1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/cputlb.h" 27 #include "exec/memory-internal.h" 28 #include "exec/ram_addr.h" 29 #include "tcg/tcg.h" 30 #include "qemu/error-report.h" 31 #include "exec/log.h" 32 #include "exec/helper-proto-common.h" 33 #include "qemu/atomic.h" 34 #include "qemu/atomic128.h" 35 #include "exec/translate-all.h" 36 #include "trace.h" 37 #include "tb-hash.h" 38 #include "internal-common.h" 39 #include "internal-target.h" 40 #ifdef CONFIG_PLUGIN 41 #include "qemu/plugin-memory.h" 42 #endif 43 #include "tcg/tcg-ldst.h" 44 #include "tcg/oversized-guest.h" 45 46 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 47 /* #define DEBUG_TLB */ 48 /* #define DEBUG_TLB_LOG */ 49 50 #ifdef DEBUG_TLB 51 # define DEBUG_TLB_GATE 1 52 # ifdef DEBUG_TLB_LOG 53 # define DEBUG_TLB_LOG_GATE 1 54 # else 55 # define DEBUG_TLB_LOG_GATE 0 56 # endif 57 #else 58 # define DEBUG_TLB_GATE 0 59 # define DEBUG_TLB_LOG_GATE 0 60 #endif 61 62 #define tlb_debug(fmt, ...) do { \ 63 if (DEBUG_TLB_LOG_GATE) { \ 64 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 65 ## __VA_ARGS__); \ 66 } else if (DEBUG_TLB_GATE) { \ 67 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 68 } \ 69 } while (0) 70 71 #define assert_cpu_is_self(cpu) do { \ 72 if (DEBUG_TLB_GATE) { \ 73 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 74 } \ 75 } while (0) 76 77 /* run_on_cpu_data.target_ptr should always be big enough for a 78 * vaddr even on 32 bit builds 79 */ 80 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data)); 81 82 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 83 */ 84 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 85 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 86 87 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 88 { 89 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 90 } 91 92 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 93 { 94 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 95 } 96 97 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 98 size_t max_entries) 99 { 100 desc->window_begin_ns = ns; 101 desc->window_max_entries = max_entries; 102 } 103 104 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr) 105 { 106 CPUJumpCache *jc = cpu->tb_jmp_cache; 107 int i, i0; 108 109 if (unlikely(!jc)) { 110 return; 111 } 112 113 i0 = tb_jmp_cache_hash_page(page_addr); 114 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 115 qatomic_set(&jc->array[i0 + i].tb, NULL); 116 } 117 } 118 119 /** 120 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 121 * @desc: The CPUTLBDesc portion of the TLB 122 * @fast: The CPUTLBDescFast portion of the same TLB 123 * 124 * Called with tlb_lock_held. 125 * 126 * We have two main constraints when resizing a TLB: (1) we only resize it 127 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 128 * the array or unnecessarily flushing it), which means we do not control how 129 * frequently the resizing can occur; (2) we don't have access to the guest's 130 * future scheduling decisions, and therefore have to decide the magnitude of 131 * the resize based on past observations. 132 * 133 * In general, a memory-hungry process can benefit greatly from an appropriately 134 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 135 * we just have to make the TLB as large as possible; while an oversized TLB 136 * results in minimal TLB miss rates, it also takes longer to be flushed 137 * (flushes can be _very_ frequent), and the reduced locality can also hurt 138 * performance. 139 * 140 * To achieve near-optimal performance for all kinds of workloads, we: 141 * 142 * 1. Aggressively increase the size of the TLB when the use rate of the 143 * TLB being flushed is high, since it is likely that in the near future this 144 * memory-hungry process will execute again, and its memory hungriness will 145 * probably be similar. 146 * 147 * 2. Slowly reduce the size of the TLB as the use rate declines over a 148 * reasonably large time window. The rationale is that if in such a time window 149 * we have not observed a high TLB use rate, it is likely that we won't observe 150 * it in the near future. In that case, once a time window expires we downsize 151 * the TLB to match the maximum use rate observed in the window. 152 * 153 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 154 * since in that range performance is likely near-optimal. Recall that the TLB 155 * is direct mapped, so we want the use rate to be low (or at least not too 156 * high), since otherwise we are likely to have a significant amount of 157 * conflict misses. 158 */ 159 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 160 int64_t now) 161 { 162 size_t old_size = tlb_n_entries(fast); 163 size_t rate; 164 size_t new_size = old_size; 165 int64_t window_len_ms = 100; 166 int64_t window_len_ns = window_len_ms * 1000 * 1000; 167 bool window_expired = now > desc->window_begin_ns + window_len_ns; 168 169 if (desc->n_used_entries > desc->window_max_entries) { 170 desc->window_max_entries = desc->n_used_entries; 171 } 172 rate = desc->window_max_entries * 100 / old_size; 173 174 if (rate > 70) { 175 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 176 } else if (rate < 30 && window_expired) { 177 size_t ceil = pow2ceil(desc->window_max_entries); 178 size_t expected_rate = desc->window_max_entries * 100 / ceil; 179 180 /* 181 * Avoid undersizing when the max number of entries seen is just below 182 * a pow2. For instance, if max_entries == 1025, the expected use rate 183 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 184 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 185 * later. Thus, make sure that the expected use rate remains below 70%. 186 * (and since we double the size, that means the lowest rate we'd 187 * expect to get is 35%, which is still in the 30-70% range where 188 * we consider that the size is appropriate.) 189 */ 190 if (expected_rate > 70) { 191 ceil *= 2; 192 } 193 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 194 } 195 196 if (new_size == old_size) { 197 if (window_expired) { 198 tlb_window_reset(desc, now, desc->n_used_entries); 199 } 200 return; 201 } 202 203 g_free(fast->table); 204 g_free(desc->fulltlb); 205 206 tlb_window_reset(desc, now, 0); 207 /* desc->n_used_entries is cleared by the caller */ 208 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 209 fast->table = g_try_new(CPUTLBEntry, new_size); 210 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 211 212 /* 213 * If the allocations fail, try smaller sizes. We just freed some 214 * memory, so going back to half of new_size has a good chance of working. 215 * Increased memory pressure elsewhere in the system might cause the 216 * allocations to fail though, so we progressively reduce the allocation 217 * size, aborting if we cannot even allocate the smallest TLB we support. 218 */ 219 while (fast->table == NULL || desc->fulltlb == NULL) { 220 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 221 error_report("%s: %s", __func__, strerror(errno)); 222 abort(); 223 } 224 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 225 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 226 227 g_free(fast->table); 228 g_free(desc->fulltlb); 229 fast->table = g_try_new(CPUTLBEntry, new_size); 230 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 231 } 232 } 233 234 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 235 { 236 desc->n_used_entries = 0; 237 desc->large_page_addr = -1; 238 desc->large_page_mask = -1; 239 desc->vindex = 0; 240 memset(fast->table, -1, sizeof_tlb(fast)); 241 memset(desc->vtable, -1, sizeof(desc->vtable)); 242 } 243 244 static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx, 245 int64_t now) 246 { 247 CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx]; 248 CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx]; 249 250 tlb_mmu_resize_locked(desc, fast, now); 251 tlb_mmu_flush_locked(desc, fast); 252 } 253 254 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 255 { 256 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 257 258 tlb_window_reset(desc, now, 0); 259 desc->n_used_entries = 0; 260 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 261 fast->table = g_new(CPUTLBEntry, n_entries); 262 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 263 tlb_mmu_flush_locked(desc, fast); 264 } 265 266 static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx) 267 { 268 cpu->neg.tlb.d[mmu_idx].n_used_entries++; 269 } 270 271 static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx) 272 { 273 cpu->neg.tlb.d[mmu_idx].n_used_entries--; 274 } 275 276 void tlb_init(CPUState *cpu) 277 { 278 int64_t now = get_clock_realtime(); 279 int i; 280 281 qemu_spin_init(&cpu->neg.tlb.c.lock); 282 283 /* All tlbs are initialized flushed. */ 284 cpu->neg.tlb.c.dirty = 0; 285 286 for (i = 0; i < NB_MMU_MODES; i++) { 287 tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now); 288 } 289 } 290 291 void tlb_destroy(CPUState *cpu) 292 { 293 int i; 294 295 qemu_spin_destroy(&cpu->neg.tlb.c.lock); 296 for (i = 0; i < NB_MMU_MODES; i++) { 297 CPUTLBDesc *desc = &cpu->neg.tlb.d[i]; 298 CPUTLBDescFast *fast = &cpu->neg.tlb.f[i]; 299 300 g_free(fast->table); 301 g_free(desc->fulltlb); 302 } 303 } 304 305 /* flush_all_helper: run fn across all cpus 306 * 307 * If the wait flag is set then the src cpu's helper will be queued as 308 * "safe" work and the loop exited creating a synchronisation point 309 * where all queued work will be finished before execution starts 310 * again. 311 */ 312 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 313 run_on_cpu_data d) 314 { 315 CPUState *cpu; 316 317 CPU_FOREACH(cpu) { 318 if (cpu != src) { 319 async_run_on_cpu(cpu, fn, d); 320 } 321 } 322 } 323 324 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 325 { 326 CPUState *cpu; 327 size_t full = 0, part = 0, elide = 0; 328 329 CPU_FOREACH(cpu) { 330 full += qatomic_read(&cpu->neg.tlb.c.full_flush_count); 331 part += qatomic_read(&cpu->neg.tlb.c.part_flush_count); 332 elide += qatomic_read(&cpu->neg.tlb.c.elide_flush_count); 333 } 334 *pfull = full; 335 *ppart = part; 336 *pelide = elide; 337 } 338 339 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 340 { 341 uint16_t asked = data.host_int; 342 uint16_t all_dirty, work, to_clean; 343 int64_t now = get_clock_realtime(); 344 345 assert_cpu_is_self(cpu); 346 347 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 348 349 qemu_spin_lock(&cpu->neg.tlb.c.lock); 350 351 all_dirty = cpu->neg.tlb.c.dirty; 352 to_clean = asked & all_dirty; 353 all_dirty &= ~to_clean; 354 cpu->neg.tlb.c.dirty = all_dirty; 355 356 for (work = to_clean; work != 0; work &= work - 1) { 357 int mmu_idx = ctz32(work); 358 tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now); 359 } 360 361 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 362 363 tcg_flush_jmp_cache(cpu); 364 365 if (to_clean == ALL_MMUIDX_BITS) { 366 qatomic_set(&cpu->neg.tlb.c.full_flush_count, 367 cpu->neg.tlb.c.full_flush_count + 1); 368 } else { 369 qatomic_set(&cpu->neg.tlb.c.part_flush_count, 370 cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean)); 371 if (to_clean != asked) { 372 qatomic_set(&cpu->neg.tlb.c.elide_flush_count, 373 cpu->neg.tlb.c.elide_flush_count + 374 ctpop16(asked & ~to_clean)); 375 } 376 } 377 } 378 379 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 380 { 381 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 382 383 if (cpu->created && !qemu_cpu_is_self(cpu)) { 384 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 385 RUN_ON_CPU_HOST_INT(idxmap)); 386 } else { 387 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 388 } 389 } 390 391 void tlb_flush(CPUState *cpu) 392 { 393 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 394 } 395 396 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 397 { 398 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 399 400 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 401 402 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 403 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 404 } 405 406 void tlb_flush_all_cpus(CPUState *src_cpu) 407 { 408 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 409 } 410 411 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 412 { 413 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 414 415 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 416 417 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 418 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 419 } 420 421 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 422 { 423 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 424 } 425 426 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 427 vaddr page, vaddr mask) 428 { 429 page &= mask; 430 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 431 432 return (page == (tlb_entry->addr_read & mask) || 433 page == (tlb_addr_write(tlb_entry) & mask) || 434 page == (tlb_entry->addr_code & mask)); 435 } 436 437 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page) 438 { 439 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 440 } 441 442 /** 443 * tlb_entry_is_empty - return true if the entry is not in use 444 * @te: pointer to CPUTLBEntry 445 */ 446 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 447 { 448 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 449 } 450 451 /* Called with tlb_c.lock held */ 452 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 453 vaddr page, 454 vaddr mask) 455 { 456 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 457 memset(tlb_entry, -1, sizeof(*tlb_entry)); 458 return true; 459 } 460 return false; 461 } 462 463 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page) 464 { 465 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 466 } 467 468 /* Called with tlb_c.lock held */ 469 static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx, 470 vaddr page, 471 vaddr mask) 472 { 473 CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx]; 474 int k; 475 476 assert_cpu_is_self(cpu); 477 for (k = 0; k < CPU_VTLB_SIZE; k++) { 478 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 479 tlb_n_used_entries_dec(cpu, mmu_idx); 480 } 481 } 482 } 483 484 static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx, 485 vaddr page) 486 { 487 tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1); 488 } 489 490 static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page) 491 { 492 vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr; 493 vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask; 494 495 /* Check if we need to flush due to large pages. */ 496 if ((page & lp_mask) == lp_addr) { 497 tlb_debug("forcing full flush midx %d (%016" 498 VADDR_PRIx "/%016" VADDR_PRIx ")\n", 499 midx, lp_addr, lp_mask); 500 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 501 } else { 502 if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) { 503 tlb_n_used_entries_dec(cpu, midx); 504 } 505 tlb_flush_vtlb_page_locked(cpu, midx, page); 506 } 507 } 508 509 /** 510 * tlb_flush_page_by_mmuidx_async_0: 511 * @cpu: cpu on which to flush 512 * @addr: page of virtual address to flush 513 * @idxmap: set of mmu_idx to flush 514 * 515 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 516 * at @addr from the tlbs indicated by @idxmap from @cpu. 517 */ 518 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 519 vaddr addr, 520 uint16_t idxmap) 521 { 522 int mmu_idx; 523 524 assert_cpu_is_self(cpu); 525 526 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap); 527 528 qemu_spin_lock(&cpu->neg.tlb.c.lock); 529 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 530 if ((idxmap >> mmu_idx) & 1) { 531 tlb_flush_page_locked(cpu, mmu_idx, addr); 532 } 533 } 534 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 535 536 /* 537 * Discard jump cache entries for any tb which might potentially 538 * overlap the flushed page, which includes the previous. 539 */ 540 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 541 tb_jmp_cache_clear_page(cpu, addr); 542 } 543 544 /** 545 * tlb_flush_page_by_mmuidx_async_1: 546 * @cpu: cpu on which to flush 547 * @data: encoded addr + idxmap 548 * 549 * Helper for tlb_flush_page_by_mmuidx and friends, called through 550 * async_run_on_cpu. The idxmap parameter is encoded in the page 551 * offset of the target_ptr field. This limits the set of mmu_idx 552 * that can be passed via this method. 553 */ 554 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 555 run_on_cpu_data data) 556 { 557 vaddr addr_and_idxmap = data.target_ptr; 558 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK; 559 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 560 561 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 562 } 563 564 typedef struct { 565 vaddr addr; 566 uint16_t idxmap; 567 } TLBFlushPageByMMUIdxData; 568 569 /** 570 * tlb_flush_page_by_mmuidx_async_2: 571 * @cpu: cpu on which to flush 572 * @data: allocated addr + idxmap 573 * 574 * Helper for tlb_flush_page_by_mmuidx and friends, called through 575 * async_run_on_cpu. The addr+idxmap parameters are stored in a 576 * TLBFlushPageByMMUIdxData structure that has been allocated 577 * specifically for this helper. Free the structure when done. 578 */ 579 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 580 run_on_cpu_data data) 581 { 582 TLBFlushPageByMMUIdxData *d = data.host_ptr; 583 584 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 585 g_free(d); 586 } 587 588 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap) 589 { 590 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap); 591 592 /* This should already be page aligned */ 593 addr &= TARGET_PAGE_MASK; 594 595 if (qemu_cpu_is_self(cpu)) { 596 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 597 } else if (idxmap < TARGET_PAGE_SIZE) { 598 /* 599 * Most targets have only a few mmu_idx. In the case where 600 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 601 * allocating memory for this operation. 602 */ 603 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 604 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 605 } else { 606 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 607 608 /* Otherwise allocate a structure, freed by the worker. */ 609 d->addr = addr; 610 d->idxmap = idxmap; 611 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 612 RUN_ON_CPU_HOST_PTR(d)); 613 } 614 } 615 616 void tlb_flush_page(CPUState *cpu, vaddr addr) 617 { 618 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 619 } 620 621 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr, 622 uint16_t idxmap) 623 { 624 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 625 626 /* This should already be page aligned */ 627 addr &= TARGET_PAGE_MASK; 628 629 /* 630 * Allocate memory to hold addr+idxmap only when needed. 631 * See tlb_flush_page_by_mmuidx for details. 632 */ 633 if (idxmap < TARGET_PAGE_SIZE) { 634 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 635 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 636 } else { 637 CPUState *dst_cpu; 638 639 /* Allocate a separate data block for each destination cpu. */ 640 CPU_FOREACH(dst_cpu) { 641 if (dst_cpu != src_cpu) { 642 TLBFlushPageByMMUIdxData *d 643 = g_new(TLBFlushPageByMMUIdxData, 1); 644 645 d->addr = addr; 646 d->idxmap = idxmap; 647 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 648 RUN_ON_CPU_HOST_PTR(d)); 649 } 650 } 651 } 652 653 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 654 } 655 656 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr) 657 { 658 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 659 } 660 661 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 662 vaddr addr, 663 uint16_t idxmap) 664 { 665 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 666 667 /* This should already be page aligned */ 668 addr &= TARGET_PAGE_MASK; 669 670 /* 671 * Allocate memory to hold addr+idxmap only when needed. 672 * See tlb_flush_page_by_mmuidx for details. 673 */ 674 if (idxmap < TARGET_PAGE_SIZE) { 675 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 676 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 677 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 678 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 679 } else { 680 CPUState *dst_cpu; 681 TLBFlushPageByMMUIdxData *d; 682 683 /* Allocate a separate data block for each destination cpu. */ 684 CPU_FOREACH(dst_cpu) { 685 if (dst_cpu != src_cpu) { 686 d = g_new(TLBFlushPageByMMUIdxData, 1); 687 d->addr = addr; 688 d->idxmap = idxmap; 689 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 690 RUN_ON_CPU_HOST_PTR(d)); 691 } 692 } 693 694 d = g_new(TLBFlushPageByMMUIdxData, 1); 695 d->addr = addr; 696 d->idxmap = idxmap; 697 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 698 RUN_ON_CPU_HOST_PTR(d)); 699 } 700 } 701 702 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr) 703 { 704 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 705 } 706 707 static void tlb_flush_range_locked(CPUState *cpu, int midx, 708 vaddr addr, vaddr len, 709 unsigned bits) 710 { 711 CPUTLBDesc *d = &cpu->neg.tlb.d[midx]; 712 CPUTLBDescFast *f = &cpu->neg.tlb.f[midx]; 713 vaddr mask = MAKE_64BIT_MASK(0, bits); 714 715 /* 716 * If @bits is smaller than the tlb size, there may be multiple entries 717 * within the TLB; otherwise all addresses that match under @mask hit 718 * the same TLB entry. 719 * TODO: Perhaps allow bits to be a few bits less than the size. 720 * For now, just flush the entire TLB. 721 * 722 * If @len is larger than the tlb size, then it will take longer to 723 * test all of the entries in the TLB than it will to flush it all. 724 */ 725 if (mask < f->mask || len > f->mask) { 726 tlb_debug("forcing full flush midx %d (" 727 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n", 728 midx, addr, mask, len); 729 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 730 return; 731 } 732 733 /* 734 * Check if we need to flush due to large pages. 735 * Because large_page_mask contains all 1's from the msb, 736 * we only need to test the end of the range. 737 */ 738 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 739 tlb_debug("forcing full flush midx %d (" 740 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n", 741 midx, d->large_page_addr, d->large_page_mask); 742 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 743 return; 744 } 745 746 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) { 747 vaddr page = addr + i; 748 CPUTLBEntry *entry = tlb_entry(cpu, midx, page); 749 750 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 751 tlb_n_used_entries_dec(cpu, midx); 752 } 753 tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask); 754 } 755 } 756 757 typedef struct { 758 vaddr addr; 759 vaddr len; 760 uint16_t idxmap; 761 uint16_t bits; 762 } TLBFlushRangeData; 763 764 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 765 TLBFlushRangeData d) 766 { 767 int mmu_idx; 768 769 assert_cpu_is_self(cpu); 770 771 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n", 772 d.addr, d.bits, d.len, d.idxmap); 773 774 qemu_spin_lock(&cpu->neg.tlb.c.lock); 775 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 776 if ((d.idxmap >> mmu_idx) & 1) { 777 tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits); 778 } 779 } 780 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 781 782 /* 783 * If the length is larger than the jump cache size, then it will take 784 * longer to clear each entry individually than it will to clear it all. 785 */ 786 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 787 tcg_flush_jmp_cache(cpu); 788 return; 789 } 790 791 /* 792 * Discard jump cache entries for any tb which might potentially 793 * overlap the flushed pages, which includes the previous. 794 */ 795 d.addr -= TARGET_PAGE_SIZE; 796 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 797 tb_jmp_cache_clear_page(cpu, d.addr); 798 d.addr += TARGET_PAGE_SIZE; 799 } 800 } 801 802 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 803 run_on_cpu_data data) 804 { 805 TLBFlushRangeData *d = data.host_ptr; 806 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 807 g_free(d); 808 } 809 810 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr, 811 vaddr len, uint16_t idxmap, 812 unsigned bits) 813 { 814 TLBFlushRangeData d; 815 816 /* 817 * If all bits are significant, and len is small, 818 * this devolves to tlb_flush_page. 819 */ 820 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 821 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 822 return; 823 } 824 /* If no page bits are significant, this devolves to tlb_flush. */ 825 if (bits < TARGET_PAGE_BITS) { 826 tlb_flush_by_mmuidx(cpu, idxmap); 827 return; 828 } 829 830 /* This should already be page aligned */ 831 d.addr = addr & TARGET_PAGE_MASK; 832 d.len = len; 833 d.idxmap = idxmap; 834 d.bits = bits; 835 836 if (qemu_cpu_is_self(cpu)) { 837 tlb_flush_range_by_mmuidx_async_0(cpu, d); 838 } else { 839 /* Otherwise allocate a structure, freed by the worker. */ 840 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 841 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 842 RUN_ON_CPU_HOST_PTR(p)); 843 } 844 } 845 846 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr, 847 uint16_t idxmap, unsigned bits) 848 { 849 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 850 } 851 852 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 853 vaddr addr, vaddr len, 854 uint16_t idxmap, unsigned bits) 855 { 856 TLBFlushRangeData d; 857 CPUState *dst_cpu; 858 859 /* 860 * If all bits are significant, and len is small, 861 * this devolves to tlb_flush_page. 862 */ 863 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 864 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 865 return; 866 } 867 /* If no page bits are significant, this devolves to tlb_flush. */ 868 if (bits < TARGET_PAGE_BITS) { 869 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 870 return; 871 } 872 873 /* This should already be page aligned */ 874 d.addr = addr & TARGET_PAGE_MASK; 875 d.len = len; 876 d.idxmap = idxmap; 877 d.bits = bits; 878 879 /* Allocate a separate data block for each destination cpu. */ 880 CPU_FOREACH(dst_cpu) { 881 if (dst_cpu != src_cpu) { 882 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 883 async_run_on_cpu(dst_cpu, 884 tlb_flush_range_by_mmuidx_async_1, 885 RUN_ON_CPU_HOST_PTR(p)); 886 } 887 } 888 889 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 890 } 891 892 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 893 vaddr addr, uint16_t idxmap, 894 unsigned bits) 895 { 896 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 897 idxmap, bits); 898 } 899 900 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 901 vaddr addr, 902 vaddr len, 903 uint16_t idxmap, 904 unsigned bits) 905 { 906 TLBFlushRangeData d, *p; 907 CPUState *dst_cpu; 908 909 /* 910 * If all bits are significant, and len is small, 911 * this devolves to tlb_flush_page. 912 */ 913 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 914 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 915 return; 916 } 917 /* If no page bits are significant, this devolves to tlb_flush. */ 918 if (bits < TARGET_PAGE_BITS) { 919 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 920 return; 921 } 922 923 /* This should already be page aligned */ 924 d.addr = addr & TARGET_PAGE_MASK; 925 d.len = len; 926 d.idxmap = idxmap; 927 d.bits = bits; 928 929 /* Allocate a separate data block for each destination cpu. */ 930 CPU_FOREACH(dst_cpu) { 931 if (dst_cpu != src_cpu) { 932 p = g_memdup(&d, sizeof(d)); 933 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 934 RUN_ON_CPU_HOST_PTR(p)); 935 } 936 } 937 938 p = g_memdup(&d, sizeof(d)); 939 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 940 RUN_ON_CPU_HOST_PTR(p)); 941 } 942 943 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 944 vaddr addr, 945 uint16_t idxmap, 946 unsigned bits) 947 { 948 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 949 idxmap, bits); 950 } 951 952 /* update the TLBs so that writes to code in the virtual page 'addr' 953 can be detected */ 954 void tlb_protect_code(ram_addr_t ram_addr) 955 { 956 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 957 TARGET_PAGE_SIZE, 958 DIRTY_MEMORY_CODE); 959 } 960 961 /* update the TLB so that writes in physical page 'phys_addr' are no longer 962 tested for self modifying code */ 963 void tlb_unprotect_code(ram_addr_t ram_addr) 964 { 965 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 966 } 967 968 969 /* 970 * Dirty write flag handling 971 * 972 * When the TCG code writes to a location it looks up the address in 973 * the TLB and uses that data to compute the final address. If any of 974 * the lower bits of the address are set then the slow path is forced. 975 * There are a number of reasons to do this but for normal RAM the 976 * most usual is detecting writes to code regions which may invalidate 977 * generated code. 978 * 979 * Other vCPUs might be reading their TLBs during guest execution, so we update 980 * te->addr_write with qatomic_set. We don't need to worry about this for 981 * oversized guests as MTTCG is disabled for them. 982 * 983 * Called with tlb_c.lock held. 984 */ 985 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 986 uintptr_t start, uintptr_t length) 987 { 988 uintptr_t addr = tlb_entry->addr_write; 989 990 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 991 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 992 addr &= TARGET_PAGE_MASK; 993 addr += tlb_entry->addend; 994 if ((addr - start) < length) { 995 #if TARGET_LONG_BITS == 32 996 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write; 997 ptr_write += HOST_BIG_ENDIAN; 998 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY); 999 #elif TCG_OVERSIZED_GUEST 1000 tlb_entry->addr_write |= TLB_NOTDIRTY; 1001 #else 1002 qatomic_set(&tlb_entry->addr_write, 1003 tlb_entry->addr_write | TLB_NOTDIRTY); 1004 #endif 1005 } 1006 } 1007 } 1008 1009 /* 1010 * Called with tlb_c.lock held. 1011 * Called only from the vCPU context, i.e. the TLB's owner thread. 1012 */ 1013 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 1014 { 1015 *d = *s; 1016 } 1017 1018 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1019 * the target vCPU). 1020 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1021 * thing actually updated is the target TLB entry ->addr_write flags. 1022 */ 1023 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1024 { 1025 int mmu_idx; 1026 1027 qemu_spin_lock(&cpu->neg.tlb.c.lock); 1028 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1029 unsigned int i; 1030 unsigned int n = tlb_n_entries(&cpu->neg.tlb.f[mmu_idx]); 1031 1032 for (i = 0; i < n; i++) { 1033 tlb_reset_dirty_range_locked(&cpu->neg.tlb.f[mmu_idx].table[i], 1034 start1, length); 1035 } 1036 1037 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1038 tlb_reset_dirty_range_locked(&cpu->neg.tlb.d[mmu_idx].vtable[i], 1039 start1, length); 1040 } 1041 } 1042 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 1043 } 1044 1045 /* Called with tlb_c.lock held */ 1046 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1047 vaddr addr) 1048 { 1049 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) { 1050 tlb_entry->addr_write = addr; 1051 } 1052 } 1053 1054 /* update the TLB corresponding to virtual page vaddr 1055 so that it is no longer dirty */ 1056 void tlb_set_dirty(CPUState *cpu, vaddr addr) 1057 { 1058 int mmu_idx; 1059 1060 assert_cpu_is_self(cpu); 1061 1062 addr &= TARGET_PAGE_MASK; 1063 qemu_spin_lock(&cpu->neg.tlb.c.lock); 1064 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1065 tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr); 1066 } 1067 1068 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1069 int k; 1070 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1071 tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr); 1072 } 1073 } 1074 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 1075 } 1076 1077 /* Our TLB does not support large pages, so remember the area covered by 1078 large pages and trigger a full TLB flush if these are invalidated. */ 1079 static void tlb_add_large_page(CPUState *cpu, int mmu_idx, 1080 vaddr addr, uint64_t size) 1081 { 1082 vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr; 1083 vaddr lp_mask = ~(size - 1); 1084 1085 if (lp_addr == (vaddr)-1) { 1086 /* No previous large page. */ 1087 lp_addr = addr; 1088 } else { 1089 /* Extend the existing region to include the new page. 1090 This is a compromise between unnecessary flushes and 1091 the cost of maintaining a full variable size TLB. */ 1092 lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask; 1093 while (((lp_addr ^ addr) & lp_mask) != 0) { 1094 lp_mask <<= 1; 1095 } 1096 } 1097 cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1098 cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask; 1099 } 1100 1101 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent, 1102 vaddr address, int flags, 1103 MMUAccessType access_type, bool enable) 1104 { 1105 if (enable) { 1106 address |= flags & TLB_FLAGS_MASK; 1107 flags &= TLB_SLOW_FLAGS_MASK; 1108 if (flags) { 1109 address |= TLB_FORCE_SLOW; 1110 } 1111 } else { 1112 address = -1; 1113 flags = 0; 1114 } 1115 ent->addr_idx[access_type] = address; 1116 full->slow_flags[access_type] = flags; 1117 } 1118 1119 /* 1120 * Add a new TLB entry. At most one entry for a given virtual address 1121 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1122 * supplied size is only used by tlb_flush_page. 1123 * 1124 * Called from TCG-generated code, which is under an RCU read-side 1125 * critical section. 1126 */ 1127 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1128 vaddr addr, CPUTLBEntryFull *full) 1129 { 1130 CPUTLB *tlb = &cpu->neg.tlb; 1131 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1132 MemoryRegionSection *section; 1133 unsigned int index, read_flags, write_flags; 1134 uintptr_t addend; 1135 CPUTLBEntry *te, tn; 1136 hwaddr iotlb, xlat, sz, paddr_page; 1137 vaddr addr_page; 1138 int asidx, wp_flags, prot; 1139 bool is_ram, is_romd; 1140 1141 assert_cpu_is_self(cpu); 1142 1143 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1144 sz = TARGET_PAGE_SIZE; 1145 } else { 1146 sz = (hwaddr)1 << full->lg_page_size; 1147 tlb_add_large_page(cpu, mmu_idx, addr, sz); 1148 } 1149 addr_page = addr & TARGET_PAGE_MASK; 1150 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1151 1152 prot = full->prot; 1153 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1154 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1155 &xlat, &sz, full->attrs, &prot); 1156 assert(sz >= TARGET_PAGE_SIZE); 1157 1158 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx 1159 " prot=%x idx=%d\n", 1160 addr, full->phys_addr, prot, mmu_idx); 1161 1162 read_flags = 0; 1163 if (full->lg_page_size < TARGET_PAGE_BITS) { 1164 /* Repeat the MMU check and TLB fill on every access. */ 1165 read_flags |= TLB_INVALID_MASK; 1166 } 1167 if (full->attrs.byte_swap) { 1168 read_flags |= TLB_BSWAP; 1169 } 1170 1171 is_ram = memory_region_is_ram(section->mr); 1172 is_romd = memory_region_is_romd(section->mr); 1173 1174 if (is_ram || is_romd) { 1175 /* RAM and ROMD both have associated host memory. */ 1176 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1177 } else { 1178 /* I/O does not; force the host address to NULL. */ 1179 addend = 0; 1180 } 1181 1182 write_flags = read_flags; 1183 if (is_ram) { 1184 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1185 assert(!(iotlb & ~TARGET_PAGE_MASK)); 1186 /* 1187 * Computing is_clean is expensive; avoid all that unless 1188 * the page is actually writable. 1189 */ 1190 if (prot & PAGE_WRITE) { 1191 if (section->readonly) { 1192 write_flags |= TLB_DISCARD_WRITE; 1193 } else if (cpu_physical_memory_is_clean(iotlb)) { 1194 write_flags |= TLB_NOTDIRTY; 1195 } 1196 } 1197 } else { 1198 /* I/O or ROMD */ 1199 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1200 /* 1201 * Writes to romd devices must go through MMIO to enable write. 1202 * Reads to romd devices go through the ram_ptr found above, 1203 * but of course reads to I/O must go through MMIO. 1204 */ 1205 write_flags |= TLB_MMIO; 1206 if (!is_romd) { 1207 read_flags = write_flags; 1208 } 1209 } 1210 1211 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page, 1212 TARGET_PAGE_SIZE); 1213 1214 index = tlb_index(cpu, mmu_idx, addr_page); 1215 te = tlb_entry(cpu, mmu_idx, addr_page); 1216 1217 /* 1218 * Hold the TLB lock for the rest of the function. We could acquire/release 1219 * the lock several times in the function, but it is faster to amortize the 1220 * acquisition cost by acquiring it just once. Note that this leads to 1221 * a longer critical section, but this is not a concern since the TLB lock 1222 * is unlikely to be contended. 1223 */ 1224 qemu_spin_lock(&tlb->c.lock); 1225 1226 /* Note that the tlb is no longer clean. */ 1227 tlb->c.dirty |= 1 << mmu_idx; 1228 1229 /* Make sure there's no cached translation for the new page. */ 1230 tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page); 1231 1232 /* 1233 * Only evict the old entry to the victim tlb if it's for a 1234 * different page; otherwise just overwrite the stale data. 1235 */ 1236 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) { 1237 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1238 CPUTLBEntry *tv = &desc->vtable[vidx]; 1239 1240 /* Evict the old entry into the victim tlb. */ 1241 copy_tlb_helper_locked(tv, te); 1242 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1243 tlb_n_used_entries_dec(cpu, mmu_idx); 1244 } 1245 1246 /* refill the tlb */ 1247 /* 1248 * When memory region is ram, iotlb contains a TARGET_PAGE_BITS 1249 * aligned ram_addr_t of the page base of the target RAM. 1250 * Otherwise, iotlb contains 1251 * - a physical section number in the lower TARGET_PAGE_BITS 1252 * - the offset within section->mr of the page base (I/O, ROMD) with the 1253 * TARGET_PAGE_BITS masked off. 1254 * We subtract addr_page (which is page aligned and thus won't 1255 * disturb the low bits) to give an offset which can be added to the 1256 * (non-page-aligned) vaddr of the eventual memory access to get 1257 * the MemoryRegion offset for the access. Note that the vaddr we 1258 * subtract here is that of the page base, and not the same as the 1259 * vaddr we add back in io_prepare()/get_page_addr_code(). 1260 */ 1261 desc->fulltlb[index] = *full; 1262 full = &desc->fulltlb[index]; 1263 full->xlat_section = iotlb - addr_page; 1264 full->phys_addr = paddr_page; 1265 1266 /* Now calculate the new entry */ 1267 tn.addend = addend - addr_page; 1268 1269 tlb_set_compare(full, &tn, addr_page, read_flags, 1270 MMU_INST_FETCH, prot & PAGE_EXEC); 1271 1272 if (wp_flags & BP_MEM_READ) { 1273 read_flags |= TLB_WATCHPOINT; 1274 } 1275 tlb_set_compare(full, &tn, addr_page, read_flags, 1276 MMU_DATA_LOAD, prot & PAGE_READ); 1277 1278 if (prot & PAGE_WRITE_INV) { 1279 write_flags |= TLB_INVALID_MASK; 1280 } 1281 if (wp_flags & BP_MEM_WRITE) { 1282 write_flags |= TLB_WATCHPOINT; 1283 } 1284 tlb_set_compare(full, &tn, addr_page, write_flags, 1285 MMU_DATA_STORE, prot & PAGE_WRITE); 1286 1287 copy_tlb_helper_locked(te, &tn); 1288 tlb_n_used_entries_inc(cpu, mmu_idx); 1289 qemu_spin_unlock(&tlb->c.lock); 1290 } 1291 1292 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr, 1293 hwaddr paddr, MemTxAttrs attrs, int prot, 1294 int mmu_idx, uint64_t size) 1295 { 1296 CPUTLBEntryFull full = { 1297 .phys_addr = paddr, 1298 .attrs = attrs, 1299 .prot = prot, 1300 .lg_page_size = ctz64(size) 1301 }; 1302 1303 assert(is_power_of_2(size)); 1304 tlb_set_page_full(cpu, mmu_idx, addr, &full); 1305 } 1306 1307 void tlb_set_page(CPUState *cpu, vaddr addr, 1308 hwaddr paddr, int prot, 1309 int mmu_idx, uint64_t size) 1310 { 1311 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED, 1312 prot, mmu_idx, size); 1313 } 1314 1315 /* 1316 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1317 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1318 * be discarded and looked up again (e.g. via tlb_entry()). 1319 */ 1320 static void tlb_fill(CPUState *cpu, vaddr addr, int size, 1321 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1322 { 1323 bool ok; 1324 1325 /* 1326 * This is not a probe, so only valid return is success; failure 1327 * should result in exception + longjmp to the cpu loop. 1328 */ 1329 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size, 1330 access_type, mmu_idx, false, retaddr); 1331 assert(ok); 1332 } 1333 1334 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1335 MMUAccessType access_type, 1336 int mmu_idx, uintptr_t retaddr) 1337 { 1338 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1339 mmu_idx, retaddr); 1340 } 1341 1342 static MemoryRegionSection * 1343 io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat, 1344 MemTxAttrs attrs, vaddr addr, uintptr_t retaddr) 1345 { 1346 MemoryRegionSection *section; 1347 hwaddr mr_offset; 1348 1349 section = iotlb_to_section(cpu, xlat, attrs); 1350 mr_offset = (xlat & TARGET_PAGE_MASK) + addr; 1351 cpu->mem_io_pc = retaddr; 1352 if (!cpu->neg.can_do_io) { 1353 cpu_io_recompile(cpu, retaddr); 1354 } 1355 1356 *out_offset = mr_offset; 1357 return section; 1358 } 1359 1360 static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr, 1361 unsigned size, MMUAccessType access_type, int mmu_idx, 1362 MemTxResult response, uintptr_t retaddr) 1363 { 1364 if (!cpu->ignore_memory_transaction_failures 1365 && cpu->cc->tcg_ops->do_transaction_failed) { 1366 hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 1367 1368 cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1369 access_type, mmu_idx, 1370 full->attrs, response, retaddr); 1371 } 1372 } 1373 1374 /* Return true if ADDR is present in the victim tlb, and has been copied 1375 back to the main tlb. */ 1376 static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index, 1377 MMUAccessType access_type, vaddr page) 1378 { 1379 size_t vidx; 1380 1381 assert_cpu_is_self(cpu); 1382 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1383 CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx]; 1384 uint64_t cmp = tlb_read_idx(vtlb, access_type); 1385 1386 if (cmp == page) { 1387 /* Found entry in victim tlb, swap tlb and iotlb. */ 1388 CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index]; 1389 1390 qemu_spin_lock(&cpu->neg.tlb.c.lock); 1391 copy_tlb_helper_locked(&tmptlb, tlb); 1392 copy_tlb_helper_locked(tlb, vtlb); 1393 copy_tlb_helper_locked(vtlb, &tmptlb); 1394 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 1395 1396 CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1397 CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx]; 1398 CPUTLBEntryFull tmpf; 1399 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1400 return true; 1401 } 1402 } 1403 return false; 1404 } 1405 1406 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1407 CPUTLBEntryFull *full, uintptr_t retaddr) 1408 { 1409 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1410 1411 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1412 1413 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1414 tb_invalidate_phys_range_fast(ram_addr, size, retaddr); 1415 } 1416 1417 /* 1418 * Set both VGA and migration bits for simplicity and to remove 1419 * the notdirty callback faster. 1420 */ 1421 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1422 1423 /* We remove the notdirty callback only if the code has been flushed. */ 1424 if (!cpu_physical_memory_is_clean(ram_addr)) { 1425 trace_memory_notdirty_set_dirty(mem_vaddr); 1426 tlb_set_dirty(cpu, mem_vaddr); 1427 } 1428 } 1429 1430 static int probe_access_internal(CPUState *cpu, vaddr addr, 1431 int fault_size, MMUAccessType access_type, 1432 int mmu_idx, bool nonfault, 1433 void **phost, CPUTLBEntryFull **pfull, 1434 uintptr_t retaddr, bool check_mem_cbs) 1435 { 1436 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1437 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr); 1438 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1439 vaddr page_addr = addr & TARGET_PAGE_MASK; 1440 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW; 1441 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu); 1442 CPUTLBEntryFull *full; 1443 1444 if (!tlb_hit_page(tlb_addr, page_addr)) { 1445 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) { 1446 if (!cpu->cc->tcg_ops->tlb_fill(cpu, addr, fault_size, access_type, 1447 mmu_idx, nonfault, retaddr)) { 1448 /* Non-faulting page table read failed. */ 1449 *phost = NULL; 1450 *pfull = NULL; 1451 return TLB_INVALID_MASK; 1452 } 1453 1454 /* TLB resize via tlb_fill may have moved the entry. */ 1455 index = tlb_index(cpu, mmu_idx, addr); 1456 entry = tlb_entry(cpu, mmu_idx, addr); 1457 1458 /* 1459 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1460 * to force the next access through tlb_fill. We've just 1461 * called tlb_fill, so we know that this entry *is* valid. 1462 */ 1463 flags &= ~TLB_INVALID_MASK; 1464 } 1465 tlb_addr = tlb_read_idx(entry, access_type); 1466 } 1467 flags &= tlb_addr; 1468 1469 *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1470 flags |= full->slow_flags[access_type]; 1471 1472 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1473 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY)) 1474 || 1475 (access_type != MMU_INST_FETCH && force_mmio)) { 1476 *phost = NULL; 1477 return TLB_MMIO; 1478 } 1479 1480 /* Everything else is RAM. */ 1481 *phost = (void *)((uintptr_t)addr + entry->addend); 1482 return flags; 1483 } 1484 1485 int probe_access_full(CPUArchState *env, vaddr addr, int size, 1486 MMUAccessType access_type, int mmu_idx, 1487 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1488 uintptr_t retaddr) 1489 { 1490 int flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1491 mmu_idx, nonfault, phost, pfull, retaddr, 1492 true); 1493 1494 /* Handle clean RAM pages. */ 1495 if (unlikely(flags & TLB_NOTDIRTY)) { 1496 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr); 1497 flags &= ~TLB_NOTDIRTY; 1498 } 1499 1500 return flags; 1501 } 1502 1503 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size, 1504 MMUAccessType access_type, int mmu_idx, 1505 void **phost, CPUTLBEntryFull **pfull) 1506 { 1507 void *discard_phost; 1508 CPUTLBEntryFull *discard_tlb; 1509 1510 /* privately handle users that don't need full results */ 1511 phost = phost ? phost : &discard_phost; 1512 pfull = pfull ? pfull : &discard_tlb; 1513 1514 int flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1515 mmu_idx, true, phost, pfull, 0, false); 1516 1517 /* Handle clean RAM pages. */ 1518 if (unlikely(flags & TLB_NOTDIRTY)) { 1519 notdirty_write(env_cpu(env), addr, 1, *pfull, 0); 1520 flags &= ~TLB_NOTDIRTY; 1521 } 1522 1523 return flags; 1524 } 1525 1526 int probe_access_flags(CPUArchState *env, vaddr addr, int size, 1527 MMUAccessType access_type, int mmu_idx, 1528 bool nonfault, void **phost, uintptr_t retaddr) 1529 { 1530 CPUTLBEntryFull *full; 1531 int flags; 1532 1533 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1534 1535 flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1536 mmu_idx, nonfault, phost, &full, retaddr, 1537 true); 1538 1539 /* Handle clean RAM pages. */ 1540 if (unlikely(flags & TLB_NOTDIRTY)) { 1541 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1542 flags &= ~TLB_NOTDIRTY; 1543 } 1544 1545 return flags; 1546 } 1547 1548 void *probe_access(CPUArchState *env, vaddr addr, int size, 1549 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1550 { 1551 CPUTLBEntryFull *full; 1552 void *host; 1553 int flags; 1554 1555 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1556 1557 flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1558 mmu_idx, false, &host, &full, retaddr, 1559 true); 1560 1561 /* Per the interface, size == 0 merely faults the access. */ 1562 if (size == 0) { 1563 return NULL; 1564 } 1565 1566 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1567 /* Handle watchpoints. */ 1568 if (flags & TLB_WATCHPOINT) { 1569 int wp_access = (access_type == MMU_DATA_STORE 1570 ? BP_MEM_WRITE : BP_MEM_READ); 1571 cpu_check_watchpoint(env_cpu(env), addr, size, 1572 full->attrs, wp_access, retaddr); 1573 } 1574 1575 /* Handle clean RAM pages. */ 1576 if (flags & TLB_NOTDIRTY) { 1577 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1578 } 1579 } 1580 1581 return host; 1582 } 1583 1584 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1585 MMUAccessType access_type, int mmu_idx) 1586 { 1587 CPUTLBEntryFull *full; 1588 void *host; 1589 int flags; 1590 1591 flags = probe_access_internal(env_cpu(env), addr, 0, access_type, 1592 mmu_idx, true, &host, &full, 0, false); 1593 1594 /* No combination of flags are expected by the caller. */ 1595 return flags ? NULL : host; 1596 } 1597 1598 /* 1599 * Return a ram_addr_t for the virtual address for execution. 1600 * 1601 * Return -1 if we can't translate and execute from an entire page 1602 * of RAM. This will force us to execute by loading and translating 1603 * one insn at a time, without caching. 1604 * 1605 * NOTE: This function will trigger an exception if the page is 1606 * not executable. 1607 */ 1608 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr, 1609 void **hostp) 1610 { 1611 CPUTLBEntryFull *full; 1612 void *p; 1613 1614 (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH, 1615 cpu_mmu_index(env, true), false, 1616 &p, &full, 0, false); 1617 if (p == NULL) { 1618 return -1; 1619 } 1620 1621 if (full->lg_page_size < TARGET_PAGE_BITS) { 1622 return -1; 1623 } 1624 1625 if (hostp) { 1626 *hostp = p; 1627 } 1628 return qemu_ram_addr_from_host_nofail(p); 1629 } 1630 1631 /* Load/store with atomicity primitives. */ 1632 #include "ldst_atomicity.c.inc" 1633 1634 #ifdef CONFIG_PLUGIN 1635 /* 1636 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1637 * This should be a hot path as we will have just looked this path up 1638 * in the softmmu lookup code (or helper). We don't handle re-fills or 1639 * checking the victim table. This is purely informational. 1640 * 1641 * The one corner case is i/o write, which can cause changes to the 1642 * address space. Those changes, and the corresponding tlb flush, 1643 * should be delayed until the next TB, so even then this ought not fail. 1644 * But check, Just in Case. 1645 */ 1646 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx, 1647 bool is_store, struct qemu_plugin_hwaddr *data) 1648 { 1649 CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr); 1650 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1651 MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD; 1652 uint64_t tlb_addr = tlb_read_idx(tlbe, access_type); 1653 CPUTLBEntryFull *full; 1654 1655 if (unlikely(!tlb_hit(tlb_addr, addr))) { 1656 return false; 1657 } 1658 1659 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1660 data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 1661 1662 /* We must have an iotlb entry for MMIO */ 1663 if (tlb_addr & TLB_MMIO) { 1664 MemoryRegionSection *section = 1665 iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK, 1666 full->attrs); 1667 data->is_io = true; 1668 data->mr = section->mr; 1669 } else { 1670 data->is_io = false; 1671 data->mr = NULL; 1672 } 1673 return true; 1674 } 1675 #endif 1676 1677 /* 1678 * Probe for a load/store operation. 1679 * Return the host address and into @flags. 1680 */ 1681 1682 typedef struct MMULookupPageData { 1683 CPUTLBEntryFull *full; 1684 void *haddr; 1685 vaddr addr; 1686 int flags; 1687 int size; 1688 } MMULookupPageData; 1689 1690 typedef struct MMULookupLocals { 1691 MMULookupPageData page[2]; 1692 MemOp memop; 1693 int mmu_idx; 1694 } MMULookupLocals; 1695 1696 /** 1697 * mmu_lookup1: translate one page 1698 * @cpu: generic cpu state 1699 * @data: lookup parameters 1700 * @mmu_idx: virtual address context 1701 * @access_type: load/store/code 1702 * @ra: return address into tcg generated code, or 0 1703 * 1704 * Resolve the translation for the one page at @data.addr, filling in 1705 * the rest of @data with the results. If the translation fails, 1706 * tlb_fill will longjmp out. Return true if the softmmu tlb for 1707 * @mmu_idx may have resized. 1708 */ 1709 static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data, 1710 int mmu_idx, MMUAccessType access_type, uintptr_t ra) 1711 { 1712 vaddr addr = data->addr; 1713 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1714 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr); 1715 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1716 bool maybe_resized = false; 1717 CPUTLBEntryFull *full; 1718 int flags; 1719 1720 /* If the TLB entry is for a different page, reload and try again. */ 1721 if (!tlb_hit(tlb_addr, addr)) { 1722 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, 1723 addr & TARGET_PAGE_MASK)) { 1724 tlb_fill(cpu, addr, data->size, access_type, mmu_idx, ra); 1725 maybe_resized = true; 1726 index = tlb_index(cpu, mmu_idx, addr); 1727 entry = tlb_entry(cpu, mmu_idx, addr); 1728 } 1729 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK; 1730 } 1731 1732 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1733 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW); 1734 flags |= full->slow_flags[access_type]; 1735 1736 data->full = full; 1737 data->flags = flags; 1738 /* Compute haddr speculatively; depending on flags it might be invalid. */ 1739 data->haddr = (void *)((uintptr_t)addr + entry->addend); 1740 1741 return maybe_resized; 1742 } 1743 1744 /** 1745 * mmu_watch_or_dirty 1746 * @cpu: generic cpu state 1747 * @data: lookup parameters 1748 * @access_type: load/store/code 1749 * @ra: return address into tcg generated code, or 0 1750 * 1751 * Trigger watchpoints for @data.addr:@data.size; 1752 * record writes to protected clean pages. 1753 */ 1754 static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data, 1755 MMUAccessType access_type, uintptr_t ra) 1756 { 1757 CPUTLBEntryFull *full = data->full; 1758 vaddr addr = data->addr; 1759 int flags = data->flags; 1760 int size = data->size; 1761 1762 /* On watchpoint hit, this will longjmp out. */ 1763 if (flags & TLB_WATCHPOINT) { 1764 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ; 1765 cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra); 1766 flags &= ~TLB_WATCHPOINT; 1767 } 1768 1769 /* Note that notdirty is only set for writes. */ 1770 if (flags & TLB_NOTDIRTY) { 1771 notdirty_write(cpu, addr, size, full, ra); 1772 flags &= ~TLB_NOTDIRTY; 1773 } 1774 data->flags = flags; 1775 } 1776 1777 /** 1778 * mmu_lookup: translate page(s) 1779 * @cpu: generic cpu state 1780 * @addr: virtual address 1781 * @oi: combined mmu_idx and MemOp 1782 * @ra: return address into tcg generated code, or 0 1783 * @access_type: load/store/code 1784 * @l: output result 1785 * 1786 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size 1787 * bytes. Return true if the lookup crosses a page boundary. 1788 */ 1789 static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi, 1790 uintptr_t ra, MMUAccessType type, MMULookupLocals *l) 1791 { 1792 unsigned a_bits; 1793 bool crosspage; 1794 int flags; 1795 1796 l->memop = get_memop(oi); 1797 l->mmu_idx = get_mmuidx(oi); 1798 1799 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES); 1800 1801 /* Handle CPU specific unaligned behaviour */ 1802 a_bits = get_alignment_bits(l->memop); 1803 if (addr & ((1 << a_bits) - 1)) { 1804 cpu_unaligned_access(cpu, addr, type, l->mmu_idx, ra); 1805 } 1806 1807 l->page[0].addr = addr; 1808 l->page[0].size = memop_size(l->memop); 1809 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK; 1810 l->page[1].size = 0; 1811 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK; 1812 1813 if (likely(!crosspage)) { 1814 mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra); 1815 1816 flags = l->page[0].flags; 1817 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1818 mmu_watch_or_dirty(cpu, &l->page[0], type, ra); 1819 } 1820 if (unlikely(flags & TLB_BSWAP)) { 1821 l->memop ^= MO_BSWAP; 1822 } 1823 } else { 1824 /* Finish compute of page crossing. */ 1825 int size0 = l->page[1].addr - addr; 1826 l->page[1].size = l->page[0].size - size0; 1827 l->page[0].size = size0; 1828 1829 /* 1830 * Lookup both pages, recognizing exceptions from either. If the 1831 * second lookup potentially resized, refresh first CPUTLBEntryFull. 1832 */ 1833 mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra); 1834 if (mmu_lookup1(cpu, &l->page[1], l->mmu_idx, type, ra)) { 1835 uintptr_t index = tlb_index(cpu, l->mmu_idx, addr); 1836 l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index]; 1837 } 1838 1839 flags = l->page[0].flags | l->page[1].flags; 1840 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1841 mmu_watch_or_dirty(cpu, &l->page[0], type, ra); 1842 mmu_watch_or_dirty(cpu, &l->page[1], type, ra); 1843 } 1844 1845 /* 1846 * Since target/sparc is the only user of TLB_BSWAP, and all 1847 * Sparc accesses are aligned, any treatment across two pages 1848 * would be arbitrary. Refuse it until there's a use. 1849 */ 1850 tcg_debug_assert((flags & TLB_BSWAP) == 0); 1851 } 1852 1853 return crosspage; 1854 } 1855 1856 /* 1857 * Probe for an atomic operation. Do not allow unaligned operations, 1858 * or io operations to proceed. Return the host address. 1859 */ 1860 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi, 1861 int size, uintptr_t retaddr) 1862 { 1863 uintptr_t mmu_idx = get_mmuidx(oi); 1864 MemOp mop = get_memop(oi); 1865 int a_bits = get_alignment_bits(mop); 1866 uintptr_t index; 1867 CPUTLBEntry *tlbe; 1868 vaddr tlb_addr; 1869 void *hostaddr; 1870 CPUTLBEntryFull *full; 1871 1872 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1873 1874 /* Adjust the given return address. */ 1875 retaddr -= GETPC_ADJ; 1876 1877 /* Enforce guest required alignment. */ 1878 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1879 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1880 cpu_unaligned_access(cpu, addr, MMU_DATA_STORE, 1881 mmu_idx, retaddr); 1882 } 1883 1884 /* Enforce qemu required alignment. */ 1885 if (unlikely(addr & (size - 1))) { 1886 /* We get here if guest alignment was not requested, 1887 or was not enforced by cpu_unaligned_access above. 1888 We might widen the access and emulate, but for now 1889 mark an exception and exit the cpu loop. */ 1890 goto stop_the_world; 1891 } 1892 1893 index = tlb_index(cpu, mmu_idx, addr); 1894 tlbe = tlb_entry(cpu, mmu_idx, addr); 1895 1896 /* Check TLB entry and enforce page permissions. */ 1897 tlb_addr = tlb_addr_write(tlbe); 1898 if (!tlb_hit(tlb_addr, addr)) { 1899 if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE, 1900 addr & TARGET_PAGE_MASK)) { 1901 tlb_fill(cpu, addr, size, 1902 MMU_DATA_STORE, mmu_idx, retaddr); 1903 index = tlb_index(cpu, mmu_idx, addr); 1904 tlbe = tlb_entry(cpu, mmu_idx, addr); 1905 } 1906 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1907 } 1908 1909 /* 1910 * Let the guest notice RMW on a write-only page. 1911 * We have just verified that the page is writable. 1912 * Subpage lookups may have left TLB_INVALID_MASK set, 1913 * but addr_read will only be -1 if PAGE_READ was unset. 1914 */ 1915 if (unlikely(tlbe->addr_read == -1)) { 1916 tlb_fill(cpu, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); 1917 /* 1918 * Since we don't support reads and writes to different 1919 * addresses, and we do have the proper page loaded for 1920 * write, this shouldn't ever return. But just in case, 1921 * handle via stop-the-world. 1922 */ 1923 goto stop_the_world; 1924 } 1925 /* Collect tlb flags for read. */ 1926 tlb_addr |= tlbe->addr_read; 1927 1928 /* Notice an IO access or a needs-MMU-lookup access */ 1929 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { 1930 /* There's really nothing that can be done to 1931 support this apart from stop-the-world. */ 1932 goto stop_the_world; 1933 } 1934 1935 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1936 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1937 1938 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1939 notdirty_write(cpu, addr, size, full, retaddr); 1940 } 1941 1942 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) { 1943 int wp_flags = 0; 1944 1945 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) { 1946 wp_flags |= BP_MEM_WRITE; 1947 } 1948 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) { 1949 wp_flags |= BP_MEM_READ; 1950 } 1951 if (wp_flags) { 1952 cpu_check_watchpoint(cpu, addr, size, 1953 full->attrs, wp_flags, retaddr); 1954 } 1955 } 1956 1957 return hostaddr; 1958 1959 stop_the_world: 1960 cpu_loop_exit_atomic(cpu, retaddr); 1961 } 1962 1963 /* 1964 * Load Helpers 1965 * 1966 * We support two different access types. SOFTMMU_CODE_ACCESS is 1967 * specifically for reading instructions from system memory. It is 1968 * called by the translation loop and in some helpers where the code 1969 * is disassembled. It shouldn't be called directly by guest code. 1970 * 1971 * For the benefit of TCG generated code, we want to avoid the 1972 * complication of ABI-specific return type promotion and always 1973 * return a value extended to the register size of the host. This is 1974 * tcg_target_long, except in the case of a 32-bit host and 64-bit 1975 * data, and for that we always have uint64_t. 1976 * 1977 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 1978 */ 1979 1980 /** 1981 * do_ld_mmio_beN: 1982 * @cpu: generic cpu state 1983 * @full: page parameters 1984 * @ret_be: accumulated data 1985 * @addr: virtual address 1986 * @size: number of bytes 1987 * @mmu_idx: virtual address context 1988 * @ra: return address into tcg generated code, or 0 1989 * Context: iothread lock held 1990 * 1991 * Load @size bytes from @addr, which is memory-mapped i/o. 1992 * The bytes are concatenated in big-endian order with @ret_be. 1993 */ 1994 static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 1995 uint64_t ret_be, vaddr addr, int size, 1996 int mmu_idx, MMUAccessType type, uintptr_t ra, 1997 MemoryRegion *mr, hwaddr mr_offset) 1998 { 1999 do { 2000 MemOp this_mop; 2001 unsigned this_size; 2002 uint64_t val; 2003 MemTxResult r; 2004 2005 /* Read aligned pieces up to 8 bytes. */ 2006 this_mop = ctz32(size | (int)addr | 8); 2007 this_size = 1 << this_mop; 2008 this_mop |= MO_BE; 2009 2010 r = memory_region_dispatch_read(mr, mr_offset, &val, 2011 this_mop, full->attrs); 2012 if (unlikely(r != MEMTX_OK)) { 2013 io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra); 2014 } 2015 if (this_size == 8) { 2016 return val; 2017 } 2018 2019 ret_be = (ret_be << (this_size * 8)) | val; 2020 addr += this_size; 2021 mr_offset += this_size; 2022 size -= this_size; 2023 } while (size); 2024 2025 return ret_be; 2026 } 2027 2028 static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 2029 uint64_t ret_be, vaddr addr, int size, 2030 int mmu_idx, MMUAccessType type, uintptr_t ra) 2031 { 2032 MemoryRegionSection *section; 2033 MemoryRegion *mr; 2034 hwaddr mr_offset; 2035 MemTxAttrs attrs; 2036 uint64_t ret; 2037 2038 tcg_debug_assert(size > 0 && size <= 8); 2039 2040 attrs = full->attrs; 2041 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2042 mr = section->mr; 2043 2044 qemu_mutex_lock_iothread(); 2045 ret = int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx, 2046 type, ra, mr, mr_offset); 2047 qemu_mutex_unlock_iothread(); 2048 2049 return ret; 2050 } 2051 2052 static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 2053 uint64_t ret_be, vaddr addr, int size, 2054 int mmu_idx, uintptr_t ra) 2055 { 2056 MemoryRegionSection *section; 2057 MemoryRegion *mr; 2058 hwaddr mr_offset; 2059 MemTxAttrs attrs; 2060 uint64_t a, b; 2061 2062 tcg_debug_assert(size > 8 && size <= 16); 2063 2064 attrs = full->attrs; 2065 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2066 mr = section->mr; 2067 2068 qemu_mutex_lock_iothread(); 2069 a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx, 2070 MMU_DATA_LOAD, ra, mr, mr_offset); 2071 b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx, 2072 MMU_DATA_LOAD, ra, mr, mr_offset + size - 8); 2073 qemu_mutex_unlock_iothread(); 2074 2075 return int128_make128(b, a); 2076 } 2077 2078 /** 2079 * do_ld_bytes_beN 2080 * @p: translation parameters 2081 * @ret_be: accumulated data 2082 * 2083 * Load @p->size bytes from @p->haddr, which is RAM. 2084 * The bytes to concatenated in big-endian order with @ret_be. 2085 */ 2086 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) 2087 { 2088 uint8_t *haddr = p->haddr; 2089 int i, size = p->size; 2090 2091 for (i = 0; i < size; i++) { 2092 ret_be = (ret_be << 8) | haddr[i]; 2093 } 2094 return ret_be; 2095 } 2096 2097 /** 2098 * do_ld_parts_beN 2099 * @p: translation parameters 2100 * @ret_be: accumulated data 2101 * 2102 * As do_ld_bytes_beN, but atomically on each aligned part. 2103 */ 2104 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be) 2105 { 2106 void *haddr = p->haddr; 2107 int size = p->size; 2108 2109 do { 2110 uint64_t x; 2111 int n; 2112 2113 /* 2114 * Find minimum of alignment and size. 2115 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which 2116 * would have only checked the low bits of addr|size once at the start, 2117 * but is just as easy. 2118 */ 2119 switch (((uintptr_t)haddr | size) & 7) { 2120 case 4: 2121 x = cpu_to_be32(load_atomic4(haddr)); 2122 ret_be = (ret_be << 32) | x; 2123 n = 4; 2124 break; 2125 case 2: 2126 case 6: 2127 x = cpu_to_be16(load_atomic2(haddr)); 2128 ret_be = (ret_be << 16) | x; 2129 n = 2; 2130 break; 2131 default: 2132 x = *(uint8_t *)haddr; 2133 ret_be = (ret_be << 8) | x; 2134 n = 1; 2135 break; 2136 case 0: 2137 g_assert_not_reached(); 2138 } 2139 haddr += n; 2140 size -= n; 2141 } while (size != 0); 2142 return ret_be; 2143 } 2144 2145 /** 2146 * do_ld_parts_be4 2147 * @p: translation parameters 2148 * @ret_be: accumulated data 2149 * 2150 * As do_ld_bytes_beN, but with one atomic load. 2151 * Four aligned bytes are guaranteed to cover the load. 2152 */ 2153 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be) 2154 { 2155 int o = p->addr & 3; 2156 uint32_t x = load_atomic4(p->haddr - o); 2157 2158 x = cpu_to_be32(x); 2159 x <<= o * 8; 2160 x >>= (4 - p->size) * 8; 2161 return (ret_be << (p->size * 8)) | x; 2162 } 2163 2164 /** 2165 * do_ld_parts_be8 2166 * @p: translation parameters 2167 * @ret_be: accumulated data 2168 * 2169 * As do_ld_bytes_beN, but with one atomic load. 2170 * Eight aligned bytes are guaranteed to cover the load. 2171 */ 2172 static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra, 2173 MMULookupPageData *p, uint64_t ret_be) 2174 { 2175 int o = p->addr & 7; 2176 uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o); 2177 2178 x = cpu_to_be64(x); 2179 x <<= o * 8; 2180 x >>= (8 - p->size) * 8; 2181 return (ret_be << (p->size * 8)) | x; 2182 } 2183 2184 /** 2185 * do_ld_parts_be16 2186 * @p: translation parameters 2187 * @ret_be: accumulated data 2188 * 2189 * As do_ld_bytes_beN, but with one atomic load. 2190 * 16 aligned bytes are guaranteed to cover the load. 2191 */ 2192 static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra, 2193 MMULookupPageData *p, uint64_t ret_be) 2194 { 2195 int o = p->addr & 15; 2196 Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o); 2197 int size = p->size; 2198 2199 if (!HOST_BIG_ENDIAN) { 2200 y = bswap128(y); 2201 } 2202 y = int128_lshift(y, o * 8); 2203 y = int128_urshift(y, (16 - size) * 8); 2204 x = int128_make64(ret_be); 2205 x = int128_lshift(x, size * 8); 2206 return int128_or(x, y); 2207 } 2208 2209 /* 2210 * Wrapper for the above. 2211 */ 2212 static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p, 2213 uint64_t ret_be, int mmu_idx, MMUAccessType type, 2214 MemOp mop, uintptr_t ra) 2215 { 2216 MemOp atom; 2217 unsigned tmp, half_size; 2218 2219 if (unlikely(p->flags & TLB_MMIO)) { 2220 return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size, 2221 mmu_idx, type, ra); 2222 } 2223 2224 /* 2225 * It is a given that we cross a page and therefore there is no 2226 * atomicity for the load as a whole, but subobjects may need attention. 2227 */ 2228 atom = mop & MO_ATOM_MASK; 2229 switch (atom) { 2230 case MO_ATOM_SUBALIGN: 2231 return do_ld_parts_beN(p, ret_be); 2232 2233 case MO_ATOM_IFALIGN_PAIR: 2234 case MO_ATOM_WITHIN16_PAIR: 2235 tmp = mop & MO_SIZE; 2236 tmp = tmp ? tmp - 1 : 0; 2237 half_size = 1 << tmp; 2238 if (atom == MO_ATOM_IFALIGN_PAIR 2239 ? p->size == half_size 2240 : p->size >= half_size) { 2241 if (!HAVE_al8_fast && p->size < 4) { 2242 return do_ld_whole_be4(p, ret_be); 2243 } else { 2244 return do_ld_whole_be8(cpu, ra, p, ret_be); 2245 } 2246 } 2247 /* fall through */ 2248 2249 case MO_ATOM_IFALIGN: 2250 case MO_ATOM_WITHIN16: 2251 case MO_ATOM_NONE: 2252 return do_ld_bytes_beN(p, ret_be); 2253 2254 default: 2255 g_assert_not_reached(); 2256 } 2257 } 2258 2259 /* 2260 * Wrapper for the above, for 8 < size < 16. 2261 */ 2262 static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p, 2263 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra) 2264 { 2265 int size = p->size; 2266 uint64_t b; 2267 MemOp atom; 2268 2269 if (unlikely(p->flags & TLB_MMIO)) { 2270 return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra); 2271 } 2272 2273 /* 2274 * It is a given that we cross a page and therefore there is no 2275 * atomicity for the load as a whole, but subobjects may need attention. 2276 */ 2277 atom = mop & MO_ATOM_MASK; 2278 switch (atom) { 2279 case MO_ATOM_SUBALIGN: 2280 p->size = size - 8; 2281 a = do_ld_parts_beN(p, a); 2282 p->haddr += size - 8; 2283 p->size = 8; 2284 b = do_ld_parts_beN(p, 0); 2285 break; 2286 2287 case MO_ATOM_WITHIN16_PAIR: 2288 /* Since size > 8, this is the half that must be atomic. */ 2289 return do_ld_whole_be16(cpu, ra, p, a); 2290 2291 case MO_ATOM_IFALIGN_PAIR: 2292 /* 2293 * Since size > 8, both halves are misaligned, 2294 * and so neither is atomic. 2295 */ 2296 case MO_ATOM_IFALIGN: 2297 case MO_ATOM_WITHIN16: 2298 case MO_ATOM_NONE: 2299 p->size = size - 8; 2300 a = do_ld_bytes_beN(p, a); 2301 b = ldq_be_p(p->haddr + size - 8); 2302 break; 2303 2304 default: 2305 g_assert_not_reached(); 2306 } 2307 2308 return int128_make128(b, a); 2309 } 2310 2311 static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2312 MMUAccessType type, uintptr_t ra) 2313 { 2314 if (unlikely(p->flags & TLB_MMIO)) { 2315 return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra); 2316 } else { 2317 return *(uint8_t *)p->haddr; 2318 } 2319 } 2320 2321 static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2322 MMUAccessType type, MemOp memop, uintptr_t ra) 2323 { 2324 uint16_t ret; 2325 2326 if (unlikely(p->flags & TLB_MMIO)) { 2327 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra); 2328 if ((memop & MO_BSWAP) == MO_LE) { 2329 ret = bswap16(ret); 2330 } 2331 } else { 2332 /* Perform the load host endian, then swap if necessary. */ 2333 ret = load_atom_2(cpu, ra, p->haddr, memop); 2334 if (memop & MO_BSWAP) { 2335 ret = bswap16(ret); 2336 } 2337 } 2338 return ret; 2339 } 2340 2341 static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2342 MMUAccessType type, MemOp memop, uintptr_t ra) 2343 { 2344 uint32_t ret; 2345 2346 if (unlikely(p->flags & TLB_MMIO)) { 2347 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra); 2348 if ((memop & MO_BSWAP) == MO_LE) { 2349 ret = bswap32(ret); 2350 } 2351 } else { 2352 /* Perform the load host endian. */ 2353 ret = load_atom_4(cpu, ra, p->haddr, memop); 2354 if (memop & MO_BSWAP) { 2355 ret = bswap32(ret); 2356 } 2357 } 2358 return ret; 2359 } 2360 2361 static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2362 MMUAccessType type, MemOp memop, uintptr_t ra) 2363 { 2364 uint64_t ret; 2365 2366 if (unlikely(p->flags & TLB_MMIO)) { 2367 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra); 2368 if ((memop & MO_BSWAP) == MO_LE) { 2369 ret = bswap64(ret); 2370 } 2371 } else { 2372 /* Perform the load host endian. */ 2373 ret = load_atom_8(cpu, ra, p->haddr, memop); 2374 if (memop & MO_BSWAP) { 2375 ret = bswap64(ret); 2376 } 2377 } 2378 return ret; 2379 } 2380 2381 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2382 uintptr_t ra, MMUAccessType access_type) 2383 { 2384 MMULookupLocals l; 2385 bool crosspage; 2386 2387 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2388 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2389 tcg_debug_assert(!crosspage); 2390 2391 return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra); 2392 } 2393 2394 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2395 uintptr_t ra, MMUAccessType access_type) 2396 { 2397 MMULookupLocals l; 2398 bool crosspage; 2399 uint16_t ret; 2400 uint8_t a, b; 2401 2402 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2403 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2404 if (likely(!crosspage)) { 2405 return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2406 } 2407 2408 a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra); 2409 b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra); 2410 2411 if ((l.memop & MO_BSWAP) == MO_LE) { 2412 ret = a | (b << 8); 2413 } else { 2414 ret = b | (a << 8); 2415 } 2416 return ret; 2417 } 2418 2419 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2420 uintptr_t ra, MMUAccessType access_type) 2421 { 2422 MMULookupLocals l; 2423 bool crosspage; 2424 uint32_t ret; 2425 2426 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2427 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2428 if (likely(!crosspage)) { 2429 return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2430 } 2431 2432 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2433 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2434 if ((l.memop & MO_BSWAP) == MO_LE) { 2435 ret = bswap32(ret); 2436 } 2437 return ret; 2438 } 2439 2440 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2441 uintptr_t ra, MMUAccessType access_type) 2442 { 2443 MMULookupLocals l; 2444 bool crosspage; 2445 uint64_t ret; 2446 2447 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2448 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2449 if (likely(!crosspage)) { 2450 return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2451 } 2452 2453 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2454 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2455 if ((l.memop & MO_BSWAP) == MO_LE) { 2456 ret = bswap64(ret); 2457 } 2458 return ret; 2459 } 2460 2461 static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr, 2462 MemOpIdx oi, uintptr_t ra) 2463 { 2464 MMULookupLocals l; 2465 bool crosspage; 2466 uint64_t a, b; 2467 Int128 ret; 2468 int first; 2469 2470 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2471 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l); 2472 if (likely(!crosspage)) { 2473 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2474 ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16, 2475 l.mmu_idx, ra); 2476 if ((l.memop & MO_BSWAP) == MO_LE) { 2477 ret = bswap128(ret); 2478 } 2479 } else { 2480 /* Perform the load host endian. */ 2481 ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop); 2482 if (l.memop & MO_BSWAP) { 2483 ret = bswap128(ret); 2484 } 2485 } 2486 return ret; 2487 } 2488 2489 first = l.page[0].size; 2490 if (first == 8) { 2491 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64; 2492 2493 a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2494 b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2495 if ((mop8 & MO_BSWAP) == MO_LE) { 2496 ret = int128_make128(a, b); 2497 } else { 2498 ret = int128_make128(b, a); 2499 } 2500 return ret; 2501 } 2502 2503 if (first < 8) { 2504 a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, 2505 MMU_DATA_LOAD, l.memop, ra); 2506 ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra); 2507 } else { 2508 ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra); 2509 b = int128_getlo(ret); 2510 ret = int128_lshift(ret, l.page[1].size * 8); 2511 a = int128_gethi(ret); 2512 b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx, 2513 MMU_DATA_LOAD, l.memop, ra); 2514 ret = int128_make128(b, a); 2515 } 2516 if ((l.memop & MO_BSWAP) == MO_LE) { 2517 ret = bswap128(ret); 2518 } 2519 return ret; 2520 } 2521 2522 /* 2523 * Store Helpers 2524 */ 2525 2526 /** 2527 * do_st_mmio_leN: 2528 * @cpu: generic cpu state 2529 * @full: page parameters 2530 * @val_le: data to store 2531 * @addr: virtual address 2532 * @size: number of bytes 2533 * @mmu_idx: virtual address context 2534 * @ra: return address into tcg generated code, or 0 2535 * Context: iothread lock held 2536 * 2537 * Store @size bytes at @addr, which is memory-mapped i/o. 2538 * The bytes to store are extracted in little-endian order from @val_le; 2539 * return the bytes of @val_le beyond @p->size that have not been stored. 2540 */ 2541 static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2542 uint64_t val_le, vaddr addr, int size, 2543 int mmu_idx, uintptr_t ra, 2544 MemoryRegion *mr, hwaddr mr_offset) 2545 { 2546 do { 2547 MemOp this_mop; 2548 unsigned this_size; 2549 MemTxResult r; 2550 2551 /* Store aligned pieces up to 8 bytes. */ 2552 this_mop = ctz32(size | (int)addr | 8); 2553 this_size = 1 << this_mop; 2554 this_mop |= MO_LE; 2555 2556 r = memory_region_dispatch_write(mr, mr_offset, val_le, 2557 this_mop, full->attrs); 2558 if (unlikely(r != MEMTX_OK)) { 2559 io_failed(cpu, full, addr, this_size, MMU_DATA_STORE, 2560 mmu_idx, r, ra); 2561 } 2562 if (this_size == 8) { 2563 return 0; 2564 } 2565 2566 val_le >>= this_size * 8; 2567 addr += this_size; 2568 mr_offset += this_size; 2569 size -= this_size; 2570 } while (size); 2571 2572 return val_le; 2573 } 2574 2575 static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2576 uint64_t val_le, vaddr addr, int size, 2577 int mmu_idx, uintptr_t ra) 2578 { 2579 MemoryRegionSection *section; 2580 hwaddr mr_offset; 2581 MemoryRegion *mr; 2582 MemTxAttrs attrs; 2583 uint64_t ret; 2584 2585 tcg_debug_assert(size > 0 && size <= 8); 2586 2587 attrs = full->attrs; 2588 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2589 mr = section->mr; 2590 2591 qemu_mutex_lock_iothread(); 2592 ret = int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx, 2593 ra, mr, mr_offset); 2594 qemu_mutex_unlock_iothread(); 2595 2596 return ret; 2597 } 2598 2599 static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2600 Int128 val_le, vaddr addr, int size, 2601 int mmu_idx, uintptr_t ra) 2602 { 2603 MemoryRegionSection *section; 2604 MemoryRegion *mr; 2605 hwaddr mr_offset; 2606 MemTxAttrs attrs; 2607 uint64_t ret; 2608 2609 tcg_debug_assert(size > 8 && size <= 16); 2610 2611 attrs = full->attrs; 2612 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2613 mr = section->mr; 2614 2615 qemu_mutex_lock_iothread(); 2616 int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8, 2617 mmu_idx, ra, mr, mr_offset); 2618 ret = int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8, 2619 size - 8, mmu_idx, ra, mr, mr_offset + 8); 2620 qemu_mutex_unlock_iothread(); 2621 2622 return ret; 2623 } 2624 2625 /* 2626 * Wrapper for the above. 2627 */ 2628 static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p, 2629 uint64_t val_le, int mmu_idx, 2630 MemOp mop, uintptr_t ra) 2631 { 2632 MemOp atom; 2633 unsigned tmp, half_size; 2634 2635 if (unlikely(p->flags & TLB_MMIO)) { 2636 return do_st_mmio_leN(cpu, p->full, val_le, p->addr, 2637 p->size, mmu_idx, ra); 2638 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2639 return val_le >> (p->size * 8); 2640 } 2641 2642 /* 2643 * It is a given that we cross a page and therefore there is no atomicity 2644 * for the store as a whole, but subobjects may need attention. 2645 */ 2646 atom = mop & MO_ATOM_MASK; 2647 switch (atom) { 2648 case MO_ATOM_SUBALIGN: 2649 return store_parts_leN(p->haddr, p->size, val_le); 2650 2651 case MO_ATOM_IFALIGN_PAIR: 2652 case MO_ATOM_WITHIN16_PAIR: 2653 tmp = mop & MO_SIZE; 2654 tmp = tmp ? tmp - 1 : 0; 2655 half_size = 1 << tmp; 2656 if (atom == MO_ATOM_IFALIGN_PAIR 2657 ? p->size == half_size 2658 : p->size >= half_size) { 2659 if (!HAVE_al8_fast && p->size <= 4) { 2660 return store_whole_le4(p->haddr, p->size, val_le); 2661 } else if (HAVE_al8) { 2662 return store_whole_le8(p->haddr, p->size, val_le); 2663 } else { 2664 cpu_loop_exit_atomic(cpu, ra); 2665 } 2666 } 2667 /* fall through */ 2668 2669 case MO_ATOM_IFALIGN: 2670 case MO_ATOM_WITHIN16: 2671 case MO_ATOM_NONE: 2672 return store_bytes_leN(p->haddr, p->size, val_le); 2673 2674 default: 2675 g_assert_not_reached(); 2676 } 2677 } 2678 2679 /* 2680 * Wrapper for the above, for 8 < size < 16. 2681 */ 2682 static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p, 2683 Int128 val_le, int mmu_idx, 2684 MemOp mop, uintptr_t ra) 2685 { 2686 int size = p->size; 2687 MemOp atom; 2688 2689 if (unlikely(p->flags & TLB_MMIO)) { 2690 return do_st16_mmio_leN(cpu, p->full, val_le, p->addr, 2691 size, mmu_idx, ra); 2692 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2693 return int128_gethi(val_le) >> ((size - 8) * 8); 2694 } 2695 2696 /* 2697 * It is a given that we cross a page and therefore there is no atomicity 2698 * for the store as a whole, but subobjects may need attention. 2699 */ 2700 atom = mop & MO_ATOM_MASK; 2701 switch (atom) { 2702 case MO_ATOM_SUBALIGN: 2703 store_parts_leN(p->haddr, 8, int128_getlo(val_le)); 2704 return store_parts_leN(p->haddr + 8, p->size - 8, 2705 int128_gethi(val_le)); 2706 2707 case MO_ATOM_WITHIN16_PAIR: 2708 /* Since size > 8, this is the half that must be atomic. */ 2709 if (!HAVE_ATOMIC128_RW) { 2710 cpu_loop_exit_atomic(cpu, ra); 2711 } 2712 return store_whole_le16(p->haddr, p->size, val_le); 2713 2714 case MO_ATOM_IFALIGN_PAIR: 2715 /* 2716 * Since size > 8, both halves are misaligned, 2717 * and so neither is atomic. 2718 */ 2719 case MO_ATOM_IFALIGN: 2720 case MO_ATOM_WITHIN16: 2721 case MO_ATOM_NONE: 2722 stq_le_p(p->haddr, int128_getlo(val_le)); 2723 return store_bytes_leN(p->haddr + 8, p->size - 8, 2724 int128_gethi(val_le)); 2725 2726 default: 2727 g_assert_not_reached(); 2728 } 2729 } 2730 2731 static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val, 2732 int mmu_idx, uintptr_t ra) 2733 { 2734 if (unlikely(p->flags & TLB_MMIO)) { 2735 do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra); 2736 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2737 /* nothing */ 2738 } else { 2739 *(uint8_t *)p->haddr = val; 2740 } 2741 } 2742 2743 static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val, 2744 int mmu_idx, MemOp memop, uintptr_t ra) 2745 { 2746 if (unlikely(p->flags & TLB_MMIO)) { 2747 if ((memop & MO_BSWAP) != MO_LE) { 2748 val = bswap16(val); 2749 } 2750 do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra); 2751 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2752 /* nothing */ 2753 } else { 2754 /* Swap to host endian if necessary, then store. */ 2755 if (memop & MO_BSWAP) { 2756 val = bswap16(val); 2757 } 2758 store_atom_2(cpu, ra, p->haddr, memop, val); 2759 } 2760 } 2761 2762 static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val, 2763 int mmu_idx, MemOp memop, uintptr_t ra) 2764 { 2765 if (unlikely(p->flags & TLB_MMIO)) { 2766 if ((memop & MO_BSWAP) != MO_LE) { 2767 val = bswap32(val); 2768 } 2769 do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra); 2770 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2771 /* nothing */ 2772 } else { 2773 /* Swap to host endian if necessary, then store. */ 2774 if (memop & MO_BSWAP) { 2775 val = bswap32(val); 2776 } 2777 store_atom_4(cpu, ra, p->haddr, memop, val); 2778 } 2779 } 2780 2781 static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val, 2782 int mmu_idx, MemOp memop, uintptr_t ra) 2783 { 2784 if (unlikely(p->flags & TLB_MMIO)) { 2785 if ((memop & MO_BSWAP) != MO_LE) { 2786 val = bswap64(val); 2787 } 2788 do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra); 2789 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2790 /* nothing */ 2791 } else { 2792 /* Swap to host endian if necessary, then store. */ 2793 if (memop & MO_BSWAP) { 2794 val = bswap64(val); 2795 } 2796 store_atom_8(cpu, ra, p->haddr, memop, val); 2797 } 2798 } 2799 2800 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val, 2801 MemOpIdx oi, uintptr_t ra) 2802 { 2803 MMULookupLocals l; 2804 bool crosspage; 2805 2806 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2807 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2808 tcg_debug_assert(!crosspage); 2809 2810 do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra); 2811 } 2812 2813 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val, 2814 MemOpIdx oi, uintptr_t ra) 2815 { 2816 MMULookupLocals l; 2817 bool crosspage; 2818 uint8_t a, b; 2819 2820 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2821 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2822 if (likely(!crosspage)) { 2823 do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2824 return; 2825 } 2826 2827 if ((l.memop & MO_BSWAP) == MO_LE) { 2828 a = val, b = val >> 8; 2829 } else { 2830 b = val, a = val >> 8; 2831 } 2832 do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra); 2833 do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra); 2834 } 2835 2836 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val, 2837 MemOpIdx oi, uintptr_t ra) 2838 { 2839 MMULookupLocals l; 2840 bool crosspage; 2841 2842 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2843 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2844 if (likely(!crosspage)) { 2845 do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2846 return; 2847 } 2848 2849 /* Swap to little endian for simplicity, then store by bytes. */ 2850 if ((l.memop & MO_BSWAP) != MO_LE) { 2851 val = bswap32(val); 2852 } 2853 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2854 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2855 } 2856 2857 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val, 2858 MemOpIdx oi, uintptr_t ra) 2859 { 2860 MMULookupLocals l; 2861 bool crosspage; 2862 2863 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2864 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2865 if (likely(!crosspage)) { 2866 do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2867 return; 2868 } 2869 2870 /* Swap to little endian for simplicity, then store by bytes. */ 2871 if ((l.memop & MO_BSWAP) != MO_LE) { 2872 val = bswap64(val); 2873 } 2874 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2875 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2876 } 2877 2878 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val, 2879 MemOpIdx oi, uintptr_t ra) 2880 { 2881 MMULookupLocals l; 2882 bool crosspage; 2883 uint64_t a, b; 2884 int first; 2885 2886 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2887 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2888 if (likely(!crosspage)) { 2889 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2890 if ((l.memop & MO_BSWAP) != MO_LE) { 2891 val = bswap128(val); 2892 } 2893 do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra); 2894 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) { 2895 /* nothing */ 2896 } else { 2897 /* Swap to host endian if necessary, then store. */ 2898 if (l.memop & MO_BSWAP) { 2899 val = bswap128(val); 2900 } 2901 store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val); 2902 } 2903 return; 2904 } 2905 2906 first = l.page[0].size; 2907 if (first == 8) { 2908 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64; 2909 2910 if (l.memop & MO_BSWAP) { 2911 val = bswap128(val); 2912 } 2913 if (HOST_BIG_ENDIAN) { 2914 b = int128_getlo(val), a = int128_gethi(val); 2915 } else { 2916 a = int128_getlo(val), b = int128_gethi(val); 2917 } 2918 do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra); 2919 do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra); 2920 return; 2921 } 2922 2923 if ((l.memop & MO_BSWAP) != MO_LE) { 2924 val = bswap128(val); 2925 } 2926 if (first < 8) { 2927 do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra); 2928 val = int128_urshift(val, first * 8); 2929 do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2930 } else { 2931 b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2932 do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra); 2933 } 2934 } 2935 2936 #include "ldst_common.c.inc" 2937 2938 /* 2939 * First set of functions passes in OI and RETADDR. 2940 * This makes them callable from other helpers. 2941 */ 2942 2943 #define ATOMIC_NAME(X) \ 2944 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 2945 2946 #define ATOMIC_MMU_CLEANUP 2947 2948 #include "atomic_common.c.inc" 2949 2950 #define DATA_SIZE 1 2951 #include "atomic_template.h" 2952 2953 #define DATA_SIZE 2 2954 #include "atomic_template.h" 2955 2956 #define DATA_SIZE 4 2957 #include "atomic_template.h" 2958 2959 #ifdef CONFIG_ATOMIC64 2960 #define DATA_SIZE 8 2961 #include "atomic_template.h" 2962 #endif 2963 2964 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128 2965 #define DATA_SIZE 16 2966 #include "atomic_template.h" 2967 #endif 2968 2969 /* Code access functions. */ 2970 2971 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 2972 { 2973 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); 2974 return do_ld1_mmu(env_cpu(env), addr, oi, 0, MMU_INST_FETCH); 2975 } 2976 2977 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 2978 { 2979 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); 2980 return do_ld2_mmu(env_cpu(env), addr, oi, 0, MMU_INST_FETCH); 2981 } 2982 2983 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 2984 { 2985 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); 2986 return do_ld4_mmu(env_cpu(env), addr, oi, 0, MMU_INST_FETCH); 2987 } 2988 2989 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 2990 { 2991 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true)); 2992 return do_ld8_mmu(env_cpu(env), addr, oi, 0, MMU_INST_FETCH); 2993 } 2994 2995 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, 2996 MemOpIdx oi, uintptr_t retaddr) 2997 { 2998 return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 2999 } 3000 3001 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, 3002 MemOpIdx oi, uintptr_t retaddr) 3003 { 3004 return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 3005 } 3006 3007 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, 3008 MemOpIdx oi, uintptr_t retaddr) 3009 { 3010 return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 3011 } 3012 3013 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, 3014 MemOpIdx oi, uintptr_t retaddr) 3015 { 3016 return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 3017 } 3018