* 2310 * Wrapper for the above, for 8 < size < 16. 2311 */ 2312 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p, 2313 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra) 2314 { 2315 int size = p->size; 2316 uint64_t b; 2317 MemOp atom; 2318 2319 if (unlikely(p->flags & TLB_MMIO)) { 2320 QEMU_IOTHREAD_LOCK_GUARD(); 2321 a = do_ld_mmio_beN(env, p->full, a, p->addr, size - 8, 2322 mmu_idx, MMU_DATA_LOAD, ra); 2323 b = do_ld_mmio_beN(env, p->full, 0, p->addr + 8, 8, 2324 mmu_idx, MMU_DATA_LOAD, ra); 2325 return int128_make128(b, a); 2326 } 2327 2328 /* 2329 * It is a given that we cross a page and therefore there is no 2330 * atomicity for the load as a whole, but subobjects may need attention. 2331 */ 2332 atom = mop & MO_ATOM_MASK; 2333 switch (atom) { 2334 case MO_ATOM_SUBALIGN: 2335 p->size = size - 8; 2336 a = do_ld_parts_beN(p, a); 2337 p->haddr += size - 8; 2338 p->size = 8; 2339 b = do_ld_parts_beN(p, 0); 2340 break; 2341 2342 case MO_ATOM_WITHIN16_PAIR: 2343 /* Since size > 8, this is the half that must be atomic. */ 2344 return do_ld_whole_be16(env, ra, p, a); 2345 2346 case MO_ATOM_IFALIGN_PAIR: 2347 /* 2348 * Since size > 8, both halves are misaligned, 2349 * and so neither is atomic. 2350 */ 2351 case MO_ATOM_IFALIGN: 2352 case MO_ATOM_WITHIN16: 2353 case MO_ATOM_NONE: 2354 p->size = size - 8; 2355 a = do_ld_bytes_beN(p, a); 2356 b = ldq_be_p(p->haddr + size - 8); 2357 break; 2358 2359 default: 2360 g_assert_not_reached(); 2361 } 2362 2363 return int128_make128(b, a); 2364 } 2365 2366 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2367 MMUAccessType type, uintptr_t ra) 2368 { 2369 if (unlikely(p->flags & TLB_MMIO)) { 2370 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB); 2371 } else { 2372 return *(uint8_t *)p->haddr; 2373 } 2374 } 2375 2376 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2377 MMUAccessType type, MemOp memop, uintptr_t ra) 2378 { 2379 uint16_t ret; 2380 2381 if (unlikely(p->flags & TLB_MMIO)) { 2382 QEMU_IOTHREAD_LOCK_GUARD(); 2383 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 2, mmu_idx, type, ra); 2384 if ((memop & MO_BSWAP) == MO_LE) { 2385 ret = bswap16(ret); 2386 } 2387 } else { 2388 /* Perform the load host endian, then swap if necessary. */ 2389 ret = load_atom_2(env, ra, p->haddr, memop); 2390 if (memop & MO_BSWAP) { 2391 ret = bswap16(ret); 2392 } 2393 } 2394 return ret; 2395 } 2396 2397 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2398 MMUAccessType type, MemOp memop, uintptr_t ra) 2399 { 2400 uint32_t ret; 2401 2402 if (unlikely(p->flags & TLB_MMIO)) { 2403 QEMU_IOTHREAD_LOCK_GUARD(); 2404 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 4, mmu_idx, type, ra); 2405 if ((memop & MO_BSWAP) == MO_LE) { 2406 ret = bswap32(ret); 2407 } 2408 } else { 2409 /* Perform the load host endian. */ 2410 ret = load_atom_4(env, ra, p->haddr, memop); 2411 if (memop & MO_BSWAP) { 2412 ret = bswap32(ret); 2413 } 2414 } 2415 return ret; 2416 } 2417 2418 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2419 MMUAccessType type, MemOp memop, uintptr_t ra) 2420 { 2421 uint64_t ret; 2422 2423 if (unlikely(p->flags & TLB_MMIO)) { 2424 QEMU_IOTHREAD_LOCK_GUARD(); 2425 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 8, mmu_idx, type, ra); 2426 if ((memop & MO_BSWAP) == MO_LE) { 2427 ret = bswap64(ret); 2428 } 2429 } else { 2430 /* Perform the load host endian. */ 2431 ret = load_atom_8(env, ra, p->haddr, memop); 2432 if (memop & MO_BSWAP) { 2433 ret = bswap64(ret); 2434 } 2435 } 2436 return ret; 2437 } 2438 2439 static uint8_t do_ld1_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2440 uintptr_t ra, MMUAccessType access_type) 2441 { 2442 MMULookupLocals l; 2443 bool crosspage; 2444 2445 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2446 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2447 tcg_debug_assert(!crosspage); 2448 2449 return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); 2450 } 2451 2452 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr, 2453 MemOpIdx oi, uintptr_t retaddr) 2454 { 2455 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8); 2456 return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2457 } 2458 2459 static uint16_t do_ld2_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2460 uintptr_t ra, MMUAccessType access_type) 2461 { 2462 MMULookupLocals l; 2463 bool crosspage; 2464 uint16_t ret; 2465 uint8_t a, b; 2466 2467 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2468 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2469 if (likely(!crosspage)) { 2470 return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2471 } 2472 2473 a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); 2474 b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra); 2475 2476 if ((l.memop & MO_BSWAP) == MO_LE) { 2477 ret = a | (b << 8); 2478 } else { 2479 ret = b | (a << 8); 2480 } 2481 return ret; 2482 } 2483 2484 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr, 2485 MemOpIdx oi, uintptr_t retaddr) 2486 { 2487 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2488 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2489 } 2490 2491 static uint32_t do_ld4_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2492 uintptr_t ra, MMUAccessType access_type) 2493 { 2494 MMULookupLocals l; 2495 bool crosspage; 2496 uint32_t ret; 2497 2498 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2499 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2500 if (likely(!crosspage)) { 2501 return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2502 } 2503 2504 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2505 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2506 if ((l.memop & MO_BSWAP) == MO_LE) { 2507 ret = bswap32(ret); 2508 } 2509 return ret; 2510 } 2511 2512 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr, 2513 MemOpIdx oi, uintptr_t retaddr) 2514 { 2515 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2516 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2517 } 2518 2519 static uint64_t do_ld8_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2520 uintptr_t ra, MMUAccessType access_type) 2521 { 2522 MMULookupLocals l; 2523 bool crosspage; 2524 uint64_t ret; 2525 2526 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2527 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2528 if (likely(!crosspage)) { 2529 return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2530 } 2531 2532 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2533 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2534 if ((l.memop & MO_BSWAP) == MO_LE) { 2535 ret = bswap64(ret); 2536 } 2537 return ret; 2538 } 2539 2540 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr, 2541 MemOpIdx oi, uintptr_t retaddr) 2542 { 2543 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2544 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2545 } 2546 2547 /* 2548 * Provide signed versions of the load routines as well. We can of course 2549 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 2550 */ 2551 2552 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr, 2553 MemOpIdx oi, uintptr_t retaddr) 2554 { 2555 return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr); 2556 } 2557 2558 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr, 2559 MemOpIdx oi, uintptr_t retaddr) 2560 { 2561 return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr); 2562 } 2563 2564 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr, 2565 MemOpIdx oi, uintptr_t retaddr) 2566 { 2567 return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr); 2568 } 2569 2570 static Int128 do_ld16_mmu(CPUArchState *env, vaddr addr, 2571 MemOpIdx oi, uintptr_t ra) 2572 { 2573 MMULookupLocals l; 2574 bool crosspage; 2575 uint64_t a, b; 2576 Int128 ret; 2577 int first; 2578 2579 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2580 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l); 2581 if (likely(!crosspage)) { 2582 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2583 QEMU_IOTHREAD_LOCK_GUARD(); 2584 a = do_ld_mmio_beN(env, l.page[0].full, 0, addr, 8, 2585 l.mmu_idx, MMU_DATA_LOAD, ra); 2586 b = do_ld_mmio_beN(env, l.page[0].full, 0, addr + 8, 8, 2587 l.mmu_idx, MMU_DATA_LOAD, ra); 2588 ret = int128_make128(b, a); 2589 if ((l.memop & MO_BSWAP) == MO_LE) { 2590 ret = bswap128(ret); 2591 } 2592 } else { 2593 /* Perform the load host endian. */ 2594 ret = load_atom_16(env, ra, l.page[0].haddr, l.memop); 2595 if (l.memop & MO_BSWAP) { 2596 ret = bswap128(ret); 2597 } 2598 } 2599 return ret; 2600 } 2601 2602 first = l.page[0].size; 2603 if (first == 8) { 2604 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64; 2605 2606 a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2607 b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2608 if ((mop8 & MO_BSWAP) == MO_LE) { 2609 ret = int128_make128(a, b); 2610 } else { 2611 ret = int128_make128(b, a); 2612 } 2613 return ret; 2614 } 2615 2616 if (first < 8) { 2617 a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, 2618 MMU_DATA_LOAD, l.memop, ra); 2619 ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra); 2620 } else { 2621 ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra); 2622 b = int128_getlo(ret); 2623 ret = int128_lshift(ret, l.page[1].size * 8); 2624 a = int128_gethi(ret); 2625 b = do_ld_beN(env, &l.page[1], b, l.mmu_idx, 2626 MMU_DATA_LOAD, l.memop, ra); 2627 ret = int128_make128(b, a); 2628 } 2629 if ((l.memop & MO_BSWAP) == MO_LE) { 2630 ret = bswap128(ret); 2631 } 2632 return ret; 2633 } 2634 2635 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr, 2636 uint32_t oi, uintptr_t retaddr) 2637 { 2638 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 2639 return do_ld16_mmu(env, addr, oi, retaddr); 2640 } 2641 2642 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi) 2643 { 2644 return helper_ld16_mmu(env, addr, oi, GETPC()); 2645 } 2646 2647 /* 2648 * Load helpers for cpu_ldst.h. 2649 */ 2650 2651 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) 2652 { 2653 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2654 } 2655 2656 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) 2657 { 2658 uint8_t ret; 2659 2660 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB); 2661 ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2662 plugin_load_cb(env, addr, oi); 2663 return ret; 2664 } 2665 2666 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr, 2667 MemOpIdx oi, uintptr_t ra) 2668 { 2669 uint16_t ret; 2670 2671 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2672 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2673 plugin_load_cb(env, addr, oi); 2674 return ret; 2675 } 2676 2677 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr, 2678 MemOpIdx oi, uintptr_t ra) 2679 { 2680 uint32_t ret; 2681 2682 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2683 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2684 plugin_load_cb(env, addr, oi); 2685 return ret; 2686 } 2687 2688 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr, 2689 MemOpIdx oi, uintptr_t ra) 2690 { 2691 uint64_t ret; 2692 2693 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2694 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2695 plugin_load_cb(env, addr, oi); 2696 return ret; 2697 } 2698 2699 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr, 2700 MemOpIdx oi, uintptr_t ra) 2701 { 2702 Int128 ret; 2703 2704 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 2705 ret = do_ld16_mmu(env, addr, oi, ra); 2706 plugin_load_cb(env, addr, oi); 2707 return ret; 2708 } 2709 2710 /* 2711 * Store Helpers 2712 */ 2713 2714 /** 2715 * do_st_mmio_leN: 2716 * @env: cpu context 2717 * @full: page parameters 2718 * @val_le: data to store 2719 * @addr: virtual address 2720 * @size: number of bytes 2721 * @mmu_idx: virtual address context 2722 * @ra: return address into tcg generated code, or 0 2723 * Context: iothread lock held 2724 * 2725 * Store @size bytes at @addr, which is memory-mapped i/o. 2726 * The bytes to store are extracted in little-endian order from @val_le; 2727 * return the bytes of @val_le beyond @p->size that have not been stored. 2728 */ 2729 static uint64_t do_st_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full, 2730 uint64_t val_le, vaddr addr, int size, 2731 int mmu_idx, uintptr_t ra) 2732 { 2733 tcg_debug_assert(size > 0 && size <= 8); 2734 2735 do { 2736 /* Store aligned pieces up to 8 bytes. */ 2737 switch ((size | (int)addr) & 7) { 2738 case 1: 2739 case 3: 2740 case 5: 2741 case 7: 2742 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_UB); 2743 val_le >>= 8; 2744 size -= 1; 2745 addr += 1; 2746 break; 2747 case 2: 2748 case 6: 2749 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUW); 2750 val_le >>= 16; 2751 size -= 2; 2752 addr += 2; 2753 break; 2754 case 4: 2755 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUL); 2756 val_le >>= 32; 2757 size -= 4; 2758 addr += 4; 2759 break; 2760 case 0: 2761 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUQ); 2762 return 0; 2763 default: 2764 qemu_build_not_reached(); 2765 } 2766 } while (size); 2767 2768 return val_le; 2769 } 2770 2771 /* 2772 * Wrapper for the above. 2773 */ 2774 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p, 2775 uint64_t val_le, int mmu_idx, 2776 MemOp mop, uintptr_t ra) 2777 { 2778 MemOp atom; 2779 unsigned tmp, half_size; 2780 2781 if (unlikely(p->flags & TLB_MMIO)) { 2782 QEMU_IOTHREAD_LOCK_GUARD(); 2783 return do_st_mmio_leN(env, p->full, val_le, p->addr, 2784 p->size, mmu_idx, ra); 2785 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2786 return val_le >> (p->size * 8); 2787 } 2788 2789 /* 2790 * It is a given that we cross a page and therefore there is no atomicity 2791 * for the store as a whole, but subobjects may need attention. 2792 */ 2793 atom = mop & MO_ATOM_MASK; 2794 switch (atom) { 2795 case MO_ATOM_SUBALIGN: 2796 return store_parts_leN(p->haddr, p->size, val_le); 2797 2798 case MO_ATOM_IFALIGN_PAIR: 2799 case MO_ATOM_WITHIN16_PAIR: 2800 tmp = mop & MO_SIZE; 2801 tmp = tmp ? tmp - 1 : 0; 2802 half_size = 1 << tmp; 2803 if (atom == MO_ATOM_IFALIGN_PAIR 2804 ? p->size == half_size 2805 : p->size >= half_size) { 2806 if (!HAVE_al8_fast && p->size <= 4) { 2807 return store_whole_le4(p->haddr, p->size, val_le); 2808 } else if (HAVE_al8) { 2809 return store_whole_le8(p->haddr, p->size, val_le); 2810 } else { 2811 cpu_loop_exit_atomic(env_cpu(env), ra); 2812 } 2813 } 2814 /* fall through */ 2815 2816 case MO_ATOM_IFALIGN: 2817 case MO_ATOM_WITHIN16: 2818 case MO_ATOM_NONE: 2819 return store_bytes_leN(p->haddr, p->size, val_le); 2820 2821 default: 2822 g_assert_not_reached(); 2823 } 2824 } 2825 2826 /* 2827 * Wrapper for the above, for 8 < size < 16. 2828 */ 2829 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p, 2830 Int128 val_le, int mmu_idx, 2831 MemOp mop, uintptr_t ra) 2832 { 2833 int size = p->size; 2834 MemOp atom; 2835 2836 if (unlikely(p->flags & TLB_MMIO)) { 2837 QEMU_IOTHREAD_LOCK_GUARD(); 2838 do_st_mmio_leN(env, p->full, int128_getlo(val_le), 2839 p->addr, 8, mmu_idx, ra); 2840 return do_st_mmio_leN(env, p->full, int128_gethi(val_le), 2841 p->addr + 8, size - 8, mmu_idx, ra); 2842 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2843 return int128_gethi(val_le) >> ((size - 8) * 8); 2844 } 2845 2846 /* 2847 * It is a given that we cross a page and therefore there is no atomicity 2848 * for the store as a whole, but subobjects may need attention. 2849 */ 2850 atom = mop & MO_ATOM_MASK; 2851 switch (atom) { 2852 case MO_ATOM_SUBALIGN: 2853 store_parts_leN(p->haddr, 8, int128_getlo(val_le)); 2854 return store_parts_leN(p->haddr + 8, p->size - 8, 2855 int128_gethi(val_le)); 2856 2857 case MO_ATOM_WITHIN16_PAIR: 2858 /* Since size > 8, this is the half that must be atomic. */ 2859 if (!HAVE_ATOMIC128_RW) { 2860 cpu_loop_exit_atomic(env_cpu(env), ra); 2861 } 2862 return store_whole_le16(p->haddr, p->size, val_le); 2863 2864 case MO_ATOM_IFALIGN_PAIR: 2865 /* 2866 * Since size > 8, both halves are misaligned, 2867 * and so neither is atomic. 2868 */ 2869 case MO_ATOM_IFALIGN: 2870 case MO_ATOM_WITHIN16: 2871 case MO_ATOM_NONE: 2872 stq_le_p(p->haddr, int128_getlo(val_le)); 2873 return store_bytes_leN(p->haddr + 8, p->size - 8, 2874 int128_gethi(val_le)); 2875 2876 default: 2877 g_assert_not_reached(); 2878 } 2879 } 2880 2881 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val, 2882 int mmu_idx, uintptr_t ra) 2883 { 2884 if (unlikely(p->flags & TLB_MMIO)) { 2885 io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB); 2886 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2887 /* nothing */ 2888 } else { 2889 *(uint8_t *)p->haddr = val; 2890 } 2891 } 2892 2893 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val, 2894 int mmu_idx, MemOp memop, uintptr_t ra) 2895 { 2896 if (unlikely(p->flags & TLB_MMIO)) { 2897 if ((memop & MO_BSWAP) != MO_LE) { 2898 val = bswap16(val); 2899 } 2900 QEMU_IOTHREAD_LOCK_GUARD(); 2901 do_st_mmio_leN(env, p->full, val, p->addr, 2, mmu_idx, ra); 2902 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2903 /* nothing */ 2904 } else { 2905 /* Swap to host endian if necessary, then store. */ 2906 if (memop & MO_BSWAP) { 2907 val = bswap16(val); 2908 } 2909 store_atom_2(env, ra, p->haddr, memop, val); 2910 } 2911 } 2912 2913 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val, 2914 int mmu_idx, MemOp memop, uintptr_t ra) 2915 { 2916 if (unlikely(p->flags & TLB_MMIO)) { 2917 if ((memop & MO_BSWAP) != MO_LE) { 2918 val = bswap32(val); 2919 } 2920 QEMU_IOTHREAD_LOCK_GUARD(); 2921 do_st_mmio_leN(env, p->full, val, p->addr, 4, mmu_idx, ra); 2922 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2923 /* nothing */ 2924 } else { 2925 /* Swap to host endian if necessary, then store. */ 2926 if (memop & MO_BSWAP) { 2927 val = bswap32(val); 2928 } 2929 store_atom_4(env, ra, p->haddr, memop, val); 2930 } 2931 } 2932 2933 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val, 2934 int mmu_idx, MemOp memop, uintptr_t ra) 2935 { 2936 if (unlikely(p->flags & TLB_MMIO)) { 2937 if ((memop & MO_BSWAP) != MO_LE) { 2938 val = bswap64(val); 2939 } 2940 QEMU_IOTHREAD_LOCK_GUARD(); 2941 do_st_mmio_leN(env, p->full, val, p->addr, 8, mmu_idx, ra); 2942 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2943 /* nothing */ 2944 } else { 2945 /* Swap to host endian if necessary, then store. */ 2946 if (memop & MO_BSWAP) { 2947 val = bswap64(val); 2948 } 2949 store_atom_8(env, ra, p->haddr, memop, val); 2950 } 2951 } 2952 2953 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 2954 MemOpIdx oi, uintptr_t ra) 2955 { 2956 MMULookupLocals l; 2957 bool crosspage; 2958 2959 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8); 2960 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2961 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2962 tcg_debug_assert(!crosspage); 2963 2964 do_st_1(env, &l.page[0], val, l.mmu_idx, ra); 2965 } 2966 2967 static void do_st2_mmu(CPUArchState *env, vaddr addr, uint16_t val, 2968 MemOpIdx oi, uintptr_t ra) 2969 { 2970 MMULookupLocals l; 2971 bool crosspage; 2972 uint8_t a, b; 2973 2974 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2975 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2976 if (likely(!crosspage)) { 2977 do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2978 return; 2979 } 2980 2981 if ((l.memop & MO_BSWAP) == MO_LE) { 2982 a = val, b = val >> 8; 2983 } else { 2984 b = val, a = val >> 8; 2985 } 2986 do_st_1(env, &l.page[0], a, l.mmu_idx, ra); 2987 do_st_1(env, &l.page[1], b, l.mmu_idx, ra); 2988 } 2989 2990 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 2991 MemOpIdx oi, uintptr_t retaddr) 2992 { 2993 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2994 do_st2_mmu(env, addr, val, oi, retaddr); 2995 } 2996 2997 static void do_st4_mmu(CPUArchState *env, vaddr addr, uint32_t val, 2998 MemOpIdx oi, uintptr_t ra) 2999 { 3000 MMULookupLocals l; 3001 bool crosspage; 3002 3003 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 3004 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 3005 if (likely(!crosspage)) { 3006 do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3007 return; 3008 } 3009 3010 /* Swap to little endian for simplicity, then store by bytes. */ 3011 if ((l.memop & MO_BSWAP) != MO_LE) { 3012 val = bswap32(val); 3013 } 3014 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3015 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 3016 } 3017 3018 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 3019 MemOpIdx oi, uintptr_t retaddr) 3020 { 3021 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 3022 do_st4_mmu(env, addr, val, oi, retaddr); 3023 } 3024 3025 static void do_st8_mmu(CPUArchState *env, vaddr addr, uint64_t val, 3026 MemOpIdx oi, uintptr_t ra) 3027 { 3028 MMULookupLocals l; 3029 bool crosspage; 3030 3031 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 3032 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 3033 if (likely(!crosspage)) { 3034 do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3035 return; 3036 } 3037 3038 /* Swap to little endian for simplicity, then store by bytes. */ 3039 if ((l.memop & MO_BSWAP) != MO_LE) { 3040 val = bswap64(val); 3041 } 3042 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3043 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 3044 } 3045 3046 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val, 3047 MemOpIdx oi, uintptr_t retaddr) 3048 { 3049 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 3050 do_st8_mmu(env, addr, val, oi, retaddr); 3051 } 3052 3053 static void do_st16_mmu(CPUArchState *env, vaddr addr, Int128 val, 3054 MemOpIdx oi, uintptr_t ra) 3055 { 3056 MMULookupLocals l; 3057 bool crosspage; 3058 uint64_t a, b; 3059 int first; 3060 3061 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 3062 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 3063 if (likely(!crosspage)) { 3064 if (unlikely(l.page[0].flags & TLB_MMIO)) { 3065 if ((l.memop & MO_BSWAP) != MO_LE) { 3066 val = bswap128(val); 3067 } 3068 a = int128_getlo(val); 3069 b = int128_gethi(val); 3070 QEMU_IOTHREAD_LOCK_GUARD(); 3071 do_st_mmio_leN(env, l.page[0].full, a, addr, 8, l.mmu_idx, ra); 3072 do_st_mmio_leN(env, l.page[0].full, b, addr + 8, 8, l.mmu_idx, ra); 3073 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) { 3074 /* nothing */ 3075 } else { 3076 /* Swap to host endian if necessary, then store. */ 3077 if (l.memop & MO_BSWAP) { 3078 val = bswap128(val); 3079 } 3080 store_atom_16(env, ra, l.page[0].haddr, l.memop, val); 3081 } 3082 return; 3083 } 3084 3085 first = l.page[0].size; 3086 if (first == 8) { 3087 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64; 3088 3089 if (l.memop & MO_BSWAP) { 3090 val = bswap128(val); 3091 } 3092 if (HOST_BIG_ENDIAN) { 3093 b = int128_getlo(val), a = int128_gethi(val); 3094 } else { 3095 a = int128_getlo(val), b = int128_gethi(val); 3096 } 3097 do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra); 3098 do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra); 3099 return; 3100 } 3101 3102 if ((l.memop & MO_BSWAP) != MO_LE) { 3103 val = bswap128(val); 3104 } 3105 if (first < 8) { 3106 do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra); 3107 val = int128_urshift(val, first * 8); 3108 do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 3109 } else { 3110 b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3111 do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra); 3112 } 3113 } 3114 3115 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val, 3116 MemOpIdx oi, uintptr_t retaddr) 3117 { 3118 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 3119 do_st16_mmu(env, addr, val, oi, retaddr); 3120 } 3121 3122 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi) 3123 { 3124 helper_st16_mmu(env, addr, val, oi, GETPC()); 3125 } 3126 3127 /* 3128 * Store Helpers for cpu_ldst.h 3129 */ 3130 3131 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) 3132 { 3133 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 3134 } 3135 3136 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 3137 MemOpIdx oi, uintptr_t retaddr) 3138 { 3139 helper_stb_mmu(env, addr, val, oi, retaddr); 3140 plugin_store_cb(env, addr, oi); 3141 } 3142 3143 void cpu_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 3144 MemOpIdx oi, uintptr_t retaddr) 3145 { 3146 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 3147 do_st2_mmu(env, addr, val, oi, retaddr); 3148 plugin_store_cb(env, addr, oi); 3149 } 3150 3151 void cpu_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 3152 MemOpIdx oi, uintptr_t retaddr) 3153 { 3154 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 3155 do_st4_mmu(env, addr, val, oi, retaddr); 3156 plugin_store_cb(env, addr, oi); 3157 } 3158 3159 void cpu_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 3160 MemOpIdx oi, uintptr_t retaddr) 3161 { 3162 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 3163 do_st8_mmu(env, addr, val, oi, retaddr); 3164 plugin_store_cb(env, addr, oi); 3165 } 3166 3167 void cpu_st16_mmu(CPUArchState *env, target_ulong addr, Int128 val, 3168 MemOpIdx oi, uintptr_t retaddr) 3169 { 3170 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 3171 do_st16_mmu(env, addr, val, oi, retaddr); 3172 plugin_store_cb(env, addr, oi); 3173 } 3174 3175 #include "ldst_common.c.inc" 3176 3177 /* 3178 * First set of functions passes in OI and RETADDR. 3179 * This makes them callable from other helpers. 3180 */ 3181 3182 #define ATOMIC_NAME(X) \ 3183 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 3184 3185 #define ATOMIC_MMU_CLEANUP 3186 3187 #include "atomic_common.c.inc" 3188 3189 #define DATA_SIZE 1 3190 #include "atomic_template.h" 3191 3192 #define DATA_SIZE 2 3193 #include "atomic_template.h" 3194 3195 #define DATA_SIZE 4 3196 #include "atomic_template.h" 3197 3198 #ifdef CONFIG_ATOMIC64 3199 #define DATA_SIZE 8 3200 #include "atomic_template.h" 3201 #endif 3202 3203 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128 3204 #define DATA_SIZE 16 3205 #include "atomic_template.h" 3206 #endif 3207 3208 /* Code access functions. */ 3209 3210 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 3211 { 3212 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); 3213 return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3214 } 3215 3216 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 3217 { 3218 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); 3219 return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3220 } 3221 3222 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 3223 { 3224 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); 3225 return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3226 } 3227 3228 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 3229 { 3230 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true)); 3231 return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3232 } 3233 3234 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, 3235 MemOpIdx oi, uintptr_t retaddr) 3236 { 3237 return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3238 } 3239 3240 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, 3241 MemOpIdx oi, uintptr_t retaddr) 3242 { 3243 return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3244 } 3245 3246 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, 3247 MemOpIdx oi, uintptr_t retaddr) 3248 { 3249 return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3250 } 3251 3252 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, 3253 MemOpIdx oi, uintptr_t retaddr) 3254 { 3255 return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3256 } 3257