1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/cputlb.h" 27 #include "exec/memory-internal.h" 28 #include "exec/ram_addr.h" 29 #include "tcg/tcg.h" 30 #include "qemu/error-report.h" 31 #include "exec/log.h" 32 #include "exec/helper-proto.h" 33 #include "qemu/atomic.h" 34 #include "qemu/atomic128.h" 35 #include "exec/translate-all.h" 36 #include "trace/trace-root.h" 37 #include "tb-hash.h" 38 #include "internal.h" 39 #ifdef CONFIG_PLUGIN 40 #include "qemu/plugin-memory.h" 41 #endif 42 #include "tcg/tcg-ldst.h" 43 44 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 45 /* #define DEBUG_TLB */ 46 /* #define DEBUG_TLB_LOG */ 47 48 #ifdef DEBUG_TLB 49 # define DEBUG_TLB_GATE 1 50 # ifdef DEBUG_TLB_LOG 51 # define DEBUG_TLB_LOG_GATE 1 52 # else 53 # define DEBUG_TLB_LOG_GATE 0 54 # endif 55 #else 56 # define DEBUG_TLB_GATE 0 57 # define DEBUG_TLB_LOG_GATE 0 58 #endif 59 60 #define tlb_debug(fmt, ...) do { \ 61 if (DEBUG_TLB_LOG_GATE) { \ 62 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 63 ## __VA_ARGS__); \ 64 } else if (DEBUG_TLB_GATE) { \ 65 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 66 } \ 67 } while (0) 68 69 #define assert_cpu_is_self(cpu) do { \ 70 if (DEBUG_TLB_GATE) { \ 71 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 72 } \ 73 } while (0) 74 75 /* run_on_cpu_data.target_ptr should always be big enough for a 76 * target_ulong even on 32 bit builds */ 77 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); 78 79 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 80 */ 81 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 82 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 83 84 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 85 { 86 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 87 } 88 89 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 90 { 91 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 92 } 93 94 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 95 size_t max_entries) 96 { 97 desc->window_begin_ns = ns; 98 desc->window_max_entries = max_entries; 99 } 100 101 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 102 { 103 unsigned int i, i0 = tb_jmp_cache_hash_page(page_addr); 104 105 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 106 qatomic_set(&cpu->tb_jmp_cache[i0 + i], NULL); 107 } 108 } 109 110 static void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr) 111 { 112 /* Discard jump cache entries for any tb which might potentially 113 overlap the flushed page. */ 114 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 115 tb_jmp_cache_clear_page(cpu, addr); 116 } 117 118 /** 119 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 120 * @desc: The CPUTLBDesc portion of the TLB 121 * @fast: The CPUTLBDescFast portion of the same TLB 122 * 123 * Called with tlb_lock_held. 124 * 125 * We have two main constraints when resizing a TLB: (1) we only resize it 126 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 127 * the array or unnecessarily flushing it), which means we do not control how 128 * frequently the resizing can occur; (2) we don't have access to the guest's 129 * future scheduling decisions, and therefore have to decide the magnitude of 130 * the resize based on past observations. 131 * 132 * In general, a memory-hungry process can benefit greatly from an appropriately 133 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 134 * we just have to make the TLB as large as possible; while an oversized TLB 135 * results in minimal TLB miss rates, it also takes longer to be flushed 136 * (flushes can be _very_ frequent), and the reduced locality can also hurt 137 * performance. 138 * 139 * To achieve near-optimal performance for all kinds of workloads, we: 140 * 141 * 1. Aggressively increase the size of the TLB when the use rate of the 142 * TLB being flushed is high, since it is likely that in the near future this 143 * memory-hungry process will execute again, and its memory hungriness will 144 * probably be similar. 145 * 146 * 2. Slowly reduce the size of the TLB as the use rate declines over a 147 * reasonably large time window. The rationale is that if in such a time window 148 * we have not observed a high TLB use rate, it is likely that we won't observe 149 * it in the near future. In that case, once a time window expires we downsize 150 * the TLB to match the maximum use rate observed in the window. 151 * 152 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 153 * since in that range performance is likely near-optimal. Recall that the TLB 154 * is direct mapped, so we want the use rate to be low (or at least not too 155 * high), since otherwise we are likely to have a significant amount of 156 * conflict misses. 157 */ 158 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 159 int64_t now) 160 { 161 size_t old_size = tlb_n_entries(fast); 162 size_t rate; 163 size_t new_size = old_size; 164 int64_t window_len_ms = 100; 165 int64_t window_len_ns = window_len_ms * 1000 * 1000; 166 bool window_expired = now > desc->window_begin_ns + window_len_ns; 167 168 if (desc->n_used_entries > desc->window_max_entries) { 169 desc->window_max_entries = desc->n_used_entries; 170 } 171 rate = desc->window_max_entries * 100 / old_size; 172 173 if (rate > 70) { 174 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 175 } else if (rate < 30 && window_expired) { 176 size_t ceil = pow2ceil(desc->window_max_entries); 177 size_t expected_rate = desc->window_max_entries * 100 / ceil; 178 179 /* 180 * Avoid undersizing when the max number of entries seen is just below 181 * a pow2. For instance, if max_entries == 1025, the expected use rate 182 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 183 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 184 * later. Thus, make sure that the expected use rate remains below 70%. 185 * (and since we double the size, that means the lowest rate we'd 186 * expect to get is 35%, which is still in the 30-70% range where 187 * we consider that the size is appropriate.) 188 */ 189 if (expected_rate > 70) { 190 ceil *= 2; 191 } 192 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 193 } 194 195 if (new_size == old_size) { 196 if (window_expired) { 197 tlb_window_reset(desc, now, desc->n_used_entries); 198 } 199 return; 200 } 201 202 g_free(fast->table); 203 g_free(desc->fulltlb); 204 205 tlb_window_reset(desc, now, 0); 206 /* desc->n_used_entries is cleared by the caller */ 207 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 208 fast->table = g_try_new(CPUTLBEntry, new_size); 209 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 210 211 /* 212 * If the allocations fail, try smaller sizes. We just freed some 213 * memory, so going back to half of new_size has a good chance of working. 214 * Increased memory pressure elsewhere in the system might cause the 215 * allocations to fail though, so we progressively reduce the allocation 216 * size, aborting if we cannot even allocate the smallest TLB we support. 217 */ 218 while (fast->table == NULL || desc->fulltlb == NULL) { 219 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 220 error_report("%s: %s", __func__, strerror(errno)); 221 abort(); 222 } 223 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 224 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 225 226 g_free(fast->table); 227 g_free(desc->fulltlb); 228 fast->table = g_try_new(CPUTLBEntry, new_size); 229 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 230 } 231 } 232 233 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 234 { 235 desc->n_used_entries = 0; 236 desc->large_page_addr = -1; 237 desc->large_page_mask = -1; 238 desc->vindex = 0; 239 memset(fast->table, -1, sizeof_tlb(fast)); 240 memset(desc->vtable, -1, sizeof(desc->vtable)); 241 } 242 243 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx, 244 int64_t now) 245 { 246 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; 247 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx]; 248 249 tlb_mmu_resize_locked(desc, fast, now); 250 tlb_mmu_flush_locked(desc, fast); 251 } 252 253 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 254 { 255 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 256 257 tlb_window_reset(desc, now, 0); 258 desc->n_used_entries = 0; 259 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 260 fast->table = g_new(CPUTLBEntry, n_entries); 261 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 262 tlb_mmu_flush_locked(desc, fast); 263 } 264 265 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 266 { 267 env_tlb(env)->d[mmu_idx].n_used_entries++; 268 } 269 270 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 271 { 272 env_tlb(env)->d[mmu_idx].n_used_entries--; 273 } 274 275 void tlb_init(CPUState *cpu) 276 { 277 CPUArchState *env = cpu->env_ptr; 278 int64_t now = get_clock_realtime(); 279 int i; 280 281 qemu_spin_init(&env_tlb(env)->c.lock); 282 283 /* All tlbs are initialized flushed. */ 284 env_tlb(env)->c.dirty = 0; 285 286 for (i = 0; i < NB_MMU_MODES; i++) { 287 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now); 288 } 289 } 290 291 void tlb_destroy(CPUState *cpu) 292 { 293 CPUArchState *env = cpu->env_ptr; 294 int i; 295 296 qemu_spin_destroy(&env_tlb(env)->c.lock); 297 for (i = 0; i < NB_MMU_MODES; i++) { 298 CPUTLBDesc *desc = &env_tlb(env)->d[i]; 299 CPUTLBDescFast *fast = &env_tlb(env)->f[i]; 300 301 g_free(fast->table); 302 g_free(desc->fulltlb); 303 } 304 } 305 306 /* flush_all_helper: run fn across all cpus 307 * 308 * If the wait flag is set then the src cpu's helper will be queued as 309 * "safe" work and the loop exited creating a synchronisation point 310 * where all queued work will be finished before execution starts 311 * again. 312 */ 313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 314 run_on_cpu_data d) 315 { 316 CPUState *cpu; 317 318 CPU_FOREACH(cpu) { 319 if (cpu != src) { 320 async_run_on_cpu(cpu, fn, d); 321 } 322 } 323 } 324 325 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 326 { 327 CPUState *cpu; 328 size_t full = 0, part = 0, elide = 0; 329 330 CPU_FOREACH(cpu) { 331 CPUArchState *env = cpu->env_ptr; 332 333 full += qatomic_read(&env_tlb(env)->c.full_flush_count); 334 part += qatomic_read(&env_tlb(env)->c.part_flush_count); 335 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count); 336 } 337 *pfull = full; 338 *ppart = part; 339 *pelide = elide; 340 } 341 342 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 343 { 344 CPUArchState *env = cpu->env_ptr; 345 uint16_t asked = data.host_int; 346 uint16_t all_dirty, work, to_clean; 347 int64_t now = get_clock_realtime(); 348 349 assert_cpu_is_self(cpu); 350 351 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 352 353 qemu_spin_lock(&env_tlb(env)->c.lock); 354 355 all_dirty = env_tlb(env)->c.dirty; 356 to_clean = asked & all_dirty; 357 all_dirty &= ~to_clean; 358 env_tlb(env)->c.dirty = all_dirty; 359 360 for (work = to_clean; work != 0; work &= work - 1) { 361 int mmu_idx = ctz32(work); 362 tlb_flush_one_mmuidx_locked(env, mmu_idx, now); 363 } 364 365 qemu_spin_unlock(&env_tlb(env)->c.lock); 366 367 cpu_tb_jmp_cache_clear(cpu); 368 369 if (to_clean == ALL_MMUIDX_BITS) { 370 qatomic_set(&env_tlb(env)->c.full_flush_count, 371 env_tlb(env)->c.full_flush_count + 1); 372 } else { 373 qatomic_set(&env_tlb(env)->c.part_flush_count, 374 env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); 375 if (to_clean != asked) { 376 qatomic_set(&env_tlb(env)->c.elide_flush_count, 377 env_tlb(env)->c.elide_flush_count + 378 ctpop16(asked & ~to_clean)); 379 } 380 } 381 } 382 383 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 384 { 385 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 386 387 if (cpu->created && !qemu_cpu_is_self(cpu)) { 388 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 389 RUN_ON_CPU_HOST_INT(idxmap)); 390 } else { 391 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 392 } 393 } 394 395 void tlb_flush(CPUState *cpu) 396 { 397 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 398 } 399 400 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 401 { 402 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 403 404 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 405 406 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 407 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 408 } 409 410 void tlb_flush_all_cpus(CPUState *src_cpu) 411 { 412 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 413 } 414 415 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 416 { 417 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 418 419 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 420 421 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 422 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 423 } 424 425 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 426 { 427 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 428 } 429 430 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 431 target_ulong page, target_ulong mask) 432 { 433 page &= mask; 434 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 435 436 return (page == (tlb_entry->addr_read & mask) || 437 page == (tlb_addr_write(tlb_entry) & mask) || 438 page == (tlb_entry->addr_code & mask)); 439 } 440 441 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, 442 target_ulong page) 443 { 444 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 445 } 446 447 /** 448 * tlb_entry_is_empty - return true if the entry is not in use 449 * @te: pointer to CPUTLBEntry 450 */ 451 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 452 { 453 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 454 } 455 456 /* Called with tlb_c.lock held */ 457 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 458 target_ulong page, 459 target_ulong mask) 460 { 461 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 462 memset(tlb_entry, -1, sizeof(*tlb_entry)); 463 return true; 464 } 465 return false; 466 } 467 468 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, 469 target_ulong page) 470 { 471 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 472 } 473 474 /* Called with tlb_c.lock held */ 475 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx, 476 target_ulong page, 477 target_ulong mask) 478 { 479 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; 480 int k; 481 482 assert_cpu_is_self(env_cpu(env)); 483 for (k = 0; k < CPU_VTLB_SIZE; k++) { 484 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 485 tlb_n_used_entries_dec(env, mmu_idx); 486 } 487 } 488 } 489 490 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 491 target_ulong page) 492 { 493 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1); 494 } 495 496 static void tlb_flush_page_locked(CPUArchState *env, int midx, 497 target_ulong page) 498 { 499 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr; 500 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask; 501 502 /* Check if we need to flush due to large pages. */ 503 if ((page & lp_mask) == lp_addr) { 504 tlb_debug("forcing full flush midx %d (" 505 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 506 midx, lp_addr, lp_mask); 507 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 508 } else { 509 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 510 tlb_n_used_entries_dec(env, midx); 511 } 512 tlb_flush_vtlb_page_locked(env, midx, page); 513 } 514 } 515 516 /** 517 * tlb_flush_page_by_mmuidx_async_0: 518 * @cpu: cpu on which to flush 519 * @addr: page of virtual address to flush 520 * @idxmap: set of mmu_idx to flush 521 * 522 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 523 * at @addr from the tlbs indicated by @idxmap from @cpu. 524 */ 525 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 526 target_ulong addr, 527 uint16_t idxmap) 528 { 529 CPUArchState *env = cpu->env_ptr; 530 int mmu_idx; 531 532 assert_cpu_is_self(cpu); 533 534 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap); 535 536 qemu_spin_lock(&env_tlb(env)->c.lock); 537 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 538 if ((idxmap >> mmu_idx) & 1) { 539 tlb_flush_page_locked(env, mmu_idx, addr); 540 } 541 } 542 qemu_spin_unlock(&env_tlb(env)->c.lock); 543 544 tb_flush_jmp_cache(cpu, addr); 545 } 546 547 /** 548 * tlb_flush_page_by_mmuidx_async_1: 549 * @cpu: cpu on which to flush 550 * @data: encoded addr + idxmap 551 * 552 * Helper for tlb_flush_page_by_mmuidx and friends, called through 553 * async_run_on_cpu. The idxmap parameter is encoded in the page 554 * offset of the target_ptr field. This limits the set of mmu_idx 555 * that can be passed via this method. 556 */ 557 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 558 run_on_cpu_data data) 559 { 560 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr; 561 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK; 562 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 563 564 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 565 } 566 567 typedef struct { 568 target_ulong addr; 569 uint16_t idxmap; 570 } TLBFlushPageByMMUIdxData; 571 572 /** 573 * tlb_flush_page_by_mmuidx_async_2: 574 * @cpu: cpu on which to flush 575 * @data: allocated addr + idxmap 576 * 577 * Helper for tlb_flush_page_by_mmuidx and friends, called through 578 * async_run_on_cpu. The addr+idxmap parameters are stored in a 579 * TLBFlushPageByMMUIdxData structure that has been allocated 580 * specifically for this helper. Free the structure when done. 581 */ 582 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 583 run_on_cpu_data data) 584 { 585 TLBFlushPageByMMUIdxData *d = data.host_ptr; 586 587 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 588 g_free(d); 589 } 590 591 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) 592 { 593 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); 594 595 /* This should already be page aligned */ 596 addr &= TARGET_PAGE_MASK; 597 598 if (qemu_cpu_is_self(cpu)) { 599 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 600 } else if (idxmap < TARGET_PAGE_SIZE) { 601 /* 602 * Most targets have only a few mmu_idx. In the case where 603 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 604 * allocating memory for this operation. 605 */ 606 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 607 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 608 } else { 609 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 610 611 /* Otherwise allocate a structure, freed by the worker. */ 612 d->addr = addr; 613 d->idxmap = idxmap; 614 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 615 RUN_ON_CPU_HOST_PTR(d)); 616 } 617 } 618 619 void tlb_flush_page(CPUState *cpu, target_ulong addr) 620 { 621 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 622 } 623 624 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, 625 uint16_t idxmap) 626 { 627 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 628 629 /* This should already be page aligned */ 630 addr &= TARGET_PAGE_MASK; 631 632 /* 633 * Allocate memory to hold addr+idxmap only when needed. 634 * See tlb_flush_page_by_mmuidx for details. 635 */ 636 if (idxmap < TARGET_PAGE_SIZE) { 637 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 638 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 639 } else { 640 CPUState *dst_cpu; 641 642 /* Allocate a separate data block for each destination cpu. */ 643 CPU_FOREACH(dst_cpu) { 644 if (dst_cpu != src_cpu) { 645 TLBFlushPageByMMUIdxData *d 646 = g_new(TLBFlushPageByMMUIdxData, 1); 647 648 d->addr = addr; 649 d->idxmap = idxmap; 650 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 651 RUN_ON_CPU_HOST_PTR(d)); 652 } 653 } 654 } 655 656 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 657 } 658 659 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 660 { 661 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 662 } 663 664 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 665 target_ulong addr, 666 uint16_t idxmap) 667 { 668 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 669 670 /* This should already be page aligned */ 671 addr &= TARGET_PAGE_MASK; 672 673 /* 674 * Allocate memory to hold addr+idxmap only when needed. 675 * See tlb_flush_page_by_mmuidx for details. 676 */ 677 if (idxmap < TARGET_PAGE_SIZE) { 678 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 679 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 680 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 681 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 682 } else { 683 CPUState *dst_cpu; 684 TLBFlushPageByMMUIdxData *d; 685 686 /* Allocate a separate data block for each destination cpu. */ 687 CPU_FOREACH(dst_cpu) { 688 if (dst_cpu != src_cpu) { 689 d = g_new(TLBFlushPageByMMUIdxData, 1); 690 d->addr = addr; 691 d->idxmap = idxmap; 692 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 693 RUN_ON_CPU_HOST_PTR(d)); 694 } 695 } 696 697 d = g_new(TLBFlushPageByMMUIdxData, 1); 698 d->addr = addr; 699 d->idxmap = idxmap; 700 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 701 RUN_ON_CPU_HOST_PTR(d)); 702 } 703 } 704 705 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr) 706 { 707 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 708 } 709 710 static void tlb_flush_range_locked(CPUArchState *env, int midx, 711 target_ulong addr, target_ulong len, 712 unsigned bits) 713 { 714 CPUTLBDesc *d = &env_tlb(env)->d[midx]; 715 CPUTLBDescFast *f = &env_tlb(env)->f[midx]; 716 target_ulong mask = MAKE_64BIT_MASK(0, bits); 717 718 /* 719 * If @bits is smaller than the tlb size, there may be multiple entries 720 * within the TLB; otherwise all addresses that match under @mask hit 721 * the same TLB entry. 722 * TODO: Perhaps allow bits to be a few bits less than the size. 723 * For now, just flush the entire TLB. 724 * 725 * If @len is larger than the tlb size, then it will take longer to 726 * test all of the entries in the TLB than it will to flush it all. 727 */ 728 if (mask < f->mask || len > f->mask) { 729 tlb_debug("forcing full flush midx %d (" 730 TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n", 731 midx, addr, mask, len); 732 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 733 return; 734 } 735 736 /* 737 * Check if we need to flush due to large pages. 738 * Because large_page_mask contains all 1's from the msb, 739 * we only need to test the end of the range. 740 */ 741 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 742 tlb_debug("forcing full flush midx %d (" 743 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 744 midx, d->large_page_addr, d->large_page_mask); 745 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 746 return; 747 } 748 749 for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) { 750 target_ulong page = addr + i; 751 CPUTLBEntry *entry = tlb_entry(env, midx, page); 752 753 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 754 tlb_n_used_entries_dec(env, midx); 755 } 756 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask); 757 } 758 } 759 760 typedef struct { 761 target_ulong addr; 762 target_ulong len; 763 uint16_t idxmap; 764 uint16_t bits; 765 } TLBFlushRangeData; 766 767 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 768 TLBFlushRangeData d) 769 { 770 CPUArchState *env = cpu->env_ptr; 771 int mmu_idx; 772 773 assert_cpu_is_self(cpu); 774 775 tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n", 776 d.addr, d.bits, d.len, d.idxmap); 777 778 qemu_spin_lock(&env_tlb(env)->c.lock); 779 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 780 if ((d.idxmap >> mmu_idx) & 1) { 781 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits); 782 } 783 } 784 qemu_spin_unlock(&env_tlb(env)->c.lock); 785 786 /* 787 * If the length is larger than the jump cache size, then it will take 788 * longer to clear each entry individually than it will to clear it all. 789 */ 790 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 791 cpu_tb_jmp_cache_clear(cpu); 792 return; 793 } 794 795 for (target_ulong i = 0; i < d.len; i += TARGET_PAGE_SIZE) { 796 tb_flush_jmp_cache(cpu, d.addr + i); 797 } 798 } 799 800 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 801 run_on_cpu_data data) 802 { 803 TLBFlushRangeData *d = data.host_ptr; 804 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 805 g_free(d); 806 } 807 808 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr, 809 target_ulong len, uint16_t idxmap, 810 unsigned bits) 811 { 812 TLBFlushRangeData d; 813 814 /* 815 * If all bits are significant, and len is small, 816 * this devolves to tlb_flush_page. 817 */ 818 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 819 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 820 return; 821 } 822 /* If no page bits are significant, this devolves to tlb_flush. */ 823 if (bits < TARGET_PAGE_BITS) { 824 tlb_flush_by_mmuidx(cpu, idxmap); 825 return; 826 } 827 828 /* This should already be page aligned */ 829 d.addr = addr & TARGET_PAGE_MASK; 830 d.len = len; 831 d.idxmap = idxmap; 832 d.bits = bits; 833 834 if (qemu_cpu_is_self(cpu)) { 835 tlb_flush_range_by_mmuidx_async_0(cpu, d); 836 } else { 837 /* Otherwise allocate a structure, freed by the worker. */ 838 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 839 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 840 RUN_ON_CPU_HOST_PTR(p)); 841 } 842 } 843 844 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr, 845 uint16_t idxmap, unsigned bits) 846 { 847 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 848 } 849 850 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 851 target_ulong addr, target_ulong len, 852 uint16_t idxmap, unsigned bits) 853 { 854 TLBFlushRangeData d; 855 CPUState *dst_cpu; 856 857 /* 858 * If all bits are significant, and len is small, 859 * this devolves to tlb_flush_page. 860 */ 861 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 862 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 863 return; 864 } 865 /* If no page bits are significant, this devolves to tlb_flush. */ 866 if (bits < TARGET_PAGE_BITS) { 867 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 868 return; 869 } 870 871 /* This should already be page aligned */ 872 d.addr = addr & TARGET_PAGE_MASK; 873 d.len = len; 874 d.idxmap = idxmap; 875 d.bits = bits; 876 877 /* Allocate a separate data block for each destination cpu. */ 878 CPU_FOREACH(dst_cpu) { 879 if (dst_cpu != src_cpu) { 880 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 881 async_run_on_cpu(dst_cpu, 882 tlb_flush_range_by_mmuidx_async_1, 883 RUN_ON_CPU_HOST_PTR(p)); 884 } 885 } 886 887 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 888 } 889 890 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 891 target_ulong addr, 892 uint16_t idxmap, unsigned bits) 893 { 894 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 895 idxmap, bits); 896 } 897 898 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 899 target_ulong addr, 900 target_ulong len, 901 uint16_t idxmap, 902 unsigned bits) 903 { 904 TLBFlushRangeData d, *p; 905 CPUState *dst_cpu; 906 907 /* 908 * If all bits are significant, and len is small, 909 * this devolves to tlb_flush_page. 910 */ 911 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 912 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 913 return; 914 } 915 /* If no page bits are significant, this devolves to tlb_flush. */ 916 if (bits < TARGET_PAGE_BITS) { 917 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 918 return; 919 } 920 921 /* This should already be page aligned */ 922 d.addr = addr & TARGET_PAGE_MASK; 923 d.len = len; 924 d.idxmap = idxmap; 925 d.bits = bits; 926 927 /* Allocate a separate data block for each destination cpu. */ 928 CPU_FOREACH(dst_cpu) { 929 if (dst_cpu != src_cpu) { 930 p = g_memdup(&d, sizeof(d)); 931 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 932 RUN_ON_CPU_HOST_PTR(p)); 933 } 934 } 935 936 p = g_memdup(&d, sizeof(d)); 937 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 938 RUN_ON_CPU_HOST_PTR(p)); 939 } 940 941 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 942 target_ulong addr, 943 uint16_t idxmap, 944 unsigned bits) 945 { 946 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 947 idxmap, bits); 948 } 949 950 /* update the TLBs so that writes to code in the virtual page 'addr' 951 can be detected */ 952 void tlb_protect_code(ram_addr_t ram_addr) 953 { 954 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE, 955 DIRTY_MEMORY_CODE); 956 } 957 958 /* update the TLB so that writes in physical page 'phys_addr' are no longer 959 tested for self modifying code */ 960 void tlb_unprotect_code(ram_addr_t ram_addr) 961 { 962 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 963 } 964 965 966 /* 967 * Dirty write flag handling 968 * 969 * When the TCG code writes to a location it looks up the address in 970 * the TLB and uses that data to compute the final address. If any of 971 * the lower bits of the address are set then the slow path is forced. 972 * There are a number of reasons to do this but for normal RAM the 973 * most usual is detecting writes to code regions which may invalidate 974 * generated code. 975 * 976 * Other vCPUs might be reading their TLBs during guest execution, so we update 977 * te->addr_write with qatomic_set. We don't need to worry about this for 978 * oversized guests as MTTCG is disabled for them. 979 * 980 * Called with tlb_c.lock held. 981 */ 982 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 983 uintptr_t start, uintptr_t length) 984 { 985 uintptr_t addr = tlb_entry->addr_write; 986 987 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 988 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 989 addr &= TARGET_PAGE_MASK; 990 addr += tlb_entry->addend; 991 if ((addr - start) < length) { 992 #if TCG_OVERSIZED_GUEST 993 tlb_entry->addr_write |= TLB_NOTDIRTY; 994 #else 995 qatomic_set(&tlb_entry->addr_write, 996 tlb_entry->addr_write | TLB_NOTDIRTY); 997 #endif 998 } 999 } 1000 } 1001 1002 /* 1003 * Called with tlb_c.lock held. 1004 * Called only from the vCPU context, i.e. the TLB's owner thread. 1005 */ 1006 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 1007 { 1008 *d = *s; 1009 } 1010 1011 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1012 * the target vCPU). 1013 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1014 * thing actually updated is the target TLB entry ->addr_write flags. 1015 */ 1016 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1017 { 1018 CPUArchState *env; 1019 1020 int mmu_idx; 1021 1022 env = cpu->env_ptr; 1023 qemu_spin_lock(&env_tlb(env)->c.lock); 1024 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1025 unsigned int i; 1026 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]); 1027 1028 for (i = 0; i < n; i++) { 1029 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], 1030 start1, length); 1031 } 1032 1033 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1034 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], 1035 start1, length); 1036 } 1037 } 1038 qemu_spin_unlock(&env_tlb(env)->c.lock); 1039 } 1040 1041 /* Called with tlb_c.lock held */ 1042 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1043 target_ulong vaddr) 1044 { 1045 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { 1046 tlb_entry->addr_write = vaddr; 1047 } 1048 } 1049 1050 /* update the TLB corresponding to virtual page vaddr 1051 so that it is no longer dirty */ 1052 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) 1053 { 1054 CPUArchState *env = cpu->env_ptr; 1055 int mmu_idx; 1056 1057 assert_cpu_is_self(cpu); 1058 1059 vaddr &= TARGET_PAGE_MASK; 1060 qemu_spin_lock(&env_tlb(env)->c.lock); 1061 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1062 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr); 1063 } 1064 1065 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1066 int k; 1067 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1068 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr); 1069 } 1070 } 1071 qemu_spin_unlock(&env_tlb(env)->c.lock); 1072 } 1073 1074 /* Our TLB does not support large pages, so remember the area covered by 1075 large pages and trigger a full TLB flush if these are invalidated. */ 1076 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 1077 target_ulong vaddr, target_ulong size) 1078 { 1079 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; 1080 target_ulong lp_mask = ~(size - 1); 1081 1082 if (lp_addr == (target_ulong)-1) { 1083 /* No previous large page. */ 1084 lp_addr = vaddr; 1085 } else { 1086 /* Extend the existing region to include the new page. 1087 This is a compromise between unnecessary flushes and 1088 the cost of maintaining a full variable size TLB. */ 1089 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; 1090 while (((lp_addr ^ vaddr) & lp_mask) != 0) { 1091 lp_mask <<= 1; 1092 } 1093 } 1094 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1095 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; 1096 } 1097 1098 /* Add a new TLB entry. At most one entry for a given virtual address 1099 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1100 * supplied size is only used by tlb_flush_page. 1101 * 1102 * Called from TCG-generated code, which is under an RCU read-side 1103 * critical section. 1104 */ 1105 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 1106 hwaddr paddr, MemTxAttrs attrs, int prot, 1107 int mmu_idx, target_ulong size) 1108 { 1109 CPUArchState *env = cpu->env_ptr; 1110 CPUTLB *tlb = env_tlb(env); 1111 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1112 MemoryRegionSection *section; 1113 unsigned int index; 1114 target_ulong address; 1115 target_ulong write_address; 1116 uintptr_t addend; 1117 CPUTLBEntry *te, tn; 1118 hwaddr iotlb, xlat, sz, paddr_page; 1119 target_ulong vaddr_page; 1120 int asidx = cpu_asidx_from_attrs(cpu, attrs); 1121 int wp_flags; 1122 bool is_ram, is_romd; 1123 1124 assert_cpu_is_self(cpu); 1125 1126 if (size <= TARGET_PAGE_SIZE) { 1127 sz = TARGET_PAGE_SIZE; 1128 } else { 1129 tlb_add_large_page(env, mmu_idx, vaddr, size); 1130 sz = size; 1131 } 1132 vaddr_page = vaddr & TARGET_PAGE_MASK; 1133 paddr_page = paddr & TARGET_PAGE_MASK; 1134 1135 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1136 &xlat, &sz, attrs, &prot); 1137 assert(sz >= TARGET_PAGE_SIZE); 1138 1139 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx 1140 " prot=%x idx=%d\n", 1141 vaddr, paddr, prot, mmu_idx); 1142 1143 address = vaddr_page; 1144 if (size < TARGET_PAGE_SIZE) { 1145 /* Repeat the MMU check and TLB fill on every access. */ 1146 address |= TLB_INVALID_MASK; 1147 } 1148 if (attrs.byte_swap) { 1149 address |= TLB_BSWAP; 1150 } 1151 1152 is_ram = memory_region_is_ram(section->mr); 1153 is_romd = memory_region_is_romd(section->mr); 1154 1155 if (is_ram || is_romd) { 1156 /* RAM and ROMD both have associated host memory. */ 1157 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1158 } else { 1159 /* I/O does not; force the host address to NULL. */ 1160 addend = 0; 1161 } 1162 1163 write_address = address; 1164 if (is_ram) { 1165 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1166 /* 1167 * Computing is_clean is expensive; avoid all that unless 1168 * the page is actually writable. 1169 */ 1170 if (prot & PAGE_WRITE) { 1171 if (section->readonly) { 1172 write_address |= TLB_DISCARD_WRITE; 1173 } else if (cpu_physical_memory_is_clean(iotlb)) { 1174 write_address |= TLB_NOTDIRTY; 1175 } 1176 } 1177 } else { 1178 /* I/O or ROMD */ 1179 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1180 /* 1181 * Writes to romd devices must go through MMIO to enable write. 1182 * Reads to romd devices go through the ram_ptr found above, 1183 * but of course reads to I/O must go through MMIO. 1184 */ 1185 write_address |= TLB_MMIO; 1186 if (!is_romd) { 1187 address = write_address; 1188 } 1189 } 1190 1191 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page, 1192 TARGET_PAGE_SIZE); 1193 1194 index = tlb_index(env, mmu_idx, vaddr_page); 1195 te = tlb_entry(env, mmu_idx, vaddr_page); 1196 1197 /* 1198 * Hold the TLB lock for the rest of the function. We could acquire/release 1199 * the lock several times in the function, but it is faster to amortize the 1200 * acquisition cost by acquiring it just once. Note that this leads to 1201 * a longer critical section, but this is not a concern since the TLB lock 1202 * is unlikely to be contended. 1203 */ 1204 qemu_spin_lock(&tlb->c.lock); 1205 1206 /* Note that the tlb is no longer clean. */ 1207 tlb->c.dirty |= 1 << mmu_idx; 1208 1209 /* Make sure there's no cached translation for the new page. */ 1210 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page); 1211 1212 /* 1213 * Only evict the old entry to the victim tlb if it's for a 1214 * different page; otherwise just overwrite the stale data. 1215 */ 1216 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) { 1217 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1218 CPUTLBEntry *tv = &desc->vtable[vidx]; 1219 1220 /* Evict the old entry into the victim tlb. */ 1221 copy_tlb_helper_locked(tv, te); 1222 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1223 tlb_n_used_entries_dec(env, mmu_idx); 1224 } 1225 1226 /* refill the tlb */ 1227 /* 1228 * At this point iotlb contains a physical section number in the lower 1229 * TARGET_PAGE_BITS, and either 1230 * + the ram_addr_t of the page base of the target RAM (RAM) 1231 * + the offset within section->mr of the page base (I/O, ROMD) 1232 * We subtract the vaddr_page (which is page aligned and thus won't 1233 * disturb the low bits) to give an offset which can be added to the 1234 * (non-page-aligned) vaddr of the eventual memory access to get 1235 * the MemoryRegion offset for the access. Note that the vaddr we 1236 * subtract here is that of the page base, and not the same as the 1237 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 1238 */ 1239 desc->fulltlb[index].xlat_section = iotlb - vaddr_page; 1240 desc->fulltlb[index].attrs = attrs; 1241 1242 /* Now calculate the new entry */ 1243 tn.addend = addend - vaddr_page; 1244 if (prot & PAGE_READ) { 1245 tn.addr_read = address; 1246 if (wp_flags & BP_MEM_READ) { 1247 tn.addr_read |= TLB_WATCHPOINT; 1248 } 1249 } else { 1250 tn.addr_read = -1; 1251 } 1252 1253 if (prot & PAGE_EXEC) { 1254 tn.addr_code = address; 1255 } else { 1256 tn.addr_code = -1; 1257 } 1258 1259 tn.addr_write = -1; 1260 if (prot & PAGE_WRITE) { 1261 tn.addr_write = write_address; 1262 if (prot & PAGE_WRITE_INV) { 1263 tn.addr_write |= TLB_INVALID_MASK; 1264 } 1265 if (wp_flags & BP_MEM_WRITE) { 1266 tn.addr_write |= TLB_WATCHPOINT; 1267 } 1268 } 1269 1270 copy_tlb_helper_locked(te, &tn); 1271 tlb_n_used_entries_inc(env, mmu_idx); 1272 qemu_spin_unlock(&tlb->c.lock); 1273 } 1274 1275 /* Add a new TLB entry, but without specifying the memory 1276 * transaction attributes to be used. 1277 */ 1278 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 1279 hwaddr paddr, int prot, 1280 int mmu_idx, target_ulong size) 1281 { 1282 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, 1283 prot, mmu_idx, size); 1284 } 1285 1286 /* 1287 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1288 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1289 * be discarded and looked up again (e.g. via tlb_entry()). 1290 */ 1291 static void tlb_fill(CPUState *cpu, target_ulong addr, int size, 1292 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1293 { 1294 bool ok; 1295 1296 /* 1297 * This is not a probe, so only valid return is success; failure 1298 * should result in exception + longjmp to the cpu loop. 1299 */ 1300 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size, 1301 access_type, mmu_idx, false, retaddr); 1302 assert(ok); 1303 } 1304 1305 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1306 MMUAccessType access_type, 1307 int mmu_idx, uintptr_t retaddr) 1308 { 1309 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1310 mmu_idx, retaddr); 1311 } 1312 1313 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 1314 vaddr addr, unsigned size, 1315 MMUAccessType access_type, 1316 int mmu_idx, MemTxAttrs attrs, 1317 MemTxResult response, 1318 uintptr_t retaddr) 1319 { 1320 CPUClass *cc = CPU_GET_CLASS(cpu); 1321 1322 if (!cpu->ignore_memory_transaction_failures && 1323 cc->tcg_ops->do_transaction_failed) { 1324 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1325 access_type, mmu_idx, attrs, 1326 response, retaddr); 1327 } 1328 } 1329 1330 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full, 1331 int mmu_idx, target_ulong addr, uintptr_t retaddr, 1332 MMUAccessType access_type, MemOp op) 1333 { 1334 CPUState *cpu = env_cpu(env); 1335 hwaddr mr_offset; 1336 MemoryRegionSection *section; 1337 MemoryRegion *mr; 1338 uint64_t val; 1339 bool locked = false; 1340 MemTxResult r; 1341 1342 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1343 mr = section->mr; 1344 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1345 cpu->mem_io_pc = retaddr; 1346 if (!cpu->can_do_io) { 1347 cpu_io_recompile(cpu, retaddr); 1348 } 1349 1350 if (!qemu_mutex_iothread_locked()) { 1351 qemu_mutex_lock_iothread(); 1352 locked = true; 1353 } 1354 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs); 1355 if (r != MEMTX_OK) { 1356 hwaddr physaddr = mr_offset + 1357 section->offset_within_address_space - 1358 section->offset_within_region; 1359 1360 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, 1361 mmu_idx, full->attrs, r, retaddr); 1362 } 1363 if (locked) { 1364 qemu_mutex_unlock_iothread(); 1365 } 1366 1367 return val; 1368 } 1369 1370 /* 1371 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin. 1372 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match 1373 * because of the side effect of io_writex changing memory layout. 1374 */ 1375 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section, 1376 hwaddr mr_offset) 1377 { 1378 #ifdef CONFIG_PLUGIN 1379 SavedIOTLB *saved = &cs->saved_iotlb; 1380 saved->section = section; 1381 saved->mr_offset = mr_offset; 1382 #endif 1383 } 1384 1385 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full, 1386 int mmu_idx, uint64_t val, target_ulong addr, 1387 uintptr_t retaddr, MemOp op) 1388 { 1389 CPUState *cpu = env_cpu(env); 1390 hwaddr mr_offset; 1391 MemoryRegionSection *section; 1392 MemoryRegion *mr; 1393 bool locked = false; 1394 MemTxResult r; 1395 1396 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1397 mr = section->mr; 1398 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1399 if (!cpu->can_do_io) { 1400 cpu_io_recompile(cpu, retaddr); 1401 } 1402 cpu->mem_io_pc = retaddr; 1403 1404 /* 1405 * The memory_region_dispatch may trigger a flush/resize 1406 * so for plugins we save the iotlb_data just in case. 1407 */ 1408 save_iotlb_data(cpu, section, mr_offset); 1409 1410 if (!qemu_mutex_iothread_locked()) { 1411 qemu_mutex_lock_iothread(); 1412 locked = true; 1413 } 1414 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs); 1415 if (r != MEMTX_OK) { 1416 hwaddr physaddr = mr_offset + 1417 section->offset_within_address_space - 1418 section->offset_within_region; 1419 1420 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), 1421 MMU_DATA_STORE, mmu_idx, full->attrs, r, 1422 retaddr); 1423 } 1424 if (locked) { 1425 qemu_mutex_unlock_iothread(); 1426 } 1427 } 1428 1429 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs) 1430 { 1431 #if TCG_OVERSIZED_GUEST 1432 return *(target_ulong *)((uintptr_t)entry + ofs); 1433 #else 1434 /* ofs might correspond to .addr_write, so use qatomic_read */ 1435 return qatomic_read((target_ulong *)((uintptr_t)entry + ofs)); 1436 #endif 1437 } 1438 1439 /* Return true if ADDR is present in the victim tlb, and has been copied 1440 back to the main tlb. */ 1441 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 1442 size_t elt_ofs, target_ulong page) 1443 { 1444 size_t vidx; 1445 1446 assert_cpu_is_self(env_cpu(env)); 1447 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1448 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; 1449 target_ulong cmp; 1450 1451 /* elt_ofs might correspond to .addr_write, so use qatomic_read */ 1452 #if TCG_OVERSIZED_GUEST 1453 cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs); 1454 #else 1455 cmp = qatomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs)); 1456 #endif 1457 1458 if (cmp == page) { 1459 /* Found entry in victim tlb, swap tlb and iotlb. */ 1460 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; 1461 1462 qemu_spin_lock(&env_tlb(env)->c.lock); 1463 copy_tlb_helper_locked(&tmptlb, tlb); 1464 copy_tlb_helper_locked(tlb, vtlb); 1465 copy_tlb_helper_locked(vtlb, &tmptlb); 1466 qemu_spin_unlock(&env_tlb(env)->c.lock); 1467 1468 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1469 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx]; 1470 CPUTLBEntryFull tmpf; 1471 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1472 return true; 1473 } 1474 } 1475 return false; 1476 } 1477 1478 /* Macro to call the above, with local variables from the use context. */ 1479 #define VICTIM_TLB_HIT(TY, ADDR) \ 1480 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \ 1481 (ADDR) & TARGET_PAGE_MASK) 1482 1483 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1484 CPUTLBEntryFull *full, uintptr_t retaddr) 1485 { 1486 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1487 1488 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1489 1490 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1491 struct page_collection *pages 1492 = page_collection_lock(ram_addr, ram_addr + size); 1493 tb_invalidate_phys_page_fast(pages, ram_addr, size, retaddr); 1494 page_collection_unlock(pages); 1495 } 1496 1497 /* 1498 * Set both VGA and migration bits for simplicity and to remove 1499 * the notdirty callback faster. 1500 */ 1501 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1502 1503 /* We remove the notdirty callback only if the code has been flushed. */ 1504 if (!cpu_physical_memory_is_clean(ram_addr)) { 1505 trace_memory_notdirty_set_dirty(mem_vaddr); 1506 tlb_set_dirty(cpu, mem_vaddr); 1507 } 1508 } 1509 1510 static int probe_access_internal(CPUArchState *env, target_ulong addr, 1511 int fault_size, MMUAccessType access_type, 1512 int mmu_idx, bool nonfault, 1513 void **phost, uintptr_t retaddr) 1514 { 1515 uintptr_t index = tlb_index(env, mmu_idx, addr); 1516 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1517 target_ulong tlb_addr, page_addr; 1518 size_t elt_ofs; 1519 int flags; 1520 1521 switch (access_type) { 1522 case MMU_DATA_LOAD: 1523 elt_ofs = offsetof(CPUTLBEntry, addr_read); 1524 break; 1525 case MMU_DATA_STORE: 1526 elt_ofs = offsetof(CPUTLBEntry, addr_write); 1527 break; 1528 case MMU_INST_FETCH: 1529 elt_ofs = offsetof(CPUTLBEntry, addr_code); 1530 break; 1531 default: 1532 g_assert_not_reached(); 1533 } 1534 tlb_addr = tlb_read_ofs(entry, elt_ofs); 1535 1536 page_addr = addr & TARGET_PAGE_MASK; 1537 if (!tlb_hit_page(tlb_addr, page_addr)) { 1538 if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page_addr)) { 1539 CPUState *cs = env_cpu(env); 1540 1541 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type, 1542 mmu_idx, nonfault, retaddr)) { 1543 /* Non-faulting page table read failed. */ 1544 *phost = NULL; 1545 return TLB_INVALID_MASK; 1546 } 1547 1548 /* TLB resize via tlb_fill may have moved the entry. */ 1549 entry = tlb_entry(env, mmu_idx, addr); 1550 } 1551 tlb_addr = tlb_read_ofs(entry, elt_ofs); 1552 } 1553 flags = tlb_addr & TLB_FLAGS_MASK; 1554 1555 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1556 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1557 *phost = NULL; 1558 return TLB_MMIO; 1559 } 1560 1561 /* Everything else is RAM. */ 1562 *phost = (void *)((uintptr_t)addr + entry->addend); 1563 return flags; 1564 } 1565 1566 int probe_access_flags(CPUArchState *env, target_ulong addr, 1567 MMUAccessType access_type, int mmu_idx, 1568 bool nonfault, void **phost, uintptr_t retaddr) 1569 { 1570 int flags; 1571 1572 flags = probe_access_internal(env, addr, 0, access_type, mmu_idx, 1573 nonfault, phost, retaddr); 1574 1575 /* Handle clean RAM pages. */ 1576 if (unlikely(flags & TLB_NOTDIRTY)) { 1577 uintptr_t index = tlb_index(env, mmu_idx, addr); 1578 CPUTLBEntryFull *full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1579 1580 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1581 flags &= ~TLB_NOTDIRTY; 1582 } 1583 1584 return flags; 1585 } 1586 1587 void *probe_access(CPUArchState *env, target_ulong addr, int size, 1588 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1589 { 1590 void *host; 1591 int flags; 1592 1593 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1594 1595 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1596 false, &host, retaddr); 1597 1598 /* Per the interface, size == 0 merely faults the access. */ 1599 if (size == 0) { 1600 return NULL; 1601 } 1602 1603 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1604 uintptr_t index = tlb_index(env, mmu_idx, addr); 1605 CPUTLBEntryFull *full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1606 1607 /* Handle watchpoints. */ 1608 if (flags & TLB_WATCHPOINT) { 1609 int wp_access = (access_type == MMU_DATA_STORE 1610 ? BP_MEM_WRITE : BP_MEM_READ); 1611 cpu_check_watchpoint(env_cpu(env), addr, size, 1612 full->attrs, wp_access, retaddr); 1613 } 1614 1615 /* Handle clean RAM pages. */ 1616 if (flags & TLB_NOTDIRTY) { 1617 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1618 } 1619 } 1620 1621 return host; 1622 } 1623 1624 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1625 MMUAccessType access_type, int mmu_idx) 1626 { 1627 void *host; 1628 int flags; 1629 1630 flags = probe_access_internal(env, addr, 0, access_type, 1631 mmu_idx, true, &host, 0); 1632 1633 /* No combination of flags are expected by the caller. */ 1634 return flags ? NULL : host; 1635 } 1636 1637 /* 1638 * Return a ram_addr_t for the virtual address for execution. 1639 * 1640 * Return -1 if we can't translate and execute from an entire page 1641 * of RAM. This will force us to execute by loading and translating 1642 * one insn at a time, without caching. 1643 * 1644 * NOTE: This function will trigger an exception if the page is 1645 * not executable. 1646 */ 1647 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr, 1648 void **hostp) 1649 { 1650 void *p; 1651 1652 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH, 1653 cpu_mmu_index(env, true), false, &p, 0); 1654 if (p == NULL) { 1655 return -1; 1656 } 1657 if (hostp) { 1658 *hostp = p; 1659 } 1660 return qemu_ram_addr_from_host_nofail(p); 1661 } 1662 1663 #ifdef CONFIG_PLUGIN 1664 /* 1665 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1666 * This should be a hot path as we will have just looked this path up 1667 * in the softmmu lookup code (or helper). We don't handle re-fills or 1668 * checking the victim table. This is purely informational. 1669 * 1670 * This almost never fails as the memory access being instrumented 1671 * should have just filled the TLB. The one corner case is io_writex 1672 * which can cause TLB flushes and potential resizing of the TLBs 1673 * losing the information we need. In those cases we need to recover 1674 * data from a copy of the CPUTLBEntryFull. As long as this always occurs 1675 * from the same thread (which a mem callback will be) this is safe. 1676 */ 1677 1678 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx, 1679 bool is_store, struct qemu_plugin_hwaddr *data) 1680 { 1681 CPUArchState *env = cpu->env_ptr; 1682 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1683 uintptr_t index = tlb_index(env, mmu_idx, addr); 1684 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read; 1685 1686 if (likely(tlb_hit(tlb_addr, addr))) { 1687 /* We must have an iotlb entry for MMIO */ 1688 if (tlb_addr & TLB_MMIO) { 1689 CPUTLBEntryFull *full; 1690 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1691 data->is_io = true; 1692 data->v.io.section = 1693 iotlb_to_section(cpu, full->xlat_section, full->attrs); 1694 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1695 } else { 1696 data->is_io = false; 1697 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1698 } 1699 return true; 1700 } else { 1701 SavedIOTLB *saved = &cpu->saved_iotlb; 1702 data->is_io = true; 1703 data->v.io.section = saved->section; 1704 data->v.io.offset = saved->mr_offset; 1705 return true; 1706 } 1707 } 1708 1709 #endif 1710 1711 /* 1712 * Probe for an atomic operation. Do not allow unaligned operations, 1713 * or io operations to proceed. Return the host address. 1714 * 1715 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE. 1716 */ 1717 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 1718 MemOpIdx oi, int size, int prot, 1719 uintptr_t retaddr) 1720 { 1721 uintptr_t mmu_idx = get_mmuidx(oi); 1722 MemOp mop = get_memop(oi); 1723 int a_bits = get_alignment_bits(mop); 1724 uintptr_t index; 1725 CPUTLBEntry *tlbe; 1726 target_ulong tlb_addr; 1727 void *hostaddr; 1728 1729 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1730 1731 /* Adjust the given return address. */ 1732 retaddr -= GETPC_ADJ; 1733 1734 /* Enforce guest required alignment. */ 1735 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1736 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1737 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1738 mmu_idx, retaddr); 1739 } 1740 1741 /* Enforce qemu required alignment. */ 1742 if (unlikely(addr & (size - 1))) { 1743 /* We get here if guest alignment was not requested, 1744 or was not enforced by cpu_unaligned_access above. 1745 We might widen the access and emulate, but for now 1746 mark an exception and exit the cpu loop. */ 1747 goto stop_the_world; 1748 } 1749 1750 index = tlb_index(env, mmu_idx, addr); 1751 tlbe = tlb_entry(env, mmu_idx, addr); 1752 1753 /* Check TLB entry and enforce page permissions. */ 1754 if (prot & PAGE_WRITE) { 1755 tlb_addr = tlb_addr_write(tlbe); 1756 if (!tlb_hit(tlb_addr, addr)) { 1757 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1758 tlb_fill(env_cpu(env), addr, size, 1759 MMU_DATA_STORE, mmu_idx, retaddr); 1760 index = tlb_index(env, mmu_idx, addr); 1761 tlbe = tlb_entry(env, mmu_idx, addr); 1762 } 1763 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1764 } 1765 1766 /* Let the guest notice RMW on a write-only page. */ 1767 if ((prot & PAGE_READ) && 1768 unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) { 1769 tlb_fill(env_cpu(env), addr, size, 1770 MMU_DATA_LOAD, mmu_idx, retaddr); 1771 /* 1772 * Since we don't support reads and writes to different addresses, 1773 * and we do have the proper page loaded for write, this shouldn't 1774 * ever return. But just in case, handle via stop-the-world. 1775 */ 1776 goto stop_the_world; 1777 } 1778 } else /* if (prot & PAGE_READ) */ { 1779 tlb_addr = tlbe->addr_read; 1780 if (!tlb_hit(tlb_addr, addr)) { 1781 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1782 tlb_fill(env_cpu(env), addr, size, 1783 MMU_DATA_LOAD, mmu_idx, retaddr); 1784 index = tlb_index(env, mmu_idx, addr); 1785 tlbe = tlb_entry(env, mmu_idx, addr); 1786 } 1787 tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK; 1788 } 1789 } 1790 1791 /* Notice an IO access or a needs-MMU-lookup access */ 1792 if (unlikely(tlb_addr & TLB_MMIO)) { 1793 /* There's really nothing that can be done to 1794 support this apart from stop-the-world. */ 1795 goto stop_the_world; 1796 } 1797 1798 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1799 1800 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1801 notdirty_write(env_cpu(env), addr, size, 1802 &env_tlb(env)->d[mmu_idx].fulltlb[index], retaddr); 1803 } 1804 1805 return hostaddr; 1806 1807 stop_the_world: 1808 cpu_loop_exit_atomic(env_cpu(env), retaddr); 1809 } 1810 1811 /* 1812 * Verify that we have passed the correct MemOp to the correct function. 1813 * 1814 * In the case of the helper_*_mmu functions, we will have done this by 1815 * using the MemOp to look up the helper during code generation. 1816 * 1817 * In the case of the cpu_*_mmu functions, this is up to the caller. 1818 * We could present one function to target code, and dispatch based on 1819 * the MemOp, but so far we have worked hard to avoid an indirect function 1820 * call along the memory path. 1821 */ 1822 static void validate_memop(MemOpIdx oi, MemOp expected) 1823 { 1824 #ifdef CONFIG_DEBUG_TCG 1825 MemOp have = get_memop(oi) & (MO_SIZE | MO_BSWAP); 1826 assert(have == expected); 1827 #endif 1828 } 1829 1830 /* 1831 * Load Helpers 1832 * 1833 * We support two different access types. SOFTMMU_CODE_ACCESS is 1834 * specifically for reading instructions from system memory. It is 1835 * called by the translation loop and in some helpers where the code 1836 * is disassembled. It shouldn't be called directly by guest code. 1837 */ 1838 1839 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr, 1840 MemOpIdx oi, uintptr_t retaddr); 1841 1842 static inline uint64_t QEMU_ALWAYS_INLINE 1843 load_memop(const void *haddr, MemOp op) 1844 { 1845 switch (op) { 1846 case MO_UB: 1847 return ldub_p(haddr); 1848 case MO_BEUW: 1849 return lduw_be_p(haddr); 1850 case MO_LEUW: 1851 return lduw_le_p(haddr); 1852 case MO_BEUL: 1853 return (uint32_t)ldl_be_p(haddr); 1854 case MO_LEUL: 1855 return (uint32_t)ldl_le_p(haddr); 1856 case MO_BEUQ: 1857 return ldq_be_p(haddr); 1858 case MO_LEUQ: 1859 return ldq_le_p(haddr); 1860 default: 1861 qemu_build_not_reached(); 1862 } 1863 } 1864 1865 static inline uint64_t QEMU_ALWAYS_INLINE 1866 load_helper(CPUArchState *env, target_ulong addr, MemOpIdx oi, 1867 uintptr_t retaddr, MemOp op, bool code_read, 1868 FullLoadHelper *full_load) 1869 { 1870 const size_t tlb_off = code_read ? 1871 offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read); 1872 const MMUAccessType access_type = 1873 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD; 1874 const unsigned a_bits = get_alignment_bits(get_memop(oi)); 1875 const size_t size = memop_size(op); 1876 uintptr_t mmu_idx = get_mmuidx(oi); 1877 uintptr_t index; 1878 CPUTLBEntry *entry; 1879 target_ulong tlb_addr; 1880 void *haddr; 1881 uint64_t res; 1882 1883 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1884 1885 /* Handle CPU specific unaligned behaviour */ 1886 if (addr & ((1 << a_bits) - 1)) { 1887 cpu_unaligned_access(env_cpu(env), addr, access_type, 1888 mmu_idx, retaddr); 1889 } 1890 1891 index = tlb_index(env, mmu_idx, addr); 1892 entry = tlb_entry(env, mmu_idx, addr); 1893 tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1894 1895 /* If the TLB entry is for a different page, reload and try again. */ 1896 if (!tlb_hit(tlb_addr, addr)) { 1897 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 1898 addr & TARGET_PAGE_MASK)) { 1899 tlb_fill(env_cpu(env), addr, size, 1900 access_type, mmu_idx, retaddr); 1901 index = tlb_index(env, mmu_idx, addr); 1902 entry = tlb_entry(env, mmu_idx, addr); 1903 } 1904 tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1905 tlb_addr &= ~TLB_INVALID_MASK; 1906 } 1907 1908 /* Handle anything that isn't just a straight memory access. */ 1909 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 1910 CPUTLBEntryFull *full; 1911 bool need_swap; 1912 1913 /* For anything that is unaligned, recurse through full_load. */ 1914 if ((addr & (size - 1)) != 0) { 1915 goto do_unaligned_access; 1916 } 1917 1918 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1919 1920 /* Handle watchpoints. */ 1921 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 1922 /* On watchpoint hit, this will longjmp out. */ 1923 cpu_check_watchpoint(env_cpu(env), addr, size, 1924 full->attrs, BP_MEM_READ, retaddr); 1925 } 1926 1927 need_swap = size > 1 && (tlb_addr & TLB_BSWAP); 1928 1929 /* Handle I/O access. */ 1930 if (likely(tlb_addr & TLB_MMIO)) { 1931 return io_readx(env, full, mmu_idx, addr, retaddr, 1932 access_type, op ^ (need_swap * MO_BSWAP)); 1933 } 1934 1935 haddr = (void *)((uintptr_t)addr + entry->addend); 1936 1937 /* 1938 * Keep these two load_memop separate to ensure that the compiler 1939 * is able to fold the entire function to a single instruction. 1940 * There is a build-time assert inside to remind you of this. ;-) 1941 */ 1942 if (unlikely(need_swap)) { 1943 return load_memop(haddr, op ^ MO_BSWAP); 1944 } 1945 return load_memop(haddr, op); 1946 } 1947 1948 /* Handle slow unaligned access (it spans two pages or IO). */ 1949 if (size > 1 1950 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 1951 >= TARGET_PAGE_SIZE)) { 1952 target_ulong addr1, addr2; 1953 uint64_t r1, r2; 1954 unsigned shift; 1955 do_unaligned_access: 1956 addr1 = addr & ~((target_ulong)size - 1); 1957 addr2 = addr1 + size; 1958 r1 = full_load(env, addr1, oi, retaddr); 1959 r2 = full_load(env, addr2, oi, retaddr); 1960 shift = (addr & (size - 1)) * 8; 1961 1962 if (memop_big_endian(op)) { 1963 /* Big-endian combine. */ 1964 res = (r1 << shift) | (r2 >> ((size * 8) - shift)); 1965 } else { 1966 /* Little-endian combine. */ 1967 res = (r1 >> shift) | (r2 << ((size * 8) - shift)); 1968 } 1969 return res & MAKE_64BIT_MASK(0, size * 8); 1970 } 1971 1972 haddr = (void *)((uintptr_t)addr + entry->addend); 1973 return load_memop(haddr, op); 1974 } 1975 1976 /* 1977 * For the benefit of TCG generated code, we want to avoid the 1978 * complication of ABI-specific return type promotion and always 1979 * return a value extended to the register size of the host. This is 1980 * tcg_target_long, except in the case of a 32-bit host and 64-bit 1981 * data, and for that we always have uint64_t. 1982 * 1983 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 1984 */ 1985 1986 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr, 1987 MemOpIdx oi, uintptr_t retaddr) 1988 { 1989 validate_memop(oi, MO_UB); 1990 return load_helper(env, addr, oi, retaddr, MO_UB, false, full_ldub_mmu); 1991 } 1992 1993 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr, 1994 MemOpIdx oi, uintptr_t retaddr) 1995 { 1996 return full_ldub_mmu(env, addr, oi, retaddr); 1997 } 1998 1999 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr, 2000 MemOpIdx oi, uintptr_t retaddr) 2001 { 2002 validate_memop(oi, MO_LEUW); 2003 return load_helper(env, addr, oi, retaddr, MO_LEUW, false, 2004 full_le_lduw_mmu); 2005 } 2006 2007 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr, 2008 MemOpIdx oi, uintptr_t retaddr) 2009 { 2010 return full_le_lduw_mmu(env, addr, oi, retaddr); 2011 } 2012 2013 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr, 2014 MemOpIdx oi, uintptr_t retaddr) 2015 { 2016 validate_memop(oi, MO_BEUW); 2017 return load_helper(env, addr, oi, retaddr, MO_BEUW, false, 2018 full_be_lduw_mmu); 2019 } 2020 2021 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr, 2022 MemOpIdx oi, uintptr_t retaddr) 2023 { 2024 return full_be_lduw_mmu(env, addr, oi, retaddr); 2025 } 2026 2027 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr, 2028 MemOpIdx oi, uintptr_t retaddr) 2029 { 2030 validate_memop(oi, MO_LEUL); 2031 return load_helper(env, addr, oi, retaddr, MO_LEUL, false, 2032 full_le_ldul_mmu); 2033 } 2034 2035 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr, 2036 MemOpIdx oi, uintptr_t retaddr) 2037 { 2038 return full_le_ldul_mmu(env, addr, oi, retaddr); 2039 } 2040 2041 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr, 2042 MemOpIdx oi, uintptr_t retaddr) 2043 { 2044 validate_memop(oi, MO_BEUL); 2045 return load_helper(env, addr, oi, retaddr, MO_BEUL, false, 2046 full_be_ldul_mmu); 2047 } 2048 2049 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr, 2050 MemOpIdx oi, uintptr_t retaddr) 2051 { 2052 return full_be_ldul_mmu(env, addr, oi, retaddr); 2053 } 2054 2055 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr, 2056 MemOpIdx oi, uintptr_t retaddr) 2057 { 2058 validate_memop(oi, MO_LEUQ); 2059 return load_helper(env, addr, oi, retaddr, MO_LEUQ, false, 2060 helper_le_ldq_mmu); 2061 } 2062 2063 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr, 2064 MemOpIdx oi, uintptr_t retaddr) 2065 { 2066 validate_memop(oi, MO_BEUQ); 2067 return load_helper(env, addr, oi, retaddr, MO_BEUQ, false, 2068 helper_be_ldq_mmu); 2069 } 2070 2071 /* 2072 * Provide signed versions of the load routines as well. We can of course 2073 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 2074 */ 2075 2076 2077 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr, 2078 MemOpIdx oi, uintptr_t retaddr) 2079 { 2080 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr); 2081 } 2082 2083 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr, 2084 MemOpIdx oi, uintptr_t retaddr) 2085 { 2086 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr); 2087 } 2088 2089 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr, 2090 MemOpIdx oi, uintptr_t retaddr) 2091 { 2092 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr); 2093 } 2094 2095 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr, 2096 MemOpIdx oi, uintptr_t retaddr) 2097 { 2098 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr); 2099 } 2100 2101 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr, 2102 MemOpIdx oi, uintptr_t retaddr) 2103 { 2104 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr); 2105 } 2106 2107 /* 2108 * Load helpers for cpu_ldst.h. 2109 */ 2110 2111 static inline uint64_t cpu_load_helper(CPUArchState *env, abi_ptr addr, 2112 MemOpIdx oi, uintptr_t retaddr, 2113 FullLoadHelper *full_load) 2114 { 2115 uint64_t ret; 2116 2117 ret = full_load(env, addr, oi, retaddr); 2118 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2119 return ret; 2120 } 2121 2122 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) 2123 { 2124 return cpu_load_helper(env, addr, oi, ra, full_ldub_mmu); 2125 } 2126 2127 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr, 2128 MemOpIdx oi, uintptr_t ra) 2129 { 2130 return cpu_load_helper(env, addr, oi, ra, full_be_lduw_mmu); 2131 } 2132 2133 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr, 2134 MemOpIdx oi, uintptr_t ra) 2135 { 2136 return cpu_load_helper(env, addr, oi, ra, full_be_ldul_mmu); 2137 } 2138 2139 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr, 2140 MemOpIdx oi, uintptr_t ra) 2141 { 2142 return cpu_load_helper(env, addr, oi, ra, helper_be_ldq_mmu); 2143 } 2144 2145 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr, 2146 MemOpIdx oi, uintptr_t ra) 2147 { 2148 return cpu_load_helper(env, addr, oi, ra, full_le_lduw_mmu); 2149 } 2150 2151 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr, 2152 MemOpIdx oi, uintptr_t ra) 2153 { 2154 return cpu_load_helper(env, addr, oi, ra, full_le_ldul_mmu); 2155 } 2156 2157 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr, 2158 MemOpIdx oi, uintptr_t ra) 2159 { 2160 return cpu_load_helper(env, addr, oi, ra, helper_le_ldq_mmu); 2161 } 2162 2163 /* 2164 * Store Helpers 2165 */ 2166 2167 static inline void QEMU_ALWAYS_INLINE 2168 store_memop(void *haddr, uint64_t val, MemOp op) 2169 { 2170 switch (op) { 2171 case MO_UB: 2172 stb_p(haddr, val); 2173 break; 2174 case MO_BEUW: 2175 stw_be_p(haddr, val); 2176 break; 2177 case MO_LEUW: 2178 stw_le_p(haddr, val); 2179 break; 2180 case MO_BEUL: 2181 stl_be_p(haddr, val); 2182 break; 2183 case MO_LEUL: 2184 stl_le_p(haddr, val); 2185 break; 2186 case MO_BEUQ: 2187 stq_be_p(haddr, val); 2188 break; 2189 case MO_LEUQ: 2190 stq_le_p(haddr, val); 2191 break; 2192 default: 2193 qemu_build_not_reached(); 2194 } 2195 } 2196 2197 static void full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2198 MemOpIdx oi, uintptr_t retaddr); 2199 2200 static void __attribute__((noinline)) 2201 store_helper_unaligned(CPUArchState *env, target_ulong addr, uint64_t val, 2202 uintptr_t retaddr, size_t size, uintptr_t mmu_idx, 2203 bool big_endian) 2204 { 2205 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); 2206 uintptr_t index, index2; 2207 CPUTLBEntry *entry, *entry2; 2208 target_ulong page1, page2, tlb_addr, tlb_addr2; 2209 MemOpIdx oi; 2210 size_t size2; 2211 int i; 2212 2213 /* 2214 * Ensure the second page is in the TLB. Note that the first page 2215 * is already guaranteed to be filled, and that the second page 2216 * cannot evict the first. An exception to this rule is PAGE_WRITE_INV 2217 * handling: the first page could have evicted itself. 2218 */ 2219 page1 = addr & TARGET_PAGE_MASK; 2220 page2 = (addr + size) & TARGET_PAGE_MASK; 2221 size2 = (addr + size) & ~TARGET_PAGE_MASK; 2222 index2 = tlb_index(env, mmu_idx, page2); 2223 entry2 = tlb_entry(env, mmu_idx, page2); 2224 2225 tlb_addr2 = tlb_addr_write(entry2); 2226 if (page1 != page2 && !tlb_hit_page(tlb_addr2, page2)) { 2227 if (!victim_tlb_hit(env, mmu_idx, index2, tlb_off, page2)) { 2228 tlb_fill(env_cpu(env), page2, size2, MMU_DATA_STORE, 2229 mmu_idx, retaddr); 2230 index2 = tlb_index(env, mmu_idx, page2); 2231 entry2 = tlb_entry(env, mmu_idx, page2); 2232 } 2233 tlb_addr2 = tlb_addr_write(entry2); 2234 } 2235 2236 index = tlb_index(env, mmu_idx, addr); 2237 entry = tlb_entry(env, mmu_idx, addr); 2238 tlb_addr = tlb_addr_write(entry); 2239 2240 /* 2241 * Handle watchpoints. Since this may trap, all checks 2242 * must happen before any store. 2243 */ 2244 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 2245 cpu_check_watchpoint(env_cpu(env), addr, size - size2, 2246 env_tlb(env)->d[mmu_idx].fulltlb[index].attrs, 2247 BP_MEM_WRITE, retaddr); 2248 } 2249 if (unlikely(tlb_addr2 & TLB_WATCHPOINT)) { 2250 cpu_check_watchpoint(env_cpu(env), page2, size2, 2251 env_tlb(env)->d[mmu_idx].fulltlb[index2].attrs, 2252 BP_MEM_WRITE, retaddr); 2253 } 2254 2255 /* 2256 * XXX: not efficient, but simple. 2257 * This loop must go in the forward direction to avoid issues 2258 * with self-modifying code in Windows 64-bit. 2259 */ 2260 oi = make_memop_idx(MO_UB, mmu_idx); 2261 if (big_endian) { 2262 for (i = 0; i < size; ++i) { 2263 /* Big-endian extract. */ 2264 uint8_t val8 = val >> (((size - 1) * 8) - (i * 8)); 2265 full_stb_mmu(env, addr + i, val8, oi, retaddr); 2266 } 2267 } else { 2268 for (i = 0; i < size; ++i) { 2269 /* Little-endian extract. */ 2270 uint8_t val8 = val >> (i * 8); 2271 full_stb_mmu(env, addr + i, val8, oi, retaddr); 2272 } 2273 } 2274 } 2275 2276 static inline void QEMU_ALWAYS_INLINE 2277 store_helper(CPUArchState *env, target_ulong addr, uint64_t val, 2278 MemOpIdx oi, uintptr_t retaddr, MemOp op) 2279 { 2280 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); 2281 const unsigned a_bits = get_alignment_bits(get_memop(oi)); 2282 const size_t size = memop_size(op); 2283 uintptr_t mmu_idx = get_mmuidx(oi); 2284 uintptr_t index; 2285 CPUTLBEntry *entry; 2286 target_ulong tlb_addr; 2287 void *haddr; 2288 2289 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 2290 2291 /* Handle CPU specific unaligned behaviour */ 2292 if (addr & ((1 << a_bits) - 1)) { 2293 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 2294 mmu_idx, retaddr); 2295 } 2296 2297 index = tlb_index(env, mmu_idx, addr); 2298 entry = tlb_entry(env, mmu_idx, addr); 2299 tlb_addr = tlb_addr_write(entry); 2300 2301 /* If the TLB entry is for a different page, reload and try again. */ 2302 if (!tlb_hit(tlb_addr, addr)) { 2303 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 2304 addr & TARGET_PAGE_MASK)) { 2305 tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE, 2306 mmu_idx, retaddr); 2307 index = tlb_index(env, mmu_idx, addr); 2308 entry = tlb_entry(env, mmu_idx, addr); 2309 } 2310 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK; 2311 } 2312 2313 /* Handle anything that isn't just a straight memory access. */ 2314 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 2315 CPUTLBEntryFull *full; 2316 bool need_swap; 2317 2318 /* For anything that is unaligned, recurse through byte stores. */ 2319 if ((addr & (size - 1)) != 0) { 2320 goto do_unaligned_access; 2321 } 2322 2323 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 2324 2325 /* Handle watchpoints. */ 2326 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 2327 /* On watchpoint hit, this will longjmp out. */ 2328 cpu_check_watchpoint(env_cpu(env), addr, size, 2329 full->attrs, BP_MEM_WRITE, retaddr); 2330 } 2331 2332 need_swap = size > 1 && (tlb_addr & TLB_BSWAP); 2333 2334 /* Handle I/O access. */ 2335 if (tlb_addr & TLB_MMIO) { 2336 io_writex(env, full, mmu_idx, val, addr, retaddr, 2337 op ^ (need_swap * MO_BSWAP)); 2338 return; 2339 } 2340 2341 /* Ignore writes to ROM. */ 2342 if (unlikely(tlb_addr & TLB_DISCARD_WRITE)) { 2343 return; 2344 } 2345 2346 /* Handle clean RAM pages. */ 2347 if (tlb_addr & TLB_NOTDIRTY) { 2348 notdirty_write(env_cpu(env), addr, size, full, retaddr); 2349 } 2350 2351 haddr = (void *)((uintptr_t)addr + entry->addend); 2352 2353 /* 2354 * Keep these two store_memop separate to ensure that the compiler 2355 * is able to fold the entire function to a single instruction. 2356 * There is a build-time assert inside to remind you of this. ;-) 2357 */ 2358 if (unlikely(need_swap)) { 2359 store_memop(haddr, val, op ^ MO_BSWAP); 2360 } else { 2361 store_memop(haddr, val, op); 2362 } 2363 return; 2364 } 2365 2366 /* Handle slow unaligned access (it spans two pages or IO). */ 2367 if (size > 1 2368 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 2369 >= TARGET_PAGE_SIZE)) { 2370 do_unaligned_access: 2371 store_helper_unaligned(env, addr, val, retaddr, size, 2372 mmu_idx, memop_big_endian(op)); 2373 return; 2374 } 2375 2376 haddr = (void *)((uintptr_t)addr + entry->addend); 2377 store_memop(haddr, val, op); 2378 } 2379 2380 static void __attribute__((noinline)) 2381 full_stb_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2382 MemOpIdx oi, uintptr_t retaddr) 2383 { 2384 validate_memop(oi, MO_UB); 2385 store_helper(env, addr, val, oi, retaddr, MO_UB); 2386 } 2387 2388 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 2389 MemOpIdx oi, uintptr_t retaddr) 2390 { 2391 full_stb_mmu(env, addr, val, oi, retaddr); 2392 } 2393 2394 static void full_le_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2395 MemOpIdx oi, uintptr_t retaddr) 2396 { 2397 validate_memop(oi, MO_LEUW); 2398 store_helper(env, addr, val, oi, retaddr, MO_LEUW); 2399 } 2400 2401 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2402 MemOpIdx oi, uintptr_t retaddr) 2403 { 2404 full_le_stw_mmu(env, addr, val, oi, retaddr); 2405 } 2406 2407 static void full_be_stw_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2408 MemOpIdx oi, uintptr_t retaddr) 2409 { 2410 validate_memop(oi, MO_BEUW); 2411 store_helper(env, addr, val, oi, retaddr, MO_BEUW); 2412 } 2413 2414 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2415 MemOpIdx oi, uintptr_t retaddr) 2416 { 2417 full_be_stw_mmu(env, addr, val, oi, retaddr); 2418 } 2419 2420 static void full_le_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2421 MemOpIdx oi, uintptr_t retaddr) 2422 { 2423 validate_memop(oi, MO_LEUL); 2424 store_helper(env, addr, val, oi, retaddr, MO_LEUL); 2425 } 2426 2427 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2428 MemOpIdx oi, uintptr_t retaddr) 2429 { 2430 full_le_stl_mmu(env, addr, val, oi, retaddr); 2431 } 2432 2433 static void full_be_stl_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2434 MemOpIdx oi, uintptr_t retaddr) 2435 { 2436 validate_memop(oi, MO_BEUL); 2437 store_helper(env, addr, val, oi, retaddr, MO_BEUL); 2438 } 2439 2440 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2441 MemOpIdx oi, uintptr_t retaddr) 2442 { 2443 full_be_stl_mmu(env, addr, val, oi, retaddr); 2444 } 2445 2446 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2447 MemOpIdx oi, uintptr_t retaddr) 2448 { 2449 validate_memop(oi, MO_LEUQ); 2450 store_helper(env, addr, val, oi, retaddr, MO_LEUQ); 2451 } 2452 2453 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2454 MemOpIdx oi, uintptr_t retaddr) 2455 { 2456 validate_memop(oi, MO_BEUQ); 2457 store_helper(env, addr, val, oi, retaddr, MO_BEUQ); 2458 } 2459 2460 /* 2461 * Store Helpers for cpu_ldst.h 2462 */ 2463 2464 typedef void FullStoreHelper(CPUArchState *env, target_ulong addr, 2465 uint64_t val, MemOpIdx oi, uintptr_t retaddr); 2466 2467 static inline void cpu_store_helper(CPUArchState *env, target_ulong addr, 2468 uint64_t val, MemOpIdx oi, uintptr_t ra, 2469 FullStoreHelper *full_store) 2470 { 2471 full_store(env, addr, val, oi, ra); 2472 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 2473 } 2474 2475 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 2476 MemOpIdx oi, uintptr_t retaddr) 2477 { 2478 cpu_store_helper(env, addr, val, oi, retaddr, full_stb_mmu); 2479 } 2480 2481 void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2482 MemOpIdx oi, uintptr_t retaddr) 2483 { 2484 cpu_store_helper(env, addr, val, oi, retaddr, full_be_stw_mmu); 2485 } 2486 2487 void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2488 MemOpIdx oi, uintptr_t retaddr) 2489 { 2490 cpu_store_helper(env, addr, val, oi, retaddr, full_be_stl_mmu); 2491 } 2492 2493 void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2494 MemOpIdx oi, uintptr_t retaddr) 2495 { 2496 cpu_store_helper(env, addr, val, oi, retaddr, helper_be_stq_mmu); 2497 } 2498 2499 void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2500 MemOpIdx oi, uintptr_t retaddr) 2501 { 2502 cpu_store_helper(env, addr, val, oi, retaddr, full_le_stw_mmu); 2503 } 2504 2505 void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2506 MemOpIdx oi, uintptr_t retaddr) 2507 { 2508 cpu_store_helper(env, addr, val, oi, retaddr, full_le_stl_mmu); 2509 } 2510 2511 void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2512 MemOpIdx oi, uintptr_t retaddr) 2513 { 2514 cpu_store_helper(env, addr, val, oi, retaddr, helper_le_stq_mmu); 2515 } 2516 2517 #include "ldst_common.c.inc" 2518 2519 /* 2520 * First set of functions passes in OI and RETADDR. 2521 * This makes them callable from other helpers. 2522 */ 2523 2524 #define ATOMIC_NAME(X) \ 2525 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 2526 2527 #define ATOMIC_MMU_CLEANUP 2528 2529 #include "atomic_common.c.inc" 2530 2531 #define DATA_SIZE 1 2532 #include "atomic_template.h" 2533 2534 #define DATA_SIZE 2 2535 #include "atomic_template.h" 2536 2537 #define DATA_SIZE 4 2538 #include "atomic_template.h" 2539 2540 #ifdef CONFIG_ATOMIC64 2541 #define DATA_SIZE 8 2542 #include "atomic_template.h" 2543 #endif 2544 2545 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128 2546 #define DATA_SIZE 16 2547 #include "atomic_template.h" 2548 #endif 2549 2550 /* Code access functions. */ 2551 2552 static uint64_t full_ldub_code(CPUArchState *env, target_ulong addr, 2553 MemOpIdx oi, uintptr_t retaddr) 2554 { 2555 return load_helper(env, addr, oi, retaddr, MO_8, true, full_ldub_code); 2556 } 2557 2558 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 2559 { 2560 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); 2561 return full_ldub_code(env, addr, oi, 0); 2562 } 2563 2564 static uint64_t full_lduw_code(CPUArchState *env, target_ulong addr, 2565 MemOpIdx oi, uintptr_t retaddr) 2566 { 2567 return load_helper(env, addr, oi, retaddr, MO_TEUW, true, full_lduw_code); 2568 } 2569 2570 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 2571 { 2572 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); 2573 return full_lduw_code(env, addr, oi, 0); 2574 } 2575 2576 static uint64_t full_ldl_code(CPUArchState *env, target_ulong addr, 2577 MemOpIdx oi, uintptr_t retaddr) 2578 { 2579 return load_helper(env, addr, oi, retaddr, MO_TEUL, true, full_ldl_code); 2580 } 2581 2582 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 2583 { 2584 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); 2585 return full_ldl_code(env, addr, oi, 0); 2586 } 2587 2588 static uint64_t full_ldq_code(CPUArchState *env, target_ulong addr, 2589 MemOpIdx oi, uintptr_t retaddr) 2590 { 2591 return load_helper(env, addr, oi, retaddr, MO_TEUQ, true, full_ldq_code); 2592 } 2593 2594 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 2595 { 2596 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true)); 2597 return full_ldq_code(env, addr, oi, 0); 2598 } 2599