1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "cpu.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/address-spaces.h" 26 #include "exec/cpu_ldst.h" 27 #include "exec/cputlb.h" 28 #include "exec/memory-internal.h" 29 #include "exec/ram_addr.h" 30 #include "tcg/tcg.h" 31 #include "qemu/error-report.h" 32 #include "exec/log.h" 33 #include "exec/helper-proto.h" 34 #include "qemu/atomic.h" 35 #include "qemu/atomic128.h" 36 37 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 38 /* #define DEBUG_TLB */ 39 /* #define DEBUG_TLB_LOG */ 40 41 #ifdef DEBUG_TLB 42 # define DEBUG_TLB_GATE 1 43 # ifdef DEBUG_TLB_LOG 44 # define DEBUG_TLB_LOG_GATE 1 45 # else 46 # define DEBUG_TLB_LOG_GATE 0 47 # endif 48 #else 49 # define DEBUG_TLB_GATE 0 50 # define DEBUG_TLB_LOG_GATE 0 51 #endif 52 53 #define tlb_debug(fmt, ...) do { \ 54 if (DEBUG_TLB_LOG_GATE) { \ 55 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 56 ## __VA_ARGS__); \ 57 } else if (DEBUG_TLB_GATE) { \ 58 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 59 } \ 60 } while (0) 61 62 #define assert_cpu_is_self(cpu) do { \ 63 if (DEBUG_TLB_GATE) { \ 64 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 65 } \ 66 } while (0) 67 68 /* run_on_cpu_data.target_ptr should always be big enough for a 69 * target_ulong even on 32 bit builds */ 70 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); 71 72 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 73 */ 74 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 75 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 76 77 static inline size_t sizeof_tlb(CPUArchState *env, uintptr_t mmu_idx) 78 { 79 return env->tlb_mask[mmu_idx] + (1 << CPU_TLB_ENTRY_BITS); 80 } 81 82 static void tlb_window_reset(CPUTLBWindow *window, int64_t ns, 83 size_t max_entries) 84 { 85 window->begin_ns = ns; 86 window->max_entries = max_entries; 87 } 88 89 static void tlb_dyn_init(CPUArchState *env) 90 { 91 int i; 92 93 for (i = 0; i < NB_MMU_MODES; i++) { 94 CPUTLBDesc *desc = &env->tlb_d[i]; 95 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 96 97 tlb_window_reset(&desc->window, get_clock_realtime(), 0); 98 desc->n_used_entries = 0; 99 env->tlb_mask[i] = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 100 env->tlb_table[i] = g_new(CPUTLBEntry, n_entries); 101 env->iotlb[i] = g_new(CPUIOTLBEntry, n_entries); 102 } 103 } 104 105 /** 106 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 107 * @env: CPU that owns the TLB 108 * @mmu_idx: MMU index of the TLB 109 * 110 * Called with tlb_lock_held. 111 * 112 * We have two main constraints when resizing a TLB: (1) we only resize it 113 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 114 * the array or unnecessarily flushing it), which means we do not control how 115 * frequently the resizing can occur; (2) we don't have access to the guest's 116 * future scheduling decisions, and therefore have to decide the magnitude of 117 * the resize based on past observations. 118 * 119 * In general, a memory-hungry process can benefit greatly from an appropriately 120 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 121 * we just have to make the TLB as large as possible; while an oversized TLB 122 * results in minimal TLB miss rates, it also takes longer to be flushed 123 * (flushes can be _very_ frequent), and the reduced locality can also hurt 124 * performance. 125 * 126 * To achieve near-optimal performance for all kinds of workloads, we: 127 * 128 * 1. Aggressively increase the size of the TLB when the use rate of the 129 * TLB being flushed is high, since it is likely that in the near future this 130 * memory-hungry process will execute again, and its memory hungriness will 131 * probably be similar. 132 * 133 * 2. Slowly reduce the size of the TLB as the use rate declines over a 134 * reasonably large time window. The rationale is that if in such a time window 135 * we have not observed a high TLB use rate, it is likely that we won't observe 136 * it in the near future. In that case, once a time window expires we downsize 137 * the TLB to match the maximum use rate observed in the window. 138 * 139 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 140 * since in that range performance is likely near-optimal. Recall that the TLB 141 * is direct mapped, so we want the use rate to be low (or at least not too 142 * high), since otherwise we are likely to have a significant amount of 143 * conflict misses. 144 */ 145 static void tlb_mmu_resize_locked(CPUArchState *env, int mmu_idx) 146 { 147 CPUTLBDesc *desc = &env->tlb_d[mmu_idx]; 148 size_t old_size = tlb_n_entries(env, mmu_idx); 149 size_t rate; 150 size_t new_size = old_size; 151 int64_t now = get_clock_realtime(); 152 int64_t window_len_ms = 100; 153 int64_t window_len_ns = window_len_ms * 1000 * 1000; 154 bool window_expired = now > desc->window.begin_ns + window_len_ns; 155 156 if (desc->n_used_entries > desc->window.max_entries) { 157 desc->window.max_entries = desc->n_used_entries; 158 } 159 rate = desc->window.max_entries * 100 / old_size; 160 161 if (rate > 70) { 162 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 163 } else if (rate < 30 && window_expired) { 164 size_t ceil = pow2ceil(desc->window.max_entries); 165 size_t expected_rate = desc->window.max_entries * 100 / ceil; 166 167 /* 168 * Avoid undersizing when the max number of entries seen is just below 169 * a pow2. For instance, if max_entries == 1025, the expected use rate 170 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 171 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 172 * later. Thus, make sure that the expected use rate remains below 70%. 173 * (and since we double the size, that means the lowest rate we'd 174 * expect to get is 35%, which is still in the 30-70% range where 175 * we consider that the size is appropriate.) 176 */ 177 if (expected_rate > 70) { 178 ceil *= 2; 179 } 180 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 181 } 182 183 if (new_size == old_size) { 184 if (window_expired) { 185 tlb_window_reset(&desc->window, now, desc->n_used_entries); 186 } 187 return; 188 } 189 190 g_free(env->tlb_table[mmu_idx]); 191 g_free(env->iotlb[mmu_idx]); 192 193 tlb_window_reset(&desc->window, now, 0); 194 /* desc->n_used_entries is cleared by the caller */ 195 env->tlb_mask[mmu_idx] = (new_size - 1) << CPU_TLB_ENTRY_BITS; 196 env->tlb_table[mmu_idx] = g_try_new(CPUTLBEntry, new_size); 197 env->iotlb[mmu_idx] = g_try_new(CPUIOTLBEntry, new_size); 198 /* 199 * If the allocations fail, try smaller sizes. We just freed some 200 * memory, so going back to half of new_size has a good chance of working. 201 * Increased memory pressure elsewhere in the system might cause the 202 * allocations to fail though, so we progressively reduce the allocation 203 * size, aborting if we cannot even allocate the smallest TLB we support. 204 */ 205 while (env->tlb_table[mmu_idx] == NULL || env->iotlb[mmu_idx] == NULL) { 206 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 207 error_report("%s: %s", __func__, strerror(errno)); 208 abort(); 209 } 210 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 211 env->tlb_mask[mmu_idx] = (new_size - 1) << CPU_TLB_ENTRY_BITS; 212 213 g_free(env->tlb_table[mmu_idx]); 214 g_free(env->iotlb[mmu_idx]); 215 env->tlb_table[mmu_idx] = g_try_new(CPUTLBEntry, new_size); 216 env->iotlb[mmu_idx] = g_try_new(CPUIOTLBEntry, new_size); 217 } 218 } 219 220 static inline void tlb_table_flush_by_mmuidx(CPUArchState *env, int mmu_idx) 221 { 222 tlb_mmu_resize_locked(env, mmu_idx); 223 memset(env->tlb_table[mmu_idx], -1, sizeof_tlb(env, mmu_idx)); 224 env->tlb_d[mmu_idx].n_used_entries = 0; 225 } 226 227 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 228 { 229 env->tlb_d[mmu_idx].n_used_entries++; 230 } 231 232 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 233 { 234 env->tlb_d[mmu_idx].n_used_entries--; 235 } 236 237 void tlb_init(CPUState *cpu) 238 { 239 CPUArchState *env = cpu->env_ptr; 240 241 qemu_spin_init(&env->tlb_c.lock); 242 243 /* Ensure that cpu_reset performs a full flush. */ 244 env->tlb_c.dirty = ALL_MMUIDX_BITS; 245 246 tlb_dyn_init(env); 247 } 248 249 /* flush_all_helper: run fn across all cpus 250 * 251 * If the wait flag is set then the src cpu's helper will be queued as 252 * "safe" work and the loop exited creating a synchronisation point 253 * where all queued work will be finished before execution starts 254 * again. 255 */ 256 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 257 run_on_cpu_data d) 258 { 259 CPUState *cpu; 260 261 CPU_FOREACH(cpu) { 262 if (cpu != src) { 263 async_run_on_cpu(cpu, fn, d); 264 } 265 } 266 } 267 268 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 269 { 270 CPUState *cpu; 271 size_t full = 0, part = 0, elide = 0; 272 273 CPU_FOREACH(cpu) { 274 CPUArchState *env = cpu->env_ptr; 275 276 full += atomic_read(&env->tlb_c.full_flush_count); 277 part += atomic_read(&env->tlb_c.part_flush_count); 278 elide += atomic_read(&env->tlb_c.elide_flush_count); 279 } 280 *pfull = full; 281 *ppart = part; 282 *pelide = elide; 283 } 284 285 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx) 286 { 287 tlb_table_flush_by_mmuidx(env, mmu_idx); 288 memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0])); 289 env->tlb_d[mmu_idx].large_page_addr = -1; 290 env->tlb_d[mmu_idx].large_page_mask = -1; 291 env->tlb_d[mmu_idx].vindex = 0; 292 } 293 294 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 295 { 296 CPUArchState *env = cpu->env_ptr; 297 uint16_t asked = data.host_int; 298 uint16_t all_dirty, work, to_clean; 299 300 assert_cpu_is_self(cpu); 301 302 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 303 304 qemu_spin_lock(&env->tlb_c.lock); 305 306 all_dirty = env->tlb_c.dirty; 307 to_clean = asked & all_dirty; 308 all_dirty &= ~to_clean; 309 env->tlb_c.dirty = all_dirty; 310 311 for (work = to_clean; work != 0; work &= work - 1) { 312 int mmu_idx = ctz32(work); 313 tlb_flush_one_mmuidx_locked(env, mmu_idx); 314 } 315 316 qemu_spin_unlock(&env->tlb_c.lock); 317 318 cpu_tb_jmp_cache_clear(cpu); 319 320 if (to_clean == ALL_MMUIDX_BITS) { 321 atomic_set(&env->tlb_c.full_flush_count, 322 env->tlb_c.full_flush_count + 1); 323 } else { 324 atomic_set(&env->tlb_c.part_flush_count, 325 env->tlb_c.part_flush_count + ctpop16(to_clean)); 326 if (to_clean != asked) { 327 atomic_set(&env->tlb_c.elide_flush_count, 328 env->tlb_c.elide_flush_count + 329 ctpop16(asked & ~to_clean)); 330 } 331 } 332 } 333 334 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 335 { 336 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 337 338 if (cpu->created && !qemu_cpu_is_self(cpu)) { 339 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 340 RUN_ON_CPU_HOST_INT(idxmap)); 341 } else { 342 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 343 } 344 } 345 346 void tlb_flush(CPUState *cpu) 347 { 348 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 349 } 350 351 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 352 { 353 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 354 355 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 356 357 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 358 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 359 } 360 361 void tlb_flush_all_cpus(CPUState *src_cpu) 362 { 363 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 364 } 365 366 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 367 { 368 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 369 370 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 371 372 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 373 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 374 } 375 376 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 377 { 378 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 379 } 380 381 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, 382 target_ulong page) 383 { 384 return tlb_hit_page(tlb_entry->addr_read, page) || 385 tlb_hit_page(tlb_addr_write(tlb_entry), page) || 386 tlb_hit_page(tlb_entry->addr_code, page); 387 } 388 389 /** 390 * tlb_entry_is_empty - return true if the entry is not in use 391 * @te: pointer to CPUTLBEntry 392 */ 393 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 394 { 395 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 396 } 397 398 /* Called with tlb_c.lock held */ 399 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, 400 target_ulong page) 401 { 402 if (tlb_hit_page_anyprot(tlb_entry, page)) { 403 memset(tlb_entry, -1, sizeof(*tlb_entry)); 404 return true; 405 } 406 return false; 407 } 408 409 /* Called with tlb_c.lock held */ 410 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 411 target_ulong page) 412 { 413 int k; 414 415 assert_cpu_is_self(ENV_GET_CPU(env)); 416 for (k = 0; k < CPU_VTLB_SIZE; k++) { 417 if (tlb_flush_entry_locked(&env->tlb_v_table[mmu_idx][k], page)) { 418 tlb_n_used_entries_dec(env, mmu_idx); 419 } 420 } 421 } 422 423 static void tlb_flush_page_locked(CPUArchState *env, int midx, 424 target_ulong page) 425 { 426 target_ulong lp_addr = env->tlb_d[midx].large_page_addr; 427 target_ulong lp_mask = env->tlb_d[midx].large_page_mask; 428 429 /* Check if we need to flush due to large pages. */ 430 if ((page & lp_mask) == lp_addr) { 431 tlb_debug("forcing full flush midx %d (" 432 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 433 midx, lp_addr, lp_mask); 434 tlb_flush_one_mmuidx_locked(env, midx); 435 } else { 436 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 437 tlb_n_used_entries_dec(env, midx); 438 } 439 tlb_flush_vtlb_page_locked(env, midx, page); 440 } 441 } 442 443 /* As we are going to hijack the bottom bits of the page address for a 444 * mmuidx bit mask we need to fail to build if we can't do that 445 */ 446 QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN); 447 448 static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu, 449 run_on_cpu_data data) 450 { 451 CPUArchState *env = cpu->env_ptr; 452 target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr; 453 target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK; 454 unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS; 455 int mmu_idx; 456 457 assert_cpu_is_self(cpu); 458 459 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%lx\n", 460 addr, mmu_idx_bitmap); 461 462 qemu_spin_lock(&env->tlb_c.lock); 463 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 464 if (test_bit(mmu_idx, &mmu_idx_bitmap)) { 465 tlb_flush_page_locked(env, mmu_idx, addr); 466 } 467 } 468 qemu_spin_unlock(&env->tlb_c.lock); 469 470 tb_flush_jmp_cache(cpu, addr); 471 } 472 473 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) 474 { 475 target_ulong addr_and_mmu_idx; 476 477 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); 478 479 /* This should already be page aligned */ 480 addr_and_mmu_idx = addr & TARGET_PAGE_MASK; 481 addr_and_mmu_idx |= idxmap; 482 483 if (!qemu_cpu_is_self(cpu)) { 484 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_work, 485 RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 486 } else { 487 tlb_flush_page_by_mmuidx_async_work( 488 cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 489 } 490 } 491 492 void tlb_flush_page(CPUState *cpu, target_ulong addr) 493 { 494 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 495 } 496 497 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, 498 uint16_t idxmap) 499 { 500 const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work; 501 target_ulong addr_and_mmu_idx; 502 503 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 504 505 /* This should already be page aligned */ 506 addr_and_mmu_idx = addr & TARGET_PAGE_MASK; 507 addr_and_mmu_idx |= idxmap; 508 509 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 510 fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 511 } 512 513 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 514 { 515 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 516 } 517 518 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 519 target_ulong addr, 520 uint16_t idxmap) 521 { 522 const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work; 523 target_ulong addr_and_mmu_idx; 524 525 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 526 527 /* This should already be page aligned */ 528 addr_and_mmu_idx = addr & TARGET_PAGE_MASK; 529 addr_and_mmu_idx |= idxmap; 530 531 flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 532 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx)); 533 } 534 535 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr) 536 { 537 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 538 } 539 540 /* update the TLBs so that writes to code in the virtual page 'addr' 541 can be detected */ 542 void tlb_protect_code(ram_addr_t ram_addr) 543 { 544 cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE, 545 DIRTY_MEMORY_CODE); 546 } 547 548 /* update the TLB so that writes in physical page 'phys_addr' are no longer 549 tested for self modifying code */ 550 void tlb_unprotect_code(ram_addr_t ram_addr) 551 { 552 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 553 } 554 555 556 /* 557 * Dirty write flag handling 558 * 559 * When the TCG code writes to a location it looks up the address in 560 * the TLB and uses that data to compute the final address. If any of 561 * the lower bits of the address are set then the slow path is forced. 562 * There are a number of reasons to do this but for normal RAM the 563 * most usual is detecting writes to code regions which may invalidate 564 * generated code. 565 * 566 * Other vCPUs might be reading their TLBs during guest execution, so we update 567 * te->addr_write with atomic_set. We don't need to worry about this for 568 * oversized guests as MTTCG is disabled for them. 569 * 570 * Called with tlb_c.lock held. 571 */ 572 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 573 uintptr_t start, uintptr_t length) 574 { 575 uintptr_t addr = tlb_entry->addr_write; 576 577 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) { 578 addr &= TARGET_PAGE_MASK; 579 addr += tlb_entry->addend; 580 if ((addr - start) < length) { 581 #if TCG_OVERSIZED_GUEST 582 tlb_entry->addr_write |= TLB_NOTDIRTY; 583 #else 584 atomic_set(&tlb_entry->addr_write, 585 tlb_entry->addr_write | TLB_NOTDIRTY); 586 #endif 587 } 588 } 589 } 590 591 /* 592 * Called with tlb_c.lock held. 593 * Called only from the vCPU context, i.e. the TLB's owner thread. 594 */ 595 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 596 { 597 *d = *s; 598 } 599 600 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 601 * the target vCPU). 602 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 603 * thing actually updated is the target TLB entry ->addr_write flags. 604 */ 605 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 606 { 607 CPUArchState *env; 608 609 int mmu_idx; 610 611 env = cpu->env_ptr; 612 qemu_spin_lock(&env->tlb_c.lock); 613 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 614 unsigned int i; 615 unsigned int n = tlb_n_entries(env, mmu_idx); 616 617 for (i = 0; i < n; i++) { 618 tlb_reset_dirty_range_locked(&env->tlb_table[mmu_idx][i], start1, 619 length); 620 } 621 622 for (i = 0; i < CPU_VTLB_SIZE; i++) { 623 tlb_reset_dirty_range_locked(&env->tlb_v_table[mmu_idx][i], start1, 624 length); 625 } 626 } 627 qemu_spin_unlock(&env->tlb_c.lock); 628 } 629 630 /* Called with tlb_c.lock held */ 631 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 632 target_ulong vaddr) 633 { 634 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { 635 tlb_entry->addr_write = vaddr; 636 } 637 } 638 639 /* update the TLB corresponding to virtual page vaddr 640 so that it is no longer dirty */ 641 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) 642 { 643 CPUArchState *env = cpu->env_ptr; 644 int mmu_idx; 645 646 assert_cpu_is_self(cpu); 647 648 vaddr &= TARGET_PAGE_MASK; 649 qemu_spin_lock(&env->tlb_c.lock); 650 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 651 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr); 652 } 653 654 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 655 int k; 656 for (k = 0; k < CPU_VTLB_SIZE; k++) { 657 tlb_set_dirty1_locked(&env->tlb_v_table[mmu_idx][k], vaddr); 658 } 659 } 660 qemu_spin_unlock(&env->tlb_c.lock); 661 } 662 663 /* Our TLB does not support large pages, so remember the area covered by 664 large pages and trigger a full TLB flush if these are invalidated. */ 665 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 666 target_ulong vaddr, target_ulong size) 667 { 668 target_ulong lp_addr = env->tlb_d[mmu_idx].large_page_addr; 669 target_ulong lp_mask = ~(size - 1); 670 671 if (lp_addr == (target_ulong)-1) { 672 /* No previous large page. */ 673 lp_addr = vaddr; 674 } else { 675 /* Extend the existing region to include the new page. 676 This is a compromise between unnecessary flushes and 677 the cost of maintaining a full variable size TLB. */ 678 lp_mask &= env->tlb_d[mmu_idx].large_page_mask; 679 while (((lp_addr ^ vaddr) & lp_mask) != 0) { 680 lp_mask <<= 1; 681 } 682 } 683 env->tlb_d[mmu_idx].large_page_addr = lp_addr & lp_mask; 684 env->tlb_d[mmu_idx].large_page_mask = lp_mask; 685 } 686 687 /* Add a new TLB entry. At most one entry for a given virtual address 688 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 689 * supplied size is only used by tlb_flush_page. 690 * 691 * Called from TCG-generated code, which is under an RCU read-side 692 * critical section. 693 */ 694 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 695 hwaddr paddr, MemTxAttrs attrs, int prot, 696 int mmu_idx, target_ulong size) 697 { 698 CPUArchState *env = cpu->env_ptr; 699 MemoryRegionSection *section; 700 unsigned int index; 701 target_ulong address; 702 target_ulong code_address; 703 uintptr_t addend; 704 CPUTLBEntry *te, tn; 705 hwaddr iotlb, xlat, sz, paddr_page; 706 target_ulong vaddr_page; 707 int asidx = cpu_asidx_from_attrs(cpu, attrs); 708 709 assert_cpu_is_self(cpu); 710 711 if (size <= TARGET_PAGE_SIZE) { 712 sz = TARGET_PAGE_SIZE; 713 } else { 714 tlb_add_large_page(env, mmu_idx, vaddr, size); 715 sz = size; 716 } 717 vaddr_page = vaddr & TARGET_PAGE_MASK; 718 paddr_page = paddr & TARGET_PAGE_MASK; 719 720 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 721 &xlat, &sz, attrs, &prot); 722 assert(sz >= TARGET_PAGE_SIZE); 723 724 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx 725 " prot=%x idx=%d\n", 726 vaddr, paddr, prot, mmu_idx); 727 728 address = vaddr_page; 729 if (size < TARGET_PAGE_SIZE) { 730 /* 731 * Slow-path the TLB entries; we will repeat the MMU check and TLB 732 * fill on every access. 733 */ 734 address |= TLB_RECHECK; 735 } 736 if (!memory_region_is_ram(section->mr) && 737 !memory_region_is_romd(section->mr)) { 738 /* IO memory case */ 739 address |= TLB_MMIO; 740 addend = 0; 741 } else { 742 /* TLB_MMIO for rom/romd handled below */ 743 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 744 } 745 746 code_address = address; 747 iotlb = memory_region_section_get_iotlb(cpu, section, vaddr_page, 748 paddr_page, xlat, prot, &address); 749 750 index = tlb_index(env, mmu_idx, vaddr_page); 751 te = tlb_entry(env, mmu_idx, vaddr_page); 752 753 /* 754 * Hold the TLB lock for the rest of the function. We could acquire/release 755 * the lock several times in the function, but it is faster to amortize the 756 * acquisition cost by acquiring it just once. Note that this leads to 757 * a longer critical section, but this is not a concern since the TLB lock 758 * is unlikely to be contended. 759 */ 760 qemu_spin_lock(&env->tlb_c.lock); 761 762 /* Note that the tlb is no longer clean. */ 763 env->tlb_c.dirty |= 1 << mmu_idx; 764 765 /* Make sure there's no cached translation for the new page. */ 766 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page); 767 768 /* 769 * Only evict the old entry to the victim tlb if it's for a 770 * different page; otherwise just overwrite the stale data. 771 */ 772 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) { 773 unsigned vidx = env->tlb_d[mmu_idx].vindex++ % CPU_VTLB_SIZE; 774 CPUTLBEntry *tv = &env->tlb_v_table[mmu_idx][vidx]; 775 776 /* Evict the old entry into the victim tlb. */ 777 copy_tlb_helper_locked(tv, te); 778 env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index]; 779 tlb_n_used_entries_dec(env, mmu_idx); 780 } 781 782 /* refill the tlb */ 783 /* 784 * At this point iotlb contains a physical section number in the lower 785 * TARGET_PAGE_BITS, and either 786 * + the ram_addr_t of the page base of the target RAM (if NOTDIRTY or ROM) 787 * + the offset within section->mr of the page base (otherwise) 788 * We subtract the vaddr_page (which is page aligned and thus won't 789 * disturb the low bits) to give an offset which can be added to the 790 * (non-page-aligned) vaddr of the eventual memory access to get 791 * the MemoryRegion offset for the access. Note that the vaddr we 792 * subtract here is that of the page base, and not the same as the 793 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 794 */ 795 env->iotlb[mmu_idx][index].addr = iotlb - vaddr_page; 796 env->iotlb[mmu_idx][index].attrs = attrs; 797 798 /* Now calculate the new entry */ 799 tn.addend = addend - vaddr_page; 800 if (prot & PAGE_READ) { 801 tn.addr_read = address; 802 } else { 803 tn.addr_read = -1; 804 } 805 806 if (prot & PAGE_EXEC) { 807 tn.addr_code = code_address; 808 } else { 809 tn.addr_code = -1; 810 } 811 812 tn.addr_write = -1; 813 if (prot & PAGE_WRITE) { 814 if ((memory_region_is_ram(section->mr) && section->readonly) 815 || memory_region_is_romd(section->mr)) { 816 /* Write access calls the I/O callback. */ 817 tn.addr_write = address | TLB_MMIO; 818 } else if (memory_region_is_ram(section->mr) 819 && cpu_physical_memory_is_clean( 820 memory_region_get_ram_addr(section->mr) + xlat)) { 821 tn.addr_write = address | TLB_NOTDIRTY; 822 } else { 823 tn.addr_write = address; 824 } 825 if (prot & PAGE_WRITE_INV) { 826 tn.addr_write |= TLB_INVALID_MASK; 827 } 828 } 829 830 copy_tlb_helper_locked(te, &tn); 831 tlb_n_used_entries_inc(env, mmu_idx); 832 qemu_spin_unlock(&env->tlb_c.lock); 833 } 834 835 /* Add a new TLB entry, but without specifying the memory 836 * transaction attributes to be used. 837 */ 838 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 839 hwaddr paddr, int prot, 840 int mmu_idx, target_ulong size) 841 { 842 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, 843 prot, mmu_idx, size); 844 } 845 846 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr) 847 { 848 ram_addr_t ram_addr; 849 850 ram_addr = qemu_ram_addr_from_host(ptr); 851 if (ram_addr == RAM_ADDR_INVALID) { 852 error_report("Bad ram pointer %p", ptr); 853 abort(); 854 } 855 return ram_addr; 856 } 857 858 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry, 859 int mmu_idx, target_ulong addr, uintptr_t retaddr, 860 MMUAccessType access_type, int size) 861 { 862 CPUState *cpu = ENV_GET_CPU(env); 863 hwaddr mr_offset; 864 MemoryRegionSection *section; 865 MemoryRegion *mr; 866 uint64_t val; 867 bool locked = false; 868 MemTxResult r; 869 870 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 871 mr = section->mr; 872 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 873 cpu->mem_io_pc = retaddr; 874 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { 875 cpu_io_recompile(cpu, retaddr); 876 } 877 878 cpu->mem_io_vaddr = addr; 879 cpu->mem_io_access_type = access_type; 880 881 if (mr->global_locking && !qemu_mutex_iothread_locked()) { 882 qemu_mutex_lock_iothread(); 883 locked = true; 884 } 885 r = memory_region_dispatch_read(mr, mr_offset, 886 &val, size, iotlbentry->attrs); 887 if (r != MEMTX_OK) { 888 hwaddr physaddr = mr_offset + 889 section->offset_within_address_space - 890 section->offset_within_region; 891 892 cpu_transaction_failed(cpu, physaddr, addr, size, access_type, 893 mmu_idx, iotlbentry->attrs, r, retaddr); 894 } 895 if (locked) { 896 qemu_mutex_unlock_iothread(); 897 } 898 899 return val; 900 } 901 902 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry, 903 int mmu_idx, uint64_t val, target_ulong addr, 904 uintptr_t retaddr, int size) 905 { 906 CPUState *cpu = ENV_GET_CPU(env); 907 hwaddr mr_offset; 908 MemoryRegionSection *section; 909 MemoryRegion *mr; 910 bool locked = false; 911 MemTxResult r; 912 913 section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs); 914 mr = section->mr; 915 mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr; 916 if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) { 917 cpu_io_recompile(cpu, retaddr); 918 } 919 cpu->mem_io_vaddr = addr; 920 cpu->mem_io_pc = retaddr; 921 922 if (mr->global_locking && !qemu_mutex_iothread_locked()) { 923 qemu_mutex_lock_iothread(); 924 locked = true; 925 } 926 r = memory_region_dispatch_write(mr, mr_offset, 927 val, size, iotlbentry->attrs); 928 if (r != MEMTX_OK) { 929 hwaddr physaddr = mr_offset + 930 section->offset_within_address_space - 931 section->offset_within_region; 932 933 cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_STORE, 934 mmu_idx, iotlbentry->attrs, r, retaddr); 935 } 936 if (locked) { 937 qemu_mutex_unlock_iothread(); 938 } 939 } 940 941 /* Return true if ADDR is present in the victim tlb, and has been copied 942 back to the main tlb. */ 943 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 944 size_t elt_ofs, target_ulong page) 945 { 946 size_t vidx; 947 948 assert_cpu_is_self(ENV_GET_CPU(env)); 949 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 950 CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx]; 951 target_ulong cmp; 952 953 /* elt_ofs might correspond to .addr_write, so use atomic_read */ 954 #if TCG_OVERSIZED_GUEST 955 cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs); 956 #else 957 cmp = atomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs)); 958 #endif 959 960 if (cmp == page) { 961 /* Found entry in victim tlb, swap tlb and iotlb. */ 962 CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index]; 963 964 qemu_spin_lock(&env->tlb_c.lock); 965 copy_tlb_helper_locked(&tmptlb, tlb); 966 copy_tlb_helper_locked(tlb, vtlb); 967 copy_tlb_helper_locked(vtlb, &tmptlb); 968 qemu_spin_unlock(&env->tlb_c.lock); 969 970 CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index]; 971 CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx]; 972 tmpio = *io; *io = *vio; *vio = tmpio; 973 return true; 974 } 975 } 976 return false; 977 } 978 979 /* Macro to call the above, with local variables from the use context. */ 980 #define VICTIM_TLB_HIT(TY, ADDR) \ 981 victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \ 982 (ADDR) & TARGET_PAGE_MASK) 983 984 /* NOTE: this function can trigger an exception */ 985 /* NOTE2: the returned address is not exactly the physical address: it 986 * is actually a ram_addr_t (in system mode; the user mode emulation 987 * version of this function returns a guest virtual address). 988 */ 989 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr) 990 { 991 uintptr_t mmu_idx = cpu_mmu_index(env, true); 992 uintptr_t index = tlb_index(env, mmu_idx, addr); 993 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 994 void *p; 995 996 if (unlikely(!tlb_hit(entry->addr_code, addr))) { 997 if (!VICTIM_TLB_HIT(addr_code, addr)) { 998 tlb_fill(ENV_GET_CPU(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0); 999 index = tlb_index(env, mmu_idx, addr); 1000 entry = tlb_entry(env, mmu_idx, addr); 1001 } 1002 assert(tlb_hit(entry->addr_code, addr)); 1003 } 1004 1005 if (unlikely(entry->addr_code & (TLB_RECHECK | TLB_MMIO))) { 1006 /* 1007 * Return -1 if we can't translate and execute from an entire 1008 * page of RAM here, which will cause us to execute by loading 1009 * and translating one insn at a time, without caching: 1010 * - TLB_RECHECK: means the MMU protection covers a smaller range 1011 * than a target page, so we must redo the MMU check every insn 1012 * - TLB_MMIO: region is not backed by RAM 1013 */ 1014 return -1; 1015 } 1016 1017 p = (void *)((uintptr_t)addr + entry->addend); 1018 return qemu_ram_addr_from_host_nofail(p); 1019 } 1020 1021 /* Probe for whether the specified guest write access is permitted. 1022 * If it is not permitted then an exception will be taken in the same 1023 * way as if this were a real write access (and we will not return). 1024 * Otherwise the function will return, and there will be a valid 1025 * entry in the TLB for this access. 1026 */ 1027 void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx, 1028 uintptr_t retaddr) 1029 { 1030 uintptr_t index = tlb_index(env, mmu_idx, addr); 1031 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1032 1033 if (!tlb_hit(tlb_addr_write(entry), addr)) { 1034 /* TLB entry is for a different page */ 1035 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1036 tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE, 1037 mmu_idx, retaddr); 1038 } 1039 } 1040 } 1041 1042 /* Probe for a read-modify-write atomic operation. Do not allow unaligned 1043 * operations, or io operations to proceed. Return the host address. */ 1044 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 1045 TCGMemOpIdx oi, uintptr_t retaddr, 1046 NotDirtyInfo *ndi) 1047 { 1048 size_t mmu_idx = get_mmuidx(oi); 1049 uintptr_t index = tlb_index(env, mmu_idx, addr); 1050 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1051 target_ulong tlb_addr = tlb_addr_write(tlbe); 1052 TCGMemOp mop = get_memop(oi); 1053 int a_bits = get_alignment_bits(mop); 1054 int s_bits = mop & MO_SIZE; 1055 void *hostaddr; 1056 1057 /* Adjust the given return address. */ 1058 retaddr -= GETPC_ADJ; 1059 1060 /* Enforce guest required alignment. */ 1061 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1062 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1063 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, 1064 mmu_idx, retaddr); 1065 } 1066 1067 /* Enforce qemu required alignment. */ 1068 if (unlikely(addr & ((1 << s_bits) - 1))) { 1069 /* We get here if guest alignment was not requested, 1070 or was not enforced by cpu_unaligned_access above. 1071 We might widen the access and emulate, but for now 1072 mark an exception and exit the cpu loop. */ 1073 goto stop_the_world; 1074 } 1075 1076 /* Check TLB entry and enforce page permissions. */ 1077 if (!tlb_hit(tlb_addr, addr)) { 1078 if (!VICTIM_TLB_HIT(addr_write, addr)) { 1079 tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_STORE, 1080 mmu_idx, retaddr); 1081 index = tlb_index(env, mmu_idx, addr); 1082 tlbe = tlb_entry(env, mmu_idx, addr); 1083 } 1084 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1085 } 1086 1087 /* Notice an IO access or a needs-MMU-lookup access */ 1088 if (unlikely(tlb_addr & (TLB_MMIO | TLB_RECHECK))) { 1089 /* There's really nothing that can be done to 1090 support this apart from stop-the-world. */ 1091 goto stop_the_world; 1092 } 1093 1094 /* Let the guest notice RMW on a write-only page. */ 1095 if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) { 1096 tlb_fill(ENV_GET_CPU(env), addr, 1 << s_bits, MMU_DATA_LOAD, 1097 mmu_idx, retaddr); 1098 /* Since we don't support reads and writes to different addresses, 1099 and we do have the proper page loaded for write, this shouldn't 1100 ever return. But just in case, handle via stop-the-world. */ 1101 goto stop_the_world; 1102 } 1103 1104 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1105 1106 ndi->active = false; 1107 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1108 ndi->active = true; 1109 memory_notdirty_write_prepare(ndi, ENV_GET_CPU(env), addr, 1110 qemu_ram_addr_from_host_nofail(hostaddr), 1111 1 << s_bits); 1112 } 1113 1114 return hostaddr; 1115 1116 stop_the_world: 1117 cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr); 1118 } 1119 1120 #ifdef TARGET_WORDS_BIGENDIAN 1121 #define NEED_BE_BSWAP 0 1122 #define NEED_LE_BSWAP 1 1123 #else 1124 #define NEED_BE_BSWAP 1 1125 #define NEED_LE_BSWAP 0 1126 #endif 1127 1128 /* 1129 * Byte Swap Helper 1130 * 1131 * This should all dead code away depending on the build host and 1132 * access type. 1133 */ 1134 1135 static inline uint64_t handle_bswap(uint64_t val, int size, bool big_endian) 1136 { 1137 if ((big_endian && NEED_BE_BSWAP) || (!big_endian && NEED_LE_BSWAP)) { 1138 switch (size) { 1139 case 1: return val; 1140 case 2: return bswap16(val); 1141 case 4: return bswap32(val); 1142 case 8: return bswap64(val); 1143 default: 1144 g_assert_not_reached(); 1145 } 1146 } else { 1147 return val; 1148 } 1149 } 1150 1151 /* 1152 * Load Helpers 1153 * 1154 * We support two different access types. SOFTMMU_CODE_ACCESS is 1155 * specifically for reading instructions from system memory. It is 1156 * called by the translation loop and in some helpers where the code 1157 * is disassembled. It shouldn't be called directly by guest code. 1158 */ 1159 1160 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr, 1161 TCGMemOpIdx oi, uintptr_t retaddr); 1162 1163 static inline uint64_t __attribute__((always_inline)) 1164 load_helper(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi, 1165 uintptr_t retaddr, size_t size, bool big_endian, bool code_read, 1166 FullLoadHelper *full_load) 1167 { 1168 uintptr_t mmu_idx = get_mmuidx(oi); 1169 uintptr_t index = tlb_index(env, mmu_idx, addr); 1170 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1171 target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1172 const size_t tlb_off = code_read ? 1173 offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read); 1174 const MMUAccessType access_type = 1175 code_read ? MMU_INST_FETCH : MMU_DATA_LOAD; 1176 unsigned a_bits = get_alignment_bits(get_memop(oi)); 1177 void *haddr; 1178 uint64_t res; 1179 1180 /* Handle CPU specific unaligned behaviour */ 1181 if (addr & ((1 << a_bits) - 1)) { 1182 cpu_unaligned_access(ENV_GET_CPU(env), addr, access_type, 1183 mmu_idx, retaddr); 1184 } 1185 1186 /* If the TLB entry is for a different page, reload and try again. */ 1187 if (!tlb_hit(tlb_addr, addr)) { 1188 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 1189 addr & TARGET_PAGE_MASK)) { 1190 tlb_fill(ENV_GET_CPU(env), addr, size, 1191 access_type, mmu_idx, retaddr); 1192 index = tlb_index(env, mmu_idx, addr); 1193 entry = tlb_entry(env, mmu_idx, addr); 1194 } 1195 tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1196 } 1197 1198 /* Handle an IO access. */ 1199 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 1200 if ((addr & (size - 1)) != 0) { 1201 goto do_unaligned_access; 1202 } 1203 1204 if (tlb_addr & TLB_RECHECK) { 1205 /* 1206 * This is a TLB_RECHECK access, where the MMU protection 1207 * covers a smaller range than a target page, and we must 1208 * repeat the MMU check here. This tlb_fill() call might 1209 * longjump out if this access should cause a guest exception. 1210 */ 1211 tlb_fill(ENV_GET_CPU(env), addr, size, 1212 access_type, mmu_idx, retaddr); 1213 index = tlb_index(env, mmu_idx, addr); 1214 entry = tlb_entry(env, mmu_idx, addr); 1215 1216 tlb_addr = code_read ? entry->addr_code : entry->addr_read; 1217 tlb_addr &= ~TLB_RECHECK; 1218 if (!(tlb_addr & ~TARGET_PAGE_MASK)) { 1219 /* RAM access */ 1220 goto do_aligned_access; 1221 } 1222 } 1223 1224 res = io_readx(env, &env->iotlb[mmu_idx][index], mmu_idx, addr, 1225 retaddr, access_type, size); 1226 return handle_bswap(res, size, big_endian); 1227 } 1228 1229 /* Handle slow unaligned access (it spans two pages or IO). */ 1230 if (size > 1 1231 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 1232 >= TARGET_PAGE_SIZE)) { 1233 target_ulong addr1, addr2; 1234 tcg_target_ulong r1, r2; 1235 unsigned shift; 1236 do_unaligned_access: 1237 addr1 = addr & ~(size - 1); 1238 addr2 = addr1 + size; 1239 r1 = full_load(env, addr1, oi, retaddr); 1240 r2 = full_load(env, addr2, oi, retaddr); 1241 shift = (addr & (size - 1)) * 8; 1242 1243 if (big_endian) { 1244 /* Big-endian combine. */ 1245 res = (r1 << shift) | (r2 >> ((size * 8) - shift)); 1246 } else { 1247 /* Little-endian combine. */ 1248 res = (r1 >> shift) | (r2 << ((size * 8) - shift)); 1249 } 1250 return res & MAKE_64BIT_MASK(0, size * 8); 1251 } 1252 1253 do_aligned_access: 1254 haddr = (void *)((uintptr_t)addr + entry->addend); 1255 switch (size) { 1256 case 1: 1257 res = ldub_p(haddr); 1258 break; 1259 case 2: 1260 if (big_endian) { 1261 res = lduw_be_p(haddr); 1262 } else { 1263 res = lduw_le_p(haddr); 1264 } 1265 break; 1266 case 4: 1267 if (big_endian) { 1268 res = (uint32_t)ldl_be_p(haddr); 1269 } else { 1270 res = (uint32_t)ldl_le_p(haddr); 1271 } 1272 break; 1273 case 8: 1274 if (big_endian) { 1275 res = ldq_be_p(haddr); 1276 } else { 1277 res = ldq_le_p(haddr); 1278 } 1279 break; 1280 default: 1281 g_assert_not_reached(); 1282 } 1283 1284 return res; 1285 } 1286 1287 /* 1288 * For the benefit of TCG generated code, we want to avoid the 1289 * complication of ABI-specific return type promotion and always 1290 * return a value extended to the register size of the host. This is 1291 * tcg_target_long, except in the case of a 32-bit host and 64-bit 1292 * data, and for that we always have uint64_t. 1293 * 1294 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 1295 */ 1296 1297 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr, 1298 TCGMemOpIdx oi, uintptr_t retaddr) 1299 { 1300 return load_helper(env, addr, oi, retaddr, 1, false, false, 1301 full_ldub_mmu); 1302 } 1303 1304 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr, 1305 TCGMemOpIdx oi, uintptr_t retaddr) 1306 { 1307 return full_ldub_mmu(env, addr, oi, retaddr); 1308 } 1309 1310 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr, 1311 TCGMemOpIdx oi, uintptr_t retaddr) 1312 { 1313 return load_helper(env, addr, oi, retaddr, 2, false, false, 1314 full_le_lduw_mmu); 1315 } 1316 1317 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr, 1318 TCGMemOpIdx oi, uintptr_t retaddr) 1319 { 1320 return full_le_lduw_mmu(env, addr, oi, retaddr); 1321 } 1322 1323 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr, 1324 TCGMemOpIdx oi, uintptr_t retaddr) 1325 { 1326 return load_helper(env, addr, oi, retaddr, 2, true, false, 1327 full_be_lduw_mmu); 1328 } 1329 1330 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr, 1331 TCGMemOpIdx oi, uintptr_t retaddr) 1332 { 1333 return full_be_lduw_mmu(env, addr, oi, retaddr); 1334 } 1335 1336 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr, 1337 TCGMemOpIdx oi, uintptr_t retaddr) 1338 { 1339 return load_helper(env, addr, oi, retaddr, 4, false, false, 1340 full_le_ldul_mmu); 1341 } 1342 1343 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr, 1344 TCGMemOpIdx oi, uintptr_t retaddr) 1345 { 1346 return full_le_ldul_mmu(env, addr, oi, retaddr); 1347 } 1348 1349 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr, 1350 TCGMemOpIdx oi, uintptr_t retaddr) 1351 { 1352 return load_helper(env, addr, oi, retaddr, 4, true, false, 1353 full_be_ldul_mmu); 1354 } 1355 1356 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr, 1357 TCGMemOpIdx oi, uintptr_t retaddr) 1358 { 1359 return full_be_ldul_mmu(env, addr, oi, retaddr); 1360 } 1361 1362 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr, 1363 TCGMemOpIdx oi, uintptr_t retaddr) 1364 { 1365 return load_helper(env, addr, oi, retaddr, 8, false, false, 1366 helper_le_ldq_mmu); 1367 } 1368 1369 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr, 1370 TCGMemOpIdx oi, uintptr_t retaddr) 1371 { 1372 return load_helper(env, addr, oi, retaddr, 8, true, false, 1373 helper_be_ldq_mmu); 1374 } 1375 1376 /* 1377 * Provide signed versions of the load routines as well. We can of course 1378 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 1379 */ 1380 1381 1382 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr, 1383 TCGMemOpIdx oi, uintptr_t retaddr) 1384 { 1385 return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr); 1386 } 1387 1388 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr, 1389 TCGMemOpIdx oi, uintptr_t retaddr) 1390 { 1391 return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr); 1392 } 1393 1394 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr, 1395 TCGMemOpIdx oi, uintptr_t retaddr) 1396 { 1397 return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr); 1398 } 1399 1400 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr, 1401 TCGMemOpIdx oi, uintptr_t retaddr) 1402 { 1403 return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr); 1404 } 1405 1406 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr, 1407 TCGMemOpIdx oi, uintptr_t retaddr) 1408 { 1409 return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr); 1410 } 1411 1412 /* 1413 * Store Helpers 1414 */ 1415 1416 static void store_helper(CPUArchState *env, target_ulong addr, uint64_t val, 1417 TCGMemOpIdx oi, uintptr_t retaddr, size_t size, 1418 bool big_endian) 1419 { 1420 uintptr_t mmu_idx = get_mmuidx(oi); 1421 uintptr_t index = tlb_index(env, mmu_idx, addr); 1422 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1423 target_ulong tlb_addr = tlb_addr_write(entry); 1424 const size_t tlb_off = offsetof(CPUTLBEntry, addr_write); 1425 unsigned a_bits = get_alignment_bits(get_memop(oi)); 1426 void *haddr; 1427 1428 /* Handle CPU specific unaligned behaviour */ 1429 if (addr & ((1 << a_bits) - 1)) { 1430 cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE, 1431 mmu_idx, retaddr); 1432 } 1433 1434 /* If the TLB entry is for a different page, reload and try again. */ 1435 if (!tlb_hit(tlb_addr, addr)) { 1436 if (!victim_tlb_hit(env, mmu_idx, index, tlb_off, 1437 addr & TARGET_PAGE_MASK)) { 1438 tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE, 1439 mmu_idx, retaddr); 1440 index = tlb_index(env, mmu_idx, addr); 1441 entry = tlb_entry(env, mmu_idx, addr); 1442 } 1443 tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK; 1444 } 1445 1446 /* Handle an IO access. */ 1447 if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) { 1448 if ((addr & (size - 1)) != 0) { 1449 goto do_unaligned_access; 1450 } 1451 1452 if (tlb_addr & TLB_RECHECK) { 1453 /* 1454 * This is a TLB_RECHECK access, where the MMU protection 1455 * covers a smaller range than a target page, and we must 1456 * repeat the MMU check here. This tlb_fill() call might 1457 * longjump out if this access should cause a guest exception. 1458 */ 1459 tlb_fill(ENV_GET_CPU(env), addr, size, MMU_DATA_STORE, 1460 mmu_idx, retaddr); 1461 index = tlb_index(env, mmu_idx, addr); 1462 entry = tlb_entry(env, mmu_idx, addr); 1463 1464 tlb_addr = tlb_addr_write(entry); 1465 tlb_addr &= ~TLB_RECHECK; 1466 if (!(tlb_addr & ~TARGET_PAGE_MASK)) { 1467 /* RAM access */ 1468 goto do_aligned_access; 1469 } 1470 } 1471 1472 io_writex(env, &env->iotlb[mmu_idx][index], mmu_idx, 1473 handle_bswap(val, size, big_endian), 1474 addr, retaddr, size); 1475 return; 1476 } 1477 1478 /* Handle slow unaligned access (it spans two pages or IO). */ 1479 if (size > 1 1480 && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1 1481 >= TARGET_PAGE_SIZE)) { 1482 int i; 1483 uintptr_t index2; 1484 CPUTLBEntry *entry2; 1485 target_ulong page2, tlb_addr2; 1486 do_unaligned_access: 1487 /* 1488 * Ensure the second page is in the TLB. Note that the first page 1489 * is already guaranteed to be filled, and that the second page 1490 * cannot evict the first. 1491 */ 1492 page2 = (addr + size) & TARGET_PAGE_MASK; 1493 index2 = tlb_index(env, mmu_idx, page2); 1494 entry2 = tlb_entry(env, mmu_idx, page2); 1495 tlb_addr2 = tlb_addr_write(entry2); 1496 if (!tlb_hit_page(tlb_addr2, page2) 1497 && !victim_tlb_hit(env, mmu_idx, index2, tlb_off, 1498 page2 & TARGET_PAGE_MASK)) { 1499 tlb_fill(ENV_GET_CPU(env), page2, size, MMU_DATA_STORE, 1500 mmu_idx, retaddr); 1501 } 1502 1503 /* 1504 * XXX: not efficient, but simple. 1505 * This loop must go in the forward direction to avoid issues 1506 * with self-modifying code in Windows 64-bit. 1507 */ 1508 for (i = 0; i < size; ++i) { 1509 uint8_t val8; 1510 if (big_endian) { 1511 /* Big-endian extract. */ 1512 val8 = val >> (((size - 1) * 8) - (i * 8)); 1513 } else { 1514 /* Little-endian extract. */ 1515 val8 = val >> (i * 8); 1516 } 1517 store_helper(env, addr + i, val8, oi, retaddr, 1, big_endian); 1518 } 1519 return; 1520 } 1521 1522 do_aligned_access: 1523 haddr = (void *)((uintptr_t)addr + entry->addend); 1524 switch (size) { 1525 case 1: 1526 stb_p(haddr, val); 1527 break; 1528 case 2: 1529 if (big_endian) { 1530 stw_be_p(haddr, val); 1531 } else { 1532 stw_le_p(haddr, val); 1533 } 1534 break; 1535 case 4: 1536 if (big_endian) { 1537 stl_be_p(haddr, val); 1538 } else { 1539 stl_le_p(haddr, val); 1540 } 1541 break; 1542 case 8: 1543 if (big_endian) { 1544 stq_be_p(haddr, val); 1545 } else { 1546 stq_le_p(haddr, val); 1547 } 1548 break; 1549 default: 1550 g_assert_not_reached(); 1551 break; 1552 } 1553 } 1554 1555 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 1556 TCGMemOpIdx oi, uintptr_t retaddr) 1557 { 1558 store_helper(env, addr, val, oi, retaddr, 1, false); 1559 } 1560 1561 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 1562 TCGMemOpIdx oi, uintptr_t retaddr) 1563 { 1564 store_helper(env, addr, val, oi, retaddr, 2, false); 1565 } 1566 1567 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 1568 TCGMemOpIdx oi, uintptr_t retaddr) 1569 { 1570 store_helper(env, addr, val, oi, retaddr, 2, true); 1571 } 1572 1573 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 1574 TCGMemOpIdx oi, uintptr_t retaddr) 1575 { 1576 store_helper(env, addr, val, oi, retaddr, 4, false); 1577 } 1578 1579 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 1580 TCGMemOpIdx oi, uintptr_t retaddr) 1581 { 1582 store_helper(env, addr, val, oi, retaddr, 4, true); 1583 } 1584 1585 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 1586 TCGMemOpIdx oi, uintptr_t retaddr) 1587 { 1588 store_helper(env, addr, val, oi, retaddr, 8, false); 1589 } 1590 1591 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 1592 TCGMemOpIdx oi, uintptr_t retaddr) 1593 { 1594 store_helper(env, addr, val, oi, retaddr, 8, true); 1595 } 1596 1597 /* First set of helpers allows passing in of OI and RETADDR. This makes 1598 them callable from other helpers. */ 1599 1600 #define EXTRA_ARGS , TCGMemOpIdx oi, uintptr_t retaddr 1601 #define ATOMIC_NAME(X) \ 1602 HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu)) 1603 #define ATOMIC_MMU_DECLS NotDirtyInfo ndi 1604 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr, &ndi) 1605 #define ATOMIC_MMU_CLEANUP \ 1606 do { \ 1607 if (unlikely(ndi.active)) { \ 1608 memory_notdirty_write_complete(&ndi); \ 1609 } \ 1610 } while (0) 1611 1612 #define DATA_SIZE 1 1613 #include "atomic_template.h" 1614 1615 #define DATA_SIZE 2 1616 #include "atomic_template.h" 1617 1618 #define DATA_SIZE 4 1619 #include "atomic_template.h" 1620 1621 #ifdef CONFIG_ATOMIC64 1622 #define DATA_SIZE 8 1623 #include "atomic_template.h" 1624 #endif 1625 1626 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128 1627 #define DATA_SIZE 16 1628 #include "atomic_template.h" 1629 #endif 1630 1631 /* Second set of helpers are directly callable from TCG as helpers. */ 1632 1633 #undef EXTRA_ARGS 1634 #undef ATOMIC_NAME 1635 #undef ATOMIC_MMU_LOOKUP 1636 #define EXTRA_ARGS , TCGMemOpIdx oi 1637 #define ATOMIC_NAME(X) HELPER(glue(glue(atomic_ ## X, SUFFIX), END)) 1638 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, GETPC(), &ndi) 1639 1640 #define DATA_SIZE 1 1641 #include "atomic_template.h" 1642 1643 #define DATA_SIZE 2 1644 #include "atomic_template.h" 1645 1646 #define DATA_SIZE 4 1647 #include "atomic_template.h" 1648 1649 #ifdef CONFIG_ATOMIC64 1650 #define DATA_SIZE 8 1651 #include "atomic_template.h" 1652 #endif 1653 1654 /* Code access functions. */ 1655 1656 static uint64_t full_ldub_cmmu(CPUArchState *env, target_ulong addr, 1657 TCGMemOpIdx oi, uintptr_t retaddr) 1658 { 1659 return load_helper(env, addr, oi, retaddr, 1, false, true, 1660 full_ldub_cmmu); 1661 } 1662 1663 uint8_t helper_ret_ldb_cmmu(CPUArchState *env, target_ulong addr, 1664 TCGMemOpIdx oi, uintptr_t retaddr) 1665 { 1666 return full_ldub_cmmu(env, addr, oi, retaddr); 1667 } 1668 1669 static uint64_t full_le_lduw_cmmu(CPUArchState *env, target_ulong addr, 1670 TCGMemOpIdx oi, uintptr_t retaddr) 1671 { 1672 return load_helper(env, addr, oi, retaddr, 2, false, true, 1673 full_le_lduw_cmmu); 1674 } 1675 1676 uint16_t helper_le_ldw_cmmu(CPUArchState *env, target_ulong addr, 1677 TCGMemOpIdx oi, uintptr_t retaddr) 1678 { 1679 return full_le_lduw_cmmu(env, addr, oi, retaddr); 1680 } 1681 1682 static uint64_t full_be_lduw_cmmu(CPUArchState *env, target_ulong addr, 1683 TCGMemOpIdx oi, uintptr_t retaddr) 1684 { 1685 return load_helper(env, addr, oi, retaddr, 2, true, true, 1686 full_be_lduw_cmmu); 1687 } 1688 1689 uint16_t helper_be_ldw_cmmu(CPUArchState *env, target_ulong addr, 1690 TCGMemOpIdx oi, uintptr_t retaddr) 1691 { 1692 return full_be_lduw_cmmu(env, addr, oi, retaddr); 1693 } 1694 1695 static uint64_t full_le_ldul_cmmu(CPUArchState *env, target_ulong addr, 1696 TCGMemOpIdx oi, uintptr_t retaddr) 1697 { 1698 return load_helper(env, addr, oi, retaddr, 4, false, true, 1699 full_le_ldul_cmmu); 1700 } 1701 1702 uint32_t helper_le_ldl_cmmu(CPUArchState *env, target_ulong addr, 1703 TCGMemOpIdx oi, uintptr_t retaddr) 1704 { 1705 return full_le_ldul_cmmu(env, addr, oi, retaddr); 1706 } 1707 1708 static uint64_t full_be_ldul_cmmu(CPUArchState *env, target_ulong addr, 1709 TCGMemOpIdx oi, uintptr_t retaddr) 1710 { 1711 return load_helper(env, addr, oi, retaddr, 4, true, true, 1712 full_be_ldul_cmmu); 1713 } 1714 1715 uint32_t helper_be_ldl_cmmu(CPUArchState *env, target_ulong addr, 1716 TCGMemOpIdx oi, uintptr_t retaddr) 1717 { 1718 return full_be_ldul_cmmu(env, addr, oi, retaddr); 1719 } 1720 1721 uint64_t helper_le_ldq_cmmu(CPUArchState *env, target_ulong addr, 1722 TCGMemOpIdx oi, uintptr_t retaddr) 1723 { 1724 return load_helper(env, addr, oi, retaddr, 8, false, true, 1725 helper_le_ldq_cmmu); 1726 } 1727 1728 uint64_t helper_be_ldq_cmmu(CPUArchState *env, target_ulong addr, 1729 TCGMemOpIdx oi, uintptr_t retaddr) 1730 { 1731 return load_helper(env, addr, oi, retaddr, 8, true, true, 1732 helper_be_ldq_cmmu); 1733 } 1734