1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/cputlb.h" 27 #include "exec/tb-flush.h" 28 #include "exec/memory-internal.h" 29 #include "exec/ram_addr.h" 30 #include "exec/mmu-access-type.h" 31 #include "exec/tlb-common.h" 32 #include "exec/vaddr.h" 33 #include "tcg/tcg.h" 34 #include "qemu/error-report.h" 35 #include "exec/log.h" 36 #include "exec/helper-proto-common.h" 37 #include "qemu/atomic.h" 38 #include "qemu/atomic128.h" 39 #include "exec/translate-all.h" 40 #include "trace.h" 41 #include "tb-hash.h" 42 #include "internal-common.h" 43 #include "internal-target.h" 44 #ifdef CONFIG_PLUGIN 45 #include "qemu/plugin-memory.h" 46 #endif 47 #include "tcg/tcg-ldst.h" 48 #include "tcg/oversized-guest.h" 49 50 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 51 /* #define DEBUG_TLB */ 52 /* #define DEBUG_TLB_LOG */ 53 54 #ifdef DEBUG_TLB 55 # define DEBUG_TLB_GATE 1 56 # ifdef DEBUG_TLB_LOG 57 # define DEBUG_TLB_LOG_GATE 1 58 # else 59 # define DEBUG_TLB_LOG_GATE 0 60 # endif 61 #else 62 # define DEBUG_TLB_GATE 0 63 # define DEBUG_TLB_LOG_GATE 0 64 #endif 65 66 #define tlb_debug(fmt, ...) do { \ 67 if (DEBUG_TLB_LOG_GATE) { \ 68 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 69 ## __VA_ARGS__); \ 70 } else if (DEBUG_TLB_GATE) { \ 71 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 72 } \ 73 } while (0) 74 75 #define assert_cpu_is_self(cpu) do { \ 76 if (DEBUG_TLB_GATE) { \ 77 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 78 } \ 79 } while (0) 80 81 /* run_on_cpu_data.target_ptr should always be big enough for a 82 * vaddr even on 32 bit builds 83 */ 84 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data)); 85 86 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 87 */ 88 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 89 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 90 91 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 92 { 93 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 94 } 95 96 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 97 { 98 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 99 } 100 101 static inline uint64_t tlb_read_idx(const CPUTLBEntry *entry, 102 MMUAccessType access_type) 103 { 104 /* Do not rearrange the CPUTLBEntry structure members. */ 105 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_read) != 106 MMU_DATA_LOAD * sizeof(uint64_t)); 107 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_write) != 108 MMU_DATA_STORE * sizeof(uint64_t)); 109 QEMU_BUILD_BUG_ON(offsetof(CPUTLBEntry, addr_code) != 110 MMU_INST_FETCH * sizeof(uint64_t)); 111 112 #if TARGET_LONG_BITS == 32 113 /* Use qatomic_read, in case of addr_write; only care about low bits. */ 114 const uint32_t *ptr = (uint32_t *)&entry->addr_idx[access_type]; 115 ptr += HOST_BIG_ENDIAN; 116 return qatomic_read(ptr); 117 #else 118 const uint64_t *ptr = &entry->addr_idx[access_type]; 119 # if TCG_OVERSIZED_GUEST 120 return *ptr; 121 # else 122 /* ofs might correspond to .addr_write, so use qatomic_read */ 123 return qatomic_read(ptr); 124 # endif 125 #endif 126 } 127 128 static inline uint64_t tlb_addr_write(const CPUTLBEntry *entry) 129 { 130 return tlb_read_idx(entry, MMU_DATA_STORE); 131 } 132 133 /* Find the TLB index corresponding to the mmu_idx + address pair. */ 134 static inline uintptr_t tlb_index(CPUState *cpu, uintptr_t mmu_idx, 135 vaddr addr) 136 { 137 uintptr_t size_mask = cpu->neg.tlb.f[mmu_idx].mask >> CPU_TLB_ENTRY_BITS; 138 139 return (addr >> TARGET_PAGE_BITS) & size_mask; 140 } 141 142 /* Find the TLB entry corresponding to the mmu_idx + address pair. */ 143 static inline CPUTLBEntry *tlb_entry(CPUState *cpu, uintptr_t mmu_idx, 144 vaddr addr) 145 { 146 return &cpu->neg.tlb.f[mmu_idx].table[tlb_index(cpu, mmu_idx, addr)]; 147 } 148 149 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 150 size_t max_entries) 151 { 152 desc->window_begin_ns = ns; 153 desc->window_max_entries = max_entries; 154 } 155 156 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr) 157 { 158 CPUJumpCache *jc = cpu->tb_jmp_cache; 159 int i, i0; 160 161 if (unlikely(!jc)) { 162 return; 163 } 164 165 i0 = tb_jmp_cache_hash_page(page_addr); 166 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 167 qatomic_set(&jc->array[i0 + i].tb, NULL); 168 } 169 } 170 171 /** 172 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 173 * @desc: The CPUTLBDesc portion of the TLB 174 * @fast: The CPUTLBDescFast portion of the same TLB 175 * 176 * Called with tlb_lock_held. 177 * 178 * We have two main constraints when resizing a TLB: (1) we only resize it 179 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 180 * the array or unnecessarily flushing it), which means we do not control how 181 * frequently the resizing can occur; (2) we don't have access to the guest's 182 * future scheduling decisions, and therefore have to decide the magnitude of 183 * the resize based on past observations. 184 * 185 * In general, a memory-hungry process can benefit greatly from an appropriately 186 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 187 * we just have to make the TLB as large as possible; while an oversized TLB 188 * results in minimal TLB miss rates, it also takes longer to be flushed 189 * (flushes can be _very_ frequent), and the reduced locality can also hurt 190 * performance. 191 * 192 * To achieve near-optimal performance for all kinds of workloads, we: 193 * 194 * 1. Aggressively increase the size of the TLB when the use rate of the 195 * TLB being flushed is high, since it is likely that in the near future this 196 * memory-hungry process will execute again, and its memory hungriness will 197 * probably be similar. 198 * 199 * 2. Slowly reduce the size of the TLB as the use rate declines over a 200 * reasonably large time window. The rationale is that if in such a time window 201 * we have not observed a high TLB use rate, it is likely that we won't observe 202 * it in the near future. In that case, once a time window expires we downsize 203 * the TLB to match the maximum use rate observed in the window. 204 * 205 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 206 * since in that range performance is likely near-optimal. Recall that the TLB 207 * is direct mapped, so we want the use rate to be low (or at least not too 208 * high), since otherwise we are likely to have a significant amount of 209 * conflict misses. 210 */ 211 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 212 int64_t now) 213 { 214 size_t old_size = tlb_n_entries(fast); 215 size_t rate; 216 size_t new_size = old_size; 217 int64_t window_len_ms = 100; 218 int64_t window_len_ns = window_len_ms * 1000 * 1000; 219 bool window_expired = now > desc->window_begin_ns + window_len_ns; 220 221 if (desc->n_used_entries > desc->window_max_entries) { 222 desc->window_max_entries = desc->n_used_entries; 223 } 224 rate = desc->window_max_entries * 100 / old_size; 225 226 if (rate > 70) { 227 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 228 } else if (rate < 30 && window_expired) { 229 size_t ceil = pow2ceil(desc->window_max_entries); 230 size_t expected_rate = desc->window_max_entries * 100 / ceil; 231 232 /* 233 * Avoid undersizing when the max number of entries seen is just below 234 * a pow2. For instance, if max_entries == 1025, the expected use rate 235 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 236 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 237 * later. Thus, make sure that the expected use rate remains below 70%. 238 * (and since we double the size, that means the lowest rate we'd 239 * expect to get is 35%, which is still in the 30-70% range where 240 * we consider that the size is appropriate.) 241 */ 242 if (expected_rate > 70) { 243 ceil *= 2; 244 } 245 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 246 } 247 248 if (new_size == old_size) { 249 if (window_expired) { 250 tlb_window_reset(desc, now, desc->n_used_entries); 251 } 252 return; 253 } 254 255 g_free(fast->table); 256 g_free(desc->fulltlb); 257 258 tlb_window_reset(desc, now, 0); 259 /* desc->n_used_entries is cleared by the caller */ 260 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 261 fast->table = g_try_new(CPUTLBEntry, new_size); 262 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 263 264 /* 265 * If the allocations fail, try smaller sizes. We just freed some 266 * memory, so going back to half of new_size has a good chance of working. 267 * Increased memory pressure elsewhere in the system might cause the 268 * allocations to fail though, so we progressively reduce the allocation 269 * size, aborting if we cannot even allocate the smallest TLB we support. 270 */ 271 while (fast->table == NULL || desc->fulltlb == NULL) { 272 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 273 error_report("%s: %s", __func__, strerror(errno)); 274 abort(); 275 } 276 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 277 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 278 279 g_free(fast->table); 280 g_free(desc->fulltlb); 281 fast->table = g_try_new(CPUTLBEntry, new_size); 282 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 283 } 284 } 285 286 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 287 { 288 desc->n_used_entries = 0; 289 desc->large_page_addr = -1; 290 desc->large_page_mask = -1; 291 desc->vindex = 0; 292 memset(fast->table, -1, sizeof_tlb(fast)); 293 memset(desc->vtable, -1, sizeof(desc->vtable)); 294 } 295 296 static void tlb_flush_one_mmuidx_locked(CPUState *cpu, int mmu_idx, 297 int64_t now) 298 { 299 CPUTLBDesc *desc = &cpu->neg.tlb.d[mmu_idx]; 300 CPUTLBDescFast *fast = &cpu->neg.tlb.f[mmu_idx]; 301 302 tlb_mmu_resize_locked(desc, fast, now); 303 tlb_mmu_flush_locked(desc, fast); 304 } 305 306 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 307 { 308 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 309 310 tlb_window_reset(desc, now, 0); 311 desc->n_used_entries = 0; 312 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 313 fast->table = g_new(CPUTLBEntry, n_entries); 314 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 315 tlb_mmu_flush_locked(desc, fast); 316 } 317 318 static inline void tlb_n_used_entries_inc(CPUState *cpu, uintptr_t mmu_idx) 319 { 320 cpu->neg.tlb.d[mmu_idx].n_used_entries++; 321 } 322 323 static inline void tlb_n_used_entries_dec(CPUState *cpu, uintptr_t mmu_idx) 324 { 325 cpu->neg.tlb.d[mmu_idx].n_used_entries--; 326 } 327 328 void tlb_init(CPUState *cpu) 329 { 330 int64_t now = get_clock_realtime(); 331 int i; 332 333 qemu_spin_init(&cpu->neg.tlb.c.lock); 334 335 /* All tlbs are initialized flushed. */ 336 cpu->neg.tlb.c.dirty = 0; 337 338 for (i = 0; i < NB_MMU_MODES; i++) { 339 tlb_mmu_init(&cpu->neg.tlb.d[i], &cpu->neg.tlb.f[i], now); 340 } 341 } 342 343 void tlb_destroy(CPUState *cpu) 344 { 345 int i; 346 347 qemu_spin_destroy(&cpu->neg.tlb.c.lock); 348 for (i = 0; i < NB_MMU_MODES; i++) { 349 CPUTLBDesc *desc = &cpu->neg.tlb.d[i]; 350 CPUTLBDescFast *fast = &cpu->neg.tlb.f[i]; 351 352 g_free(fast->table); 353 g_free(desc->fulltlb); 354 } 355 } 356 357 /* flush_all_helper: run fn across all cpus 358 * 359 * If the wait flag is set then the src cpu's helper will be queued as 360 * "safe" work and the loop exited creating a synchronisation point 361 * where all queued work will be finished before execution starts 362 * again. 363 */ 364 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 365 run_on_cpu_data d) 366 { 367 CPUState *cpu; 368 369 CPU_FOREACH(cpu) { 370 if (cpu != src) { 371 async_run_on_cpu(cpu, fn, d); 372 } 373 } 374 } 375 376 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 377 { 378 uint16_t asked = data.host_int; 379 uint16_t all_dirty, work, to_clean; 380 int64_t now = get_clock_realtime(); 381 382 assert_cpu_is_self(cpu); 383 384 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 385 386 qemu_spin_lock(&cpu->neg.tlb.c.lock); 387 388 all_dirty = cpu->neg.tlb.c.dirty; 389 to_clean = asked & all_dirty; 390 all_dirty &= ~to_clean; 391 cpu->neg.tlb.c.dirty = all_dirty; 392 393 for (work = to_clean; work != 0; work &= work - 1) { 394 int mmu_idx = ctz32(work); 395 tlb_flush_one_mmuidx_locked(cpu, mmu_idx, now); 396 } 397 398 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 399 400 tcg_flush_jmp_cache(cpu); 401 402 if (to_clean == ALL_MMUIDX_BITS) { 403 qatomic_set(&cpu->neg.tlb.c.full_flush_count, 404 cpu->neg.tlb.c.full_flush_count + 1); 405 } else { 406 qatomic_set(&cpu->neg.tlb.c.part_flush_count, 407 cpu->neg.tlb.c.part_flush_count + ctpop16(to_clean)); 408 if (to_clean != asked) { 409 qatomic_set(&cpu->neg.tlb.c.elide_flush_count, 410 cpu->neg.tlb.c.elide_flush_count + 411 ctpop16(asked & ~to_clean)); 412 } 413 } 414 } 415 416 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 417 { 418 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 419 420 if (cpu->created && !qemu_cpu_is_self(cpu)) { 421 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 422 RUN_ON_CPU_HOST_INT(idxmap)); 423 } else { 424 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 425 } 426 } 427 428 void tlb_flush(CPUState *cpu) 429 { 430 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 431 } 432 433 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 434 { 435 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 436 437 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 438 439 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 440 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 441 } 442 443 void tlb_flush_all_cpus(CPUState *src_cpu) 444 { 445 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 446 } 447 448 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 449 { 450 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 451 452 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 453 454 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 455 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 456 } 457 458 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 459 { 460 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 461 } 462 463 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 464 vaddr page, vaddr mask) 465 { 466 page &= mask; 467 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 468 469 return (page == (tlb_entry->addr_read & mask) || 470 page == (tlb_addr_write(tlb_entry) & mask) || 471 page == (tlb_entry->addr_code & mask)); 472 } 473 474 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page) 475 { 476 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 477 } 478 479 /** 480 * tlb_entry_is_empty - return true if the entry is not in use 481 * @te: pointer to CPUTLBEntry 482 */ 483 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 484 { 485 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 486 } 487 488 /* Called with tlb_c.lock held */ 489 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 490 vaddr page, 491 vaddr mask) 492 { 493 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 494 memset(tlb_entry, -1, sizeof(*tlb_entry)); 495 return true; 496 } 497 return false; 498 } 499 500 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page) 501 { 502 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 503 } 504 505 /* Called with tlb_c.lock held */ 506 static void tlb_flush_vtlb_page_mask_locked(CPUState *cpu, int mmu_idx, 507 vaddr page, 508 vaddr mask) 509 { 510 CPUTLBDesc *d = &cpu->neg.tlb.d[mmu_idx]; 511 int k; 512 513 assert_cpu_is_self(cpu); 514 for (k = 0; k < CPU_VTLB_SIZE; k++) { 515 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 516 tlb_n_used_entries_dec(cpu, mmu_idx); 517 } 518 } 519 } 520 521 static inline void tlb_flush_vtlb_page_locked(CPUState *cpu, int mmu_idx, 522 vaddr page) 523 { 524 tlb_flush_vtlb_page_mask_locked(cpu, mmu_idx, page, -1); 525 } 526 527 static void tlb_flush_page_locked(CPUState *cpu, int midx, vaddr page) 528 { 529 vaddr lp_addr = cpu->neg.tlb.d[midx].large_page_addr; 530 vaddr lp_mask = cpu->neg.tlb.d[midx].large_page_mask; 531 532 /* Check if we need to flush due to large pages. */ 533 if ((page & lp_mask) == lp_addr) { 534 tlb_debug("forcing full flush midx %d (%016" 535 VADDR_PRIx "/%016" VADDR_PRIx ")\n", 536 midx, lp_addr, lp_mask); 537 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 538 } else { 539 if (tlb_flush_entry_locked(tlb_entry(cpu, midx, page), page)) { 540 tlb_n_used_entries_dec(cpu, midx); 541 } 542 tlb_flush_vtlb_page_locked(cpu, midx, page); 543 } 544 } 545 546 /** 547 * tlb_flush_page_by_mmuidx_async_0: 548 * @cpu: cpu on which to flush 549 * @addr: page of virtual address to flush 550 * @idxmap: set of mmu_idx to flush 551 * 552 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 553 * at @addr from the tlbs indicated by @idxmap from @cpu. 554 */ 555 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 556 vaddr addr, 557 uint16_t idxmap) 558 { 559 int mmu_idx; 560 561 assert_cpu_is_self(cpu); 562 563 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap); 564 565 qemu_spin_lock(&cpu->neg.tlb.c.lock); 566 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 567 if ((idxmap >> mmu_idx) & 1) { 568 tlb_flush_page_locked(cpu, mmu_idx, addr); 569 } 570 } 571 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 572 573 /* 574 * Discard jump cache entries for any tb which might potentially 575 * overlap the flushed page, which includes the previous. 576 */ 577 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 578 tb_jmp_cache_clear_page(cpu, addr); 579 } 580 581 /** 582 * tlb_flush_page_by_mmuidx_async_1: 583 * @cpu: cpu on which to flush 584 * @data: encoded addr + idxmap 585 * 586 * Helper for tlb_flush_page_by_mmuidx and friends, called through 587 * async_run_on_cpu. The idxmap parameter is encoded in the page 588 * offset of the target_ptr field. This limits the set of mmu_idx 589 * that can be passed via this method. 590 */ 591 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 592 run_on_cpu_data data) 593 { 594 vaddr addr_and_idxmap = data.target_ptr; 595 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK; 596 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 597 598 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 599 } 600 601 typedef struct { 602 vaddr addr; 603 uint16_t idxmap; 604 } TLBFlushPageByMMUIdxData; 605 606 /** 607 * tlb_flush_page_by_mmuidx_async_2: 608 * @cpu: cpu on which to flush 609 * @data: allocated addr + idxmap 610 * 611 * Helper for tlb_flush_page_by_mmuidx and friends, called through 612 * async_run_on_cpu. The addr+idxmap parameters are stored in a 613 * TLBFlushPageByMMUIdxData structure that has been allocated 614 * specifically for this helper. Free the structure when done. 615 */ 616 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 617 run_on_cpu_data data) 618 { 619 TLBFlushPageByMMUIdxData *d = data.host_ptr; 620 621 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 622 g_free(d); 623 } 624 625 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap) 626 { 627 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap); 628 629 /* This should already be page aligned */ 630 addr &= TARGET_PAGE_MASK; 631 632 if (qemu_cpu_is_self(cpu)) { 633 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 634 } else if (idxmap < TARGET_PAGE_SIZE) { 635 /* 636 * Most targets have only a few mmu_idx. In the case where 637 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 638 * allocating memory for this operation. 639 */ 640 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 641 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 642 } else { 643 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 644 645 /* Otherwise allocate a structure, freed by the worker. */ 646 d->addr = addr; 647 d->idxmap = idxmap; 648 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 649 RUN_ON_CPU_HOST_PTR(d)); 650 } 651 } 652 653 void tlb_flush_page(CPUState *cpu, vaddr addr) 654 { 655 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 656 } 657 658 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr, 659 uint16_t idxmap) 660 { 661 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 662 663 /* This should already be page aligned */ 664 addr &= TARGET_PAGE_MASK; 665 666 /* 667 * Allocate memory to hold addr+idxmap only when needed. 668 * See tlb_flush_page_by_mmuidx for details. 669 */ 670 if (idxmap < TARGET_PAGE_SIZE) { 671 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 672 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 673 } else { 674 CPUState *dst_cpu; 675 676 /* Allocate a separate data block for each destination cpu. */ 677 CPU_FOREACH(dst_cpu) { 678 if (dst_cpu != src_cpu) { 679 TLBFlushPageByMMUIdxData *d 680 = g_new(TLBFlushPageByMMUIdxData, 1); 681 682 d->addr = addr; 683 d->idxmap = idxmap; 684 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 685 RUN_ON_CPU_HOST_PTR(d)); 686 } 687 } 688 } 689 690 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 691 } 692 693 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr) 694 { 695 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 696 } 697 698 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 699 vaddr addr, 700 uint16_t idxmap) 701 { 702 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 703 704 /* This should already be page aligned */ 705 addr &= TARGET_PAGE_MASK; 706 707 /* 708 * Allocate memory to hold addr+idxmap only when needed. 709 * See tlb_flush_page_by_mmuidx for details. 710 */ 711 if (idxmap < TARGET_PAGE_SIZE) { 712 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 713 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 714 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 715 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 716 } else { 717 CPUState *dst_cpu; 718 TLBFlushPageByMMUIdxData *d; 719 720 /* Allocate a separate data block for each destination cpu. */ 721 CPU_FOREACH(dst_cpu) { 722 if (dst_cpu != src_cpu) { 723 d = g_new(TLBFlushPageByMMUIdxData, 1); 724 d->addr = addr; 725 d->idxmap = idxmap; 726 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 727 RUN_ON_CPU_HOST_PTR(d)); 728 } 729 } 730 731 d = g_new(TLBFlushPageByMMUIdxData, 1); 732 d->addr = addr; 733 d->idxmap = idxmap; 734 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 735 RUN_ON_CPU_HOST_PTR(d)); 736 } 737 } 738 739 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr) 740 { 741 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 742 } 743 744 static void tlb_flush_range_locked(CPUState *cpu, int midx, 745 vaddr addr, vaddr len, 746 unsigned bits) 747 { 748 CPUTLBDesc *d = &cpu->neg.tlb.d[midx]; 749 CPUTLBDescFast *f = &cpu->neg.tlb.f[midx]; 750 vaddr mask = MAKE_64BIT_MASK(0, bits); 751 752 /* 753 * If @bits is smaller than the tlb size, there may be multiple entries 754 * within the TLB; otherwise all addresses that match under @mask hit 755 * the same TLB entry. 756 * TODO: Perhaps allow bits to be a few bits less than the size. 757 * For now, just flush the entire TLB. 758 * 759 * If @len is larger than the tlb size, then it will take longer to 760 * test all of the entries in the TLB than it will to flush it all. 761 */ 762 if (mask < f->mask || len > f->mask) { 763 tlb_debug("forcing full flush midx %d (" 764 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n", 765 midx, addr, mask, len); 766 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 767 return; 768 } 769 770 /* 771 * Check if we need to flush due to large pages. 772 * Because large_page_mask contains all 1's from the msb, 773 * we only need to test the end of the range. 774 */ 775 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 776 tlb_debug("forcing full flush midx %d (" 777 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n", 778 midx, d->large_page_addr, d->large_page_mask); 779 tlb_flush_one_mmuidx_locked(cpu, midx, get_clock_realtime()); 780 return; 781 } 782 783 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) { 784 vaddr page = addr + i; 785 CPUTLBEntry *entry = tlb_entry(cpu, midx, page); 786 787 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 788 tlb_n_used_entries_dec(cpu, midx); 789 } 790 tlb_flush_vtlb_page_mask_locked(cpu, midx, page, mask); 791 } 792 } 793 794 typedef struct { 795 vaddr addr; 796 vaddr len; 797 uint16_t idxmap; 798 uint16_t bits; 799 } TLBFlushRangeData; 800 801 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 802 TLBFlushRangeData d) 803 { 804 int mmu_idx; 805 806 assert_cpu_is_self(cpu); 807 808 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n", 809 d.addr, d.bits, d.len, d.idxmap); 810 811 qemu_spin_lock(&cpu->neg.tlb.c.lock); 812 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 813 if ((d.idxmap >> mmu_idx) & 1) { 814 tlb_flush_range_locked(cpu, mmu_idx, d.addr, d.len, d.bits); 815 } 816 } 817 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 818 819 /* 820 * If the length is larger than the jump cache size, then it will take 821 * longer to clear each entry individually than it will to clear it all. 822 */ 823 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 824 tcg_flush_jmp_cache(cpu); 825 return; 826 } 827 828 /* 829 * Discard jump cache entries for any tb which might potentially 830 * overlap the flushed pages, which includes the previous. 831 */ 832 d.addr -= TARGET_PAGE_SIZE; 833 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 834 tb_jmp_cache_clear_page(cpu, d.addr); 835 d.addr += TARGET_PAGE_SIZE; 836 } 837 } 838 839 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 840 run_on_cpu_data data) 841 { 842 TLBFlushRangeData *d = data.host_ptr; 843 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 844 g_free(d); 845 } 846 847 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr, 848 vaddr len, uint16_t idxmap, 849 unsigned bits) 850 { 851 TLBFlushRangeData d; 852 853 /* 854 * If all bits are significant, and len is small, 855 * this devolves to tlb_flush_page. 856 */ 857 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 858 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 859 return; 860 } 861 /* If no page bits are significant, this devolves to tlb_flush. */ 862 if (bits < TARGET_PAGE_BITS) { 863 tlb_flush_by_mmuidx(cpu, idxmap); 864 return; 865 } 866 867 /* This should already be page aligned */ 868 d.addr = addr & TARGET_PAGE_MASK; 869 d.len = len; 870 d.idxmap = idxmap; 871 d.bits = bits; 872 873 if (qemu_cpu_is_self(cpu)) { 874 tlb_flush_range_by_mmuidx_async_0(cpu, d); 875 } else { 876 /* Otherwise allocate a structure, freed by the worker. */ 877 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 878 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 879 RUN_ON_CPU_HOST_PTR(p)); 880 } 881 } 882 883 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr, 884 uint16_t idxmap, unsigned bits) 885 { 886 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 887 } 888 889 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 890 vaddr addr, vaddr len, 891 uint16_t idxmap, unsigned bits) 892 { 893 TLBFlushRangeData d; 894 CPUState *dst_cpu; 895 896 /* 897 * If all bits are significant, and len is small, 898 * this devolves to tlb_flush_page. 899 */ 900 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 901 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 902 return; 903 } 904 /* If no page bits are significant, this devolves to tlb_flush. */ 905 if (bits < TARGET_PAGE_BITS) { 906 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 907 return; 908 } 909 910 /* This should already be page aligned */ 911 d.addr = addr & TARGET_PAGE_MASK; 912 d.len = len; 913 d.idxmap = idxmap; 914 d.bits = bits; 915 916 /* Allocate a separate data block for each destination cpu. */ 917 CPU_FOREACH(dst_cpu) { 918 if (dst_cpu != src_cpu) { 919 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 920 async_run_on_cpu(dst_cpu, 921 tlb_flush_range_by_mmuidx_async_1, 922 RUN_ON_CPU_HOST_PTR(p)); 923 } 924 } 925 926 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 927 } 928 929 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 930 vaddr addr, uint16_t idxmap, 931 unsigned bits) 932 { 933 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 934 idxmap, bits); 935 } 936 937 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 938 vaddr addr, 939 vaddr len, 940 uint16_t idxmap, 941 unsigned bits) 942 { 943 TLBFlushRangeData d, *p; 944 CPUState *dst_cpu; 945 946 /* 947 * If all bits are significant, and len is small, 948 * this devolves to tlb_flush_page. 949 */ 950 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 951 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 952 return; 953 } 954 /* If no page bits are significant, this devolves to tlb_flush. */ 955 if (bits < TARGET_PAGE_BITS) { 956 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 957 return; 958 } 959 960 /* This should already be page aligned */ 961 d.addr = addr & TARGET_PAGE_MASK; 962 d.len = len; 963 d.idxmap = idxmap; 964 d.bits = bits; 965 966 /* Allocate a separate data block for each destination cpu. */ 967 CPU_FOREACH(dst_cpu) { 968 if (dst_cpu != src_cpu) { 969 p = g_memdup(&d, sizeof(d)); 970 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 971 RUN_ON_CPU_HOST_PTR(p)); 972 } 973 } 974 975 p = g_memdup(&d, sizeof(d)); 976 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 977 RUN_ON_CPU_HOST_PTR(p)); 978 } 979 980 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 981 vaddr addr, 982 uint16_t idxmap, 983 unsigned bits) 984 { 985 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 986 idxmap, bits); 987 } 988 989 /* update the TLBs so that writes to code in the virtual page 'addr' 990 can be detected */ 991 void tlb_protect_code(ram_addr_t ram_addr) 992 { 993 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 994 TARGET_PAGE_SIZE, 995 DIRTY_MEMORY_CODE); 996 } 997 998 /* update the TLB so that writes in physical page 'phys_addr' are no longer 999 tested for self modifying code */ 1000 void tlb_unprotect_code(ram_addr_t ram_addr) 1001 { 1002 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 1003 } 1004 1005 1006 /* 1007 * Dirty write flag handling 1008 * 1009 * When the TCG code writes to a location it looks up the address in 1010 * the TLB and uses that data to compute the final address. If any of 1011 * the lower bits of the address are set then the slow path is forced. 1012 * There are a number of reasons to do this but for normal RAM the 1013 * most usual is detecting writes to code regions which may invalidate 1014 * generated code. 1015 * 1016 * Other vCPUs might be reading their TLBs during guest execution, so we update 1017 * te->addr_write with qatomic_set. We don't need to worry about this for 1018 * oversized guests as MTTCG is disabled for them. 1019 * 1020 * Called with tlb_c.lock held. 1021 */ 1022 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 1023 uintptr_t start, uintptr_t length) 1024 { 1025 uintptr_t addr = tlb_entry->addr_write; 1026 1027 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 1028 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 1029 addr &= TARGET_PAGE_MASK; 1030 addr += tlb_entry->addend; 1031 if ((addr - start) < length) { 1032 #if TARGET_LONG_BITS == 32 1033 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write; 1034 ptr_write += HOST_BIG_ENDIAN; 1035 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY); 1036 #elif TCG_OVERSIZED_GUEST 1037 tlb_entry->addr_write |= TLB_NOTDIRTY; 1038 #else 1039 qatomic_set(&tlb_entry->addr_write, 1040 tlb_entry->addr_write | TLB_NOTDIRTY); 1041 #endif 1042 } 1043 } 1044 } 1045 1046 /* 1047 * Called with tlb_c.lock held. 1048 * Called only from the vCPU context, i.e. the TLB's owner thread. 1049 */ 1050 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 1051 { 1052 *d = *s; 1053 } 1054 1055 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1056 * the target vCPU). 1057 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1058 * thing actually updated is the target TLB entry ->addr_write flags. 1059 */ 1060 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1061 { 1062 int mmu_idx; 1063 1064 qemu_spin_lock(&cpu->neg.tlb.c.lock); 1065 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1066 unsigned int i; 1067 unsigned int n = tlb_n_entries(&cpu->neg.tlb.f[mmu_idx]); 1068 1069 for (i = 0; i < n; i++) { 1070 tlb_reset_dirty_range_locked(&cpu->neg.tlb.f[mmu_idx].table[i], 1071 start1, length); 1072 } 1073 1074 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1075 tlb_reset_dirty_range_locked(&cpu->neg.tlb.d[mmu_idx].vtable[i], 1076 start1, length); 1077 } 1078 } 1079 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 1080 } 1081 1082 /* Called with tlb_c.lock held */ 1083 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1084 vaddr addr) 1085 { 1086 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) { 1087 tlb_entry->addr_write = addr; 1088 } 1089 } 1090 1091 /* update the TLB corresponding to virtual page vaddr 1092 so that it is no longer dirty */ 1093 static void tlb_set_dirty(CPUState *cpu, vaddr addr) 1094 { 1095 int mmu_idx; 1096 1097 assert_cpu_is_self(cpu); 1098 1099 addr &= TARGET_PAGE_MASK; 1100 qemu_spin_lock(&cpu->neg.tlb.c.lock); 1101 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1102 tlb_set_dirty1_locked(tlb_entry(cpu, mmu_idx, addr), addr); 1103 } 1104 1105 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1106 int k; 1107 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1108 tlb_set_dirty1_locked(&cpu->neg.tlb.d[mmu_idx].vtable[k], addr); 1109 } 1110 } 1111 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 1112 } 1113 1114 /* Our TLB does not support large pages, so remember the area covered by 1115 large pages and trigger a full TLB flush if these are invalidated. */ 1116 static void tlb_add_large_page(CPUState *cpu, int mmu_idx, 1117 vaddr addr, uint64_t size) 1118 { 1119 vaddr lp_addr = cpu->neg.tlb.d[mmu_idx].large_page_addr; 1120 vaddr lp_mask = ~(size - 1); 1121 1122 if (lp_addr == (vaddr)-1) { 1123 /* No previous large page. */ 1124 lp_addr = addr; 1125 } else { 1126 /* Extend the existing region to include the new page. 1127 This is a compromise between unnecessary flushes and 1128 the cost of maintaining a full variable size TLB. */ 1129 lp_mask &= cpu->neg.tlb.d[mmu_idx].large_page_mask; 1130 while (((lp_addr ^ addr) & lp_mask) != 0) { 1131 lp_mask <<= 1; 1132 } 1133 } 1134 cpu->neg.tlb.d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1135 cpu->neg.tlb.d[mmu_idx].large_page_mask = lp_mask; 1136 } 1137 1138 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent, 1139 vaddr address, int flags, 1140 MMUAccessType access_type, bool enable) 1141 { 1142 if (enable) { 1143 address |= flags & TLB_FLAGS_MASK; 1144 flags &= TLB_SLOW_FLAGS_MASK; 1145 if (flags) { 1146 address |= TLB_FORCE_SLOW; 1147 } 1148 } else { 1149 address = -1; 1150 flags = 0; 1151 } 1152 ent->addr_idx[access_type] = address; 1153 full->slow_flags[access_type] = flags; 1154 } 1155 1156 /* 1157 * Add a new TLB entry. At most one entry for a given virtual address 1158 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1159 * supplied size is only used by tlb_flush_page. 1160 * 1161 * Called from TCG-generated code, which is under an RCU read-side 1162 * critical section. 1163 */ 1164 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1165 vaddr addr, CPUTLBEntryFull *full) 1166 { 1167 CPUTLB *tlb = &cpu->neg.tlb; 1168 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1169 MemoryRegionSection *section; 1170 unsigned int index, read_flags, write_flags; 1171 uintptr_t addend; 1172 CPUTLBEntry *te, tn; 1173 hwaddr iotlb, xlat, sz, paddr_page; 1174 vaddr addr_page; 1175 int asidx, wp_flags, prot; 1176 bool is_ram, is_romd; 1177 1178 assert_cpu_is_self(cpu); 1179 1180 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1181 sz = TARGET_PAGE_SIZE; 1182 } else { 1183 sz = (hwaddr)1 << full->lg_page_size; 1184 tlb_add_large_page(cpu, mmu_idx, addr, sz); 1185 } 1186 addr_page = addr & TARGET_PAGE_MASK; 1187 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1188 1189 prot = full->prot; 1190 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1191 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1192 &xlat, &sz, full->attrs, &prot); 1193 assert(sz >= TARGET_PAGE_SIZE); 1194 1195 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx 1196 " prot=%x idx=%d\n", 1197 addr, full->phys_addr, prot, mmu_idx); 1198 1199 read_flags = full->tlb_fill_flags; 1200 if (full->lg_page_size < TARGET_PAGE_BITS) { 1201 /* Repeat the MMU check and TLB fill on every access. */ 1202 read_flags |= TLB_INVALID_MASK; 1203 } 1204 1205 is_ram = memory_region_is_ram(section->mr); 1206 is_romd = memory_region_is_romd(section->mr); 1207 1208 if (is_ram || is_romd) { 1209 /* RAM and ROMD both have associated host memory. */ 1210 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1211 } else { 1212 /* I/O does not; force the host address to NULL. */ 1213 addend = 0; 1214 } 1215 1216 write_flags = read_flags; 1217 if (is_ram) { 1218 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1219 assert(!(iotlb & ~TARGET_PAGE_MASK)); 1220 /* 1221 * Computing is_clean is expensive; avoid all that unless 1222 * the page is actually writable. 1223 */ 1224 if (prot & PAGE_WRITE) { 1225 if (section->readonly) { 1226 write_flags |= TLB_DISCARD_WRITE; 1227 } else if (cpu_physical_memory_is_clean(iotlb)) { 1228 write_flags |= TLB_NOTDIRTY; 1229 } 1230 } 1231 } else { 1232 /* I/O or ROMD */ 1233 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1234 /* 1235 * Writes to romd devices must go through MMIO to enable write. 1236 * Reads to romd devices go through the ram_ptr found above, 1237 * but of course reads to I/O must go through MMIO. 1238 */ 1239 write_flags |= TLB_MMIO; 1240 if (!is_romd) { 1241 read_flags = write_flags; 1242 } 1243 } 1244 1245 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page, 1246 TARGET_PAGE_SIZE); 1247 1248 index = tlb_index(cpu, mmu_idx, addr_page); 1249 te = tlb_entry(cpu, mmu_idx, addr_page); 1250 1251 /* 1252 * Hold the TLB lock for the rest of the function. We could acquire/release 1253 * the lock several times in the function, but it is faster to amortize the 1254 * acquisition cost by acquiring it just once. Note that this leads to 1255 * a longer critical section, but this is not a concern since the TLB lock 1256 * is unlikely to be contended. 1257 */ 1258 qemu_spin_lock(&tlb->c.lock); 1259 1260 /* Note that the tlb is no longer clean. */ 1261 tlb->c.dirty |= 1 << mmu_idx; 1262 1263 /* Make sure there's no cached translation for the new page. */ 1264 tlb_flush_vtlb_page_locked(cpu, mmu_idx, addr_page); 1265 1266 /* 1267 * Only evict the old entry to the victim tlb if it's for a 1268 * different page; otherwise just overwrite the stale data. 1269 */ 1270 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) { 1271 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1272 CPUTLBEntry *tv = &desc->vtable[vidx]; 1273 1274 /* Evict the old entry into the victim tlb. */ 1275 copy_tlb_helper_locked(tv, te); 1276 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1277 tlb_n_used_entries_dec(cpu, mmu_idx); 1278 } 1279 1280 /* refill the tlb */ 1281 /* 1282 * When memory region is ram, iotlb contains a TARGET_PAGE_BITS 1283 * aligned ram_addr_t of the page base of the target RAM. 1284 * Otherwise, iotlb contains 1285 * - a physical section number in the lower TARGET_PAGE_BITS 1286 * - the offset within section->mr of the page base (I/O, ROMD) with the 1287 * TARGET_PAGE_BITS masked off. 1288 * We subtract addr_page (which is page aligned and thus won't 1289 * disturb the low bits) to give an offset which can be added to the 1290 * (non-page-aligned) vaddr of the eventual memory access to get 1291 * the MemoryRegion offset for the access. Note that the vaddr we 1292 * subtract here is that of the page base, and not the same as the 1293 * vaddr we add back in io_prepare()/get_page_addr_code(). 1294 */ 1295 desc->fulltlb[index] = *full; 1296 full = &desc->fulltlb[index]; 1297 full->xlat_section = iotlb - addr_page; 1298 full->phys_addr = paddr_page; 1299 1300 /* Now calculate the new entry */ 1301 tn.addend = addend - addr_page; 1302 1303 tlb_set_compare(full, &tn, addr_page, read_flags, 1304 MMU_INST_FETCH, prot & PAGE_EXEC); 1305 1306 if (wp_flags & BP_MEM_READ) { 1307 read_flags |= TLB_WATCHPOINT; 1308 } 1309 tlb_set_compare(full, &tn, addr_page, read_flags, 1310 MMU_DATA_LOAD, prot & PAGE_READ); 1311 1312 if (prot & PAGE_WRITE_INV) { 1313 write_flags |= TLB_INVALID_MASK; 1314 } 1315 if (wp_flags & BP_MEM_WRITE) { 1316 write_flags |= TLB_WATCHPOINT; 1317 } 1318 tlb_set_compare(full, &tn, addr_page, write_flags, 1319 MMU_DATA_STORE, prot & PAGE_WRITE); 1320 1321 copy_tlb_helper_locked(te, &tn); 1322 tlb_n_used_entries_inc(cpu, mmu_idx); 1323 qemu_spin_unlock(&tlb->c.lock); 1324 } 1325 1326 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr, 1327 hwaddr paddr, MemTxAttrs attrs, int prot, 1328 int mmu_idx, uint64_t size) 1329 { 1330 CPUTLBEntryFull full = { 1331 .phys_addr = paddr, 1332 .attrs = attrs, 1333 .prot = prot, 1334 .lg_page_size = ctz64(size) 1335 }; 1336 1337 assert(is_power_of_2(size)); 1338 tlb_set_page_full(cpu, mmu_idx, addr, &full); 1339 } 1340 1341 void tlb_set_page(CPUState *cpu, vaddr addr, 1342 hwaddr paddr, int prot, 1343 int mmu_idx, uint64_t size) 1344 { 1345 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED, 1346 prot, mmu_idx, size); 1347 } 1348 1349 /* 1350 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1351 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1352 * be discarded and looked up again (e.g. via tlb_entry()). 1353 */ 1354 static void tlb_fill(CPUState *cpu, vaddr addr, int size, 1355 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1356 { 1357 bool ok; 1358 1359 /* 1360 * This is not a probe, so only valid return is success; failure 1361 * should result in exception + longjmp to the cpu loop. 1362 */ 1363 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size, 1364 access_type, mmu_idx, false, retaddr); 1365 assert(ok); 1366 } 1367 1368 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1369 MMUAccessType access_type, 1370 int mmu_idx, uintptr_t retaddr) 1371 { 1372 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1373 mmu_idx, retaddr); 1374 } 1375 1376 static MemoryRegionSection * 1377 io_prepare(hwaddr *out_offset, CPUState *cpu, hwaddr xlat, 1378 MemTxAttrs attrs, vaddr addr, uintptr_t retaddr) 1379 { 1380 MemoryRegionSection *section; 1381 hwaddr mr_offset; 1382 1383 section = iotlb_to_section(cpu, xlat, attrs); 1384 mr_offset = (xlat & TARGET_PAGE_MASK) + addr; 1385 cpu->mem_io_pc = retaddr; 1386 if (!cpu->neg.can_do_io) { 1387 cpu_io_recompile(cpu, retaddr); 1388 } 1389 1390 *out_offset = mr_offset; 1391 return section; 1392 } 1393 1394 static void io_failed(CPUState *cpu, CPUTLBEntryFull *full, vaddr addr, 1395 unsigned size, MMUAccessType access_type, int mmu_idx, 1396 MemTxResult response, uintptr_t retaddr) 1397 { 1398 if (!cpu->ignore_memory_transaction_failures 1399 && cpu->cc->tcg_ops->do_transaction_failed) { 1400 hwaddr physaddr = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 1401 1402 cpu->cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1403 access_type, mmu_idx, 1404 full->attrs, response, retaddr); 1405 } 1406 } 1407 1408 /* Return true if ADDR is present in the victim tlb, and has been copied 1409 back to the main tlb. */ 1410 static bool victim_tlb_hit(CPUState *cpu, size_t mmu_idx, size_t index, 1411 MMUAccessType access_type, vaddr page) 1412 { 1413 size_t vidx; 1414 1415 assert_cpu_is_self(cpu); 1416 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1417 CPUTLBEntry *vtlb = &cpu->neg.tlb.d[mmu_idx].vtable[vidx]; 1418 uint64_t cmp = tlb_read_idx(vtlb, access_type); 1419 1420 if (cmp == page) { 1421 /* Found entry in victim tlb, swap tlb and iotlb. */ 1422 CPUTLBEntry tmptlb, *tlb = &cpu->neg.tlb.f[mmu_idx].table[index]; 1423 1424 qemu_spin_lock(&cpu->neg.tlb.c.lock); 1425 copy_tlb_helper_locked(&tmptlb, tlb); 1426 copy_tlb_helper_locked(tlb, vtlb); 1427 copy_tlb_helper_locked(vtlb, &tmptlb); 1428 qemu_spin_unlock(&cpu->neg.tlb.c.lock); 1429 1430 CPUTLBEntryFull *f1 = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1431 CPUTLBEntryFull *f2 = &cpu->neg.tlb.d[mmu_idx].vfulltlb[vidx]; 1432 CPUTLBEntryFull tmpf; 1433 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1434 return true; 1435 } 1436 } 1437 return false; 1438 } 1439 1440 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1441 CPUTLBEntryFull *full, uintptr_t retaddr) 1442 { 1443 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1444 1445 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1446 1447 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1448 tb_invalidate_phys_range_fast(ram_addr, size, retaddr); 1449 } 1450 1451 /* 1452 * Set both VGA and migration bits for simplicity and to remove 1453 * the notdirty callback faster. 1454 */ 1455 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1456 1457 /* We remove the notdirty callback only if the code has been flushed. */ 1458 if (!cpu_physical_memory_is_clean(ram_addr)) { 1459 trace_memory_notdirty_set_dirty(mem_vaddr); 1460 tlb_set_dirty(cpu, mem_vaddr); 1461 } 1462 } 1463 1464 static int probe_access_internal(CPUState *cpu, vaddr addr, 1465 int fault_size, MMUAccessType access_type, 1466 int mmu_idx, bool nonfault, 1467 void **phost, CPUTLBEntryFull **pfull, 1468 uintptr_t retaddr, bool check_mem_cbs) 1469 { 1470 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1471 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr); 1472 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1473 vaddr page_addr = addr & TARGET_PAGE_MASK; 1474 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW; 1475 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(cpu); 1476 CPUTLBEntryFull *full; 1477 1478 if (!tlb_hit_page(tlb_addr, page_addr)) { 1479 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, page_addr)) { 1480 if (!cpu->cc->tcg_ops->tlb_fill(cpu, addr, fault_size, access_type, 1481 mmu_idx, nonfault, retaddr)) { 1482 /* Non-faulting page table read failed. */ 1483 *phost = NULL; 1484 *pfull = NULL; 1485 return TLB_INVALID_MASK; 1486 } 1487 1488 /* TLB resize via tlb_fill may have moved the entry. */ 1489 index = tlb_index(cpu, mmu_idx, addr); 1490 entry = tlb_entry(cpu, mmu_idx, addr); 1491 1492 /* 1493 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1494 * to force the next access through tlb_fill. We've just 1495 * called tlb_fill, so we know that this entry *is* valid. 1496 */ 1497 flags &= ~TLB_INVALID_MASK; 1498 } 1499 tlb_addr = tlb_read_idx(entry, access_type); 1500 } 1501 flags &= tlb_addr; 1502 1503 *pfull = full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1504 flags |= full->slow_flags[access_type]; 1505 1506 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1507 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY | TLB_CHECK_ALIGNED)) 1508 || (access_type != MMU_INST_FETCH && force_mmio)) { 1509 *phost = NULL; 1510 return TLB_MMIO; 1511 } 1512 1513 /* Everything else is RAM. */ 1514 *phost = (void *)((uintptr_t)addr + entry->addend); 1515 return flags; 1516 } 1517 1518 int probe_access_full(CPUArchState *env, vaddr addr, int size, 1519 MMUAccessType access_type, int mmu_idx, 1520 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1521 uintptr_t retaddr) 1522 { 1523 int flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1524 mmu_idx, nonfault, phost, pfull, retaddr, 1525 true); 1526 1527 /* Handle clean RAM pages. */ 1528 if (unlikely(flags & TLB_NOTDIRTY)) { 1529 int dirtysize = size == 0 ? 1 : size; 1530 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, retaddr); 1531 flags &= ~TLB_NOTDIRTY; 1532 } 1533 1534 return flags; 1535 } 1536 1537 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size, 1538 MMUAccessType access_type, int mmu_idx, 1539 void **phost, CPUTLBEntryFull **pfull) 1540 { 1541 void *discard_phost; 1542 CPUTLBEntryFull *discard_tlb; 1543 1544 /* privately handle users that don't need full results */ 1545 phost = phost ? phost : &discard_phost; 1546 pfull = pfull ? pfull : &discard_tlb; 1547 1548 int flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1549 mmu_idx, true, phost, pfull, 0, false); 1550 1551 /* Handle clean RAM pages. */ 1552 if (unlikely(flags & TLB_NOTDIRTY)) { 1553 int dirtysize = size == 0 ? 1 : size; 1554 notdirty_write(env_cpu(env), addr, dirtysize, *pfull, 0); 1555 flags &= ~TLB_NOTDIRTY; 1556 } 1557 1558 return flags; 1559 } 1560 1561 int probe_access_flags(CPUArchState *env, vaddr addr, int size, 1562 MMUAccessType access_type, int mmu_idx, 1563 bool nonfault, void **phost, uintptr_t retaddr) 1564 { 1565 CPUTLBEntryFull *full; 1566 int flags; 1567 1568 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1569 1570 flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1571 mmu_idx, nonfault, phost, &full, retaddr, 1572 true); 1573 1574 /* Handle clean RAM pages. */ 1575 if (unlikely(flags & TLB_NOTDIRTY)) { 1576 int dirtysize = size == 0 ? 1 : size; 1577 notdirty_write(env_cpu(env), addr, dirtysize, full, retaddr); 1578 flags &= ~TLB_NOTDIRTY; 1579 } 1580 1581 return flags; 1582 } 1583 1584 void *probe_access(CPUArchState *env, vaddr addr, int size, 1585 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1586 { 1587 CPUTLBEntryFull *full; 1588 void *host; 1589 int flags; 1590 1591 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1592 1593 flags = probe_access_internal(env_cpu(env), addr, size, access_type, 1594 mmu_idx, false, &host, &full, retaddr, 1595 true); 1596 1597 /* Per the interface, size == 0 merely faults the access. */ 1598 if (size == 0) { 1599 return NULL; 1600 } 1601 1602 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1603 /* Handle watchpoints. */ 1604 if (flags & TLB_WATCHPOINT) { 1605 int wp_access = (access_type == MMU_DATA_STORE 1606 ? BP_MEM_WRITE : BP_MEM_READ); 1607 cpu_check_watchpoint(env_cpu(env), addr, size, 1608 full->attrs, wp_access, retaddr); 1609 } 1610 1611 /* Handle clean RAM pages. */ 1612 if (flags & TLB_NOTDIRTY) { 1613 notdirty_write(env_cpu(env), addr, size, full, retaddr); 1614 } 1615 } 1616 1617 return host; 1618 } 1619 1620 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1621 MMUAccessType access_type, int mmu_idx) 1622 { 1623 CPUTLBEntryFull *full; 1624 void *host; 1625 int flags; 1626 1627 flags = probe_access_internal(env_cpu(env), addr, 0, access_type, 1628 mmu_idx, true, &host, &full, 0, false); 1629 1630 /* No combination of flags are expected by the caller. */ 1631 return flags ? NULL : host; 1632 } 1633 1634 /* 1635 * Return a ram_addr_t for the virtual address for execution. 1636 * 1637 * Return -1 if we can't translate and execute from an entire page 1638 * of RAM. This will force us to execute by loading and translating 1639 * one insn at a time, without caching. 1640 * 1641 * NOTE: This function will trigger an exception if the page is 1642 * not executable. 1643 */ 1644 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr, 1645 void **hostp) 1646 { 1647 CPUTLBEntryFull *full; 1648 void *p; 1649 1650 (void)probe_access_internal(env_cpu(env), addr, 1, MMU_INST_FETCH, 1651 cpu_mmu_index(env_cpu(env), true), false, 1652 &p, &full, 0, false); 1653 if (p == NULL) { 1654 return -1; 1655 } 1656 1657 if (full->lg_page_size < TARGET_PAGE_BITS) { 1658 return -1; 1659 } 1660 1661 if (hostp) { 1662 *hostp = p; 1663 } 1664 return qemu_ram_addr_from_host_nofail(p); 1665 } 1666 1667 /* Load/store with atomicity primitives. */ 1668 #include "ldst_atomicity.c.inc" 1669 1670 #ifdef CONFIG_PLUGIN 1671 /* 1672 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1673 * This should be a hot path as we will have just looked this path up 1674 * in the softmmu lookup code (or helper). We don't handle re-fills or 1675 * checking the victim table. This is purely informational. 1676 * 1677 * The one corner case is i/o write, which can cause changes to the 1678 * address space. Those changes, and the corresponding tlb flush, 1679 * should be delayed until the next TB, so even then this ought not fail. 1680 * But check, Just in Case. 1681 */ 1682 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx, 1683 bool is_store, struct qemu_plugin_hwaddr *data) 1684 { 1685 CPUTLBEntry *tlbe = tlb_entry(cpu, mmu_idx, addr); 1686 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1687 MMUAccessType access_type = is_store ? MMU_DATA_STORE : MMU_DATA_LOAD; 1688 uint64_t tlb_addr = tlb_read_idx(tlbe, access_type); 1689 CPUTLBEntryFull *full; 1690 1691 if (unlikely(!tlb_hit(tlb_addr, addr))) { 1692 return false; 1693 } 1694 1695 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1696 data->phys_addr = full->phys_addr | (addr & ~TARGET_PAGE_MASK); 1697 1698 /* We must have an iotlb entry for MMIO */ 1699 if (tlb_addr & TLB_MMIO) { 1700 MemoryRegionSection *section = 1701 iotlb_to_section(cpu, full->xlat_section & ~TARGET_PAGE_MASK, 1702 full->attrs); 1703 data->is_io = true; 1704 data->mr = section->mr; 1705 } else { 1706 data->is_io = false; 1707 data->mr = NULL; 1708 } 1709 return true; 1710 } 1711 #endif 1712 1713 /* 1714 * Probe for a load/store operation. 1715 * Return the host address and into @flags. 1716 */ 1717 1718 typedef struct MMULookupPageData { 1719 CPUTLBEntryFull *full; 1720 void *haddr; 1721 vaddr addr; 1722 int flags; 1723 int size; 1724 } MMULookupPageData; 1725 1726 typedef struct MMULookupLocals { 1727 MMULookupPageData page[2]; 1728 MemOp memop; 1729 int mmu_idx; 1730 } MMULookupLocals; 1731 1732 /** 1733 * mmu_lookup1: translate one page 1734 * @cpu: generic cpu state 1735 * @data: lookup parameters 1736 * @mmu_idx: virtual address context 1737 * @access_type: load/store/code 1738 * @ra: return address into tcg generated code, or 0 1739 * 1740 * Resolve the translation for the one page at @data.addr, filling in 1741 * the rest of @data with the results. If the translation fails, 1742 * tlb_fill will longjmp out. Return true if the softmmu tlb for 1743 * @mmu_idx may have resized. 1744 */ 1745 static bool mmu_lookup1(CPUState *cpu, MMULookupPageData *data, 1746 int mmu_idx, MMUAccessType access_type, uintptr_t ra) 1747 { 1748 vaddr addr = data->addr; 1749 uintptr_t index = tlb_index(cpu, mmu_idx, addr); 1750 CPUTLBEntry *entry = tlb_entry(cpu, mmu_idx, addr); 1751 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1752 bool maybe_resized = false; 1753 CPUTLBEntryFull *full; 1754 int flags; 1755 1756 /* If the TLB entry is for a different page, reload and try again. */ 1757 if (!tlb_hit(tlb_addr, addr)) { 1758 if (!victim_tlb_hit(cpu, mmu_idx, index, access_type, 1759 addr & TARGET_PAGE_MASK)) { 1760 tlb_fill(cpu, addr, data->size, access_type, mmu_idx, ra); 1761 maybe_resized = true; 1762 index = tlb_index(cpu, mmu_idx, addr); 1763 entry = tlb_entry(cpu, mmu_idx, addr); 1764 } 1765 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK; 1766 } 1767 1768 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1769 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW); 1770 flags |= full->slow_flags[access_type]; 1771 1772 data->full = full; 1773 data->flags = flags; 1774 /* Compute haddr speculatively; depending on flags it might be invalid. */ 1775 data->haddr = (void *)((uintptr_t)addr + entry->addend); 1776 1777 return maybe_resized; 1778 } 1779 1780 /** 1781 * mmu_watch_or_dirty 1782 * @cpu: generic cpu state 1783 * @data: lookup parameters 1784 * @access_type: load/store/code 1785 * @ra: return address into tcg generated code, or 0 1786 * 1787 * Trigger watchpoints for @data.addr:@data.size; 1788 * record writes to protected clean pages. 1789 */ 1790 static void mmu_watch_or_dirty(CPUState *cpu, MMULookupPageData *data, 1791 MMUAccessType access_type, uintptr_t ra) 1792 { 1793 CPUTLBEntryFull *full = data->full; 1794 vaddr addr = data->addr; 1795 int flags = data->flags; 1796 int size = data->size; 1797 1798 /* On watchpoint hit, this will longjmp out. */ 1799 if (flags & TLB_WATCHPOINT) { 1800 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ; 1801 cpu_check_watchpoint(cpu, addr, size, full->attrs, wp, ra); 1802 flags &= ~TLB_WATCHPOINT; 1803 } 1804 1805 /* Note that notdirty is only set for writes. */ 1806 if (flags & TLB_NOTDIRTY) { 1807 notdirty_write(cpu, addr, size, full, ra); 1808 flags &= ~TLB_NOTDIRTY; 1809 } 1810 data->flags = flags; 1811 } 1812 1813 /** 1814 * mmu_lookup: translate page(s) 1815 * @cpu: generic cpu state 1816 * @addr: virtual address 1817 * @oi: combined mmu_idx and MemOp 1818 * @ra: return address into tcg generated code, or 0 1819 * @access_type: load/store/code 1820 * @l: output result 1821 * 1822 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size 1823 * bytes. Return true if the lookup crosses a page boundary. 1824 */ 1825 static bool mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi, 1826 uintptr_t ra, MMUAccessType type, MMULookupLocals *l) 1827 { 1828 unsigned a_bits; 1829 bool crosspage; 1830 int flags; 1831 1832 l->memop = get_memop(oi); 1833 l->mmu_idx = get_mmuidx(oi); 1834 1835 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES); 1836 1837 /* Handle CPU specific unaligned behaviour */ 1838 a_bits = get_alignment_bits(l->memop); 1839 if (addr & ((1 << a_bits) - 1)) { 1840 cpu_unaligned_access(cpu, addr, type, l->mmu_idx, ra); 1841 } 1842 1843 l->page[0].addr = addr; 1844 l->page[0].size = memop_size(l->memop); 1845 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK; 1846 l->page[1].size = 0; 1847 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK; 1848 1849 if (likely(!crosspage)) { 1850 mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra); 1851 1852 flags = l->page[0].flags; 1853 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1854 mmu_watch_or_dirty(cpu, &l->page[0], type, ra); 1855 } 1856 if (unlikely(flags & TLB_BSWAP)) { 1857 l->memop ^= MO_BSWAP; 1858 } 1859 } else { 1860 /* Finish compute of page crossing. */ 1861 int size0 = l->page[1].addr - addr; 1862 l->page[1].size = l->page[0].size - size0; 1863 l->page[0].size = size0; 1864 1865 /* 1866 * Lookup both pages, recognizing exceptions from either. If the 1867 * second lookup potentially resized, refresh first CPUTLBEntryFull. 1868 */ 1869 mmu_lookup1(cpu, &l->page[0], l->mmu_idx, type, ra); 1870 if (mmu_lookup1(cpu, &l->page[1], l->mmu_idx, type, ra)) { 1871 uintptr_t index = tlb_index(cpu, l->mmu_idx, addr); 1872 l->page[0].full = &cpu->neg.tlb.d[l->mmu_idx].fulltlb[index]; 1873 } 1874 1875 flags = l->page[0].flags | l->page[1].flags; 1876 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1877 mmu_watch_or_dirty(cpu, &l->page[0], type, ra); 1878 mmu_watch_or_dirty(cpu, &l->page[1], type, ra); 1879 } 1880 1881 /* 1882 * Since target/sparc is the only user of TLB_BSWAP, and all 1883 * Sparc accesses are aligned, any treatment across two pages 1884 * would be arbitrary. Refuse it until there's a use. 1885 */ 1886 tcg_debug_assert((flags & TLB_BSWAP) == 0); 1887 } 1888 1889 /* 1890 * This alignment check differs from the one above, in that this is 1891 * based on the atomicity of the operation. The intended use case is 1892 * the ARM memory type field of each PTE, where access to pages with 1893 * Device memory type require alignment. 1894 */ 1895 if (unlikely(flags & TLB_CHECK_ALIGNED)) { 1896 MemOp size = l->memop & MO_SIZE; 1897 1898 switch (l->memop & MO_ATOM_MASK) { 1899 case MO_ATOM_NONE: 1900 size = MO_8; 1901 break; 1902 case MO_ATOM_IFALIGN_PAIR: 1903 case MO_ATOM_WITHIN16_PAIR: 1904 size = size ? size - 1 : 0; 1905 break; 1906 default: 1907 break; 1908 } 1909 if (addr & ((1 << size) - 1)) { 1910 cpu_unaligned_access(cpu, addr, type, l->mmu_idx, ra); 1911 } 1912 } 1913 1914 return crosspage; 1915 } 1916 1917 /* 1918 * Probe for an atomic operation. Do not allow unaligned operations, 1919 * or io operations to proceed. Return the host address. 1920 */ 1921 static void *atomic_mmu_lookup(CPUState *cpu, vaddr addr, MemOpIdx oi, 1922 int size, uintptr_t retaddr) 1923 { 1924 uintptr_t mmu_idx = get_mmuidx(oi); 1925 MemOp mop = get_memop(oi); 1926 int a_bits = get_alignment_bits(mop); 1927 uintptr_t index; 1928 CPUTLBEntry *tlbe; 1929 vaddr tlb_addr; 1930 void *hostaddr; 1931 CPUTLBEntryFull *full; 1932 1933 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1934 1935 /* Adjust the given return address. */ 1936 retaddr -= GETPC_ADJ; 1937 1938 /* Enforce guest required alignment. */ 1939 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1940 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1941 cpu_unaligned_access(cpu, addr, MMU_DATA_STORE, 1942 mmu_idx, retaddr); 1943 } 1944 1945 /* Enforce qemu required alignment. */ 1946 if (unlikely(addr & (size - 1))) { 1947 /* We get here if guest alignment was not requested, 1948 or was not enforced by cpu_unaligned_access above. 1949 We might widen the access and emulate, but for now 1950 mark an exception and exit the cpu loop. */ 1951 goto stop_the_world; 1952 } 1953 1954 index = tlb_index(cpu, mmu_idx, addr); 1955 tlbe = tlb_entry(cpu, mmu_idx, addr); 1956 1957 /* Check TLB entry and enforce page permissions. */ 1958 tlb_addr = tlb_addr_write(tlbe); 1959 if (!tlb_hit(tlb_addr, addr)) { 1960 if (!victim_tlb_hit(cpu, mmu_idx, index, MMU_DATA_STORE, 1961 addr & TARGET_PAGE_MASK)) { 1962 tlb_fill(cpu, addr, size, 1963 MMU_DATA_STORE, mmu_idx, retaddr); 1964 index = tlb_index(cpu, mmu_idx, addr); 1965 tlbe = tlb_entry(cpu, mmu_idx, addr); 1966 } 1967 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1968 } 1969 1970 /* 1971 * Let the guest notice RMW on a write-only page. 1972 * We have just verified that the page is writable. 1973 * Subpage lookups may have left TLB_INVALID_MASK set, 1974 * but addr_read will only be -1 if PAGE_READ was unset. 1975 */ 1976 if (unlikely(tlbe->addr_read == -1)) { 1977 tlb_fill(cpu, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); 1978 /* 1979 * Since we don't support reads and writes to different 1980 * addresses, and we do have the proper page loaded for 1981 * write, this shouldn't ever return. But just in case, 1982 * handle via stop-the-world. 1983 */ 1984 goto stop_the_world; 1985 } 1986 /* Collect tlb flags for read. */ 1987 tlb_addr |= tlbe->addr_read; 1988 1989 /* Notice an IO access or a needs-MMU-lookup access */ 1990 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { 1991 /* There's really nothing that can be done to 1992 support this apart from stop-the-world. */ 1993 goto stop_the_world; 1994 } 1995 1996 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1997 full = &cpu->neg.tlb.d[mmu_idx].fulltlb[index]; 1998 1999 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 2000 notdirty_write(cpu, addr, size, full, retaddr); 2001 } 2002 2003 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) { 2004 int wp_flags = 0; 2005 2006 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) { 2007 wp_flags |= BP_MEM_WRITE; 2008 } 2009 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) { 2010 wp_flags |= BP_MEM_READ; 2011 } 2012 if (wp_flags) { 2013 cpu_check_watchpoint(cpu, addr, size, 2014 full->attrs, wp_flags, retaddr); 2015 } 2016 } 2017 2018 return hostaddr; 2019 2020 stop_the_world: 2021 cpu_loop_exit_atomic(cpu, retaddr); 2022 } 2023 2024 /* 2025 * Load Helpers 2026 * 2027 * We support two different access types. SOFTMMU_CODE_ACCESS is 2028 * specifically for reading instructions from system memory. It is 2029 * called by the translation loop and in some helpers where the code 2030 * is disassembled. It shouldn't be called directly by guest code. 2031 * 2032 * For the benefit of TCG generated code, we want to avoid the 2033 * complication of ABI-specific return type promotion and always 2034 * return a value extended to the register size of the host. This is 2035 * tcg_target_long, except in the case of a 32-bit host and 64-bit 2036 * data, and for that we always have uint64_t. 2037 * 2038 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 2039 */ 2040 2041 /** 2042 * do_ld_mmio_beN: 2043 * @cpu: generic cpu state 2044 * @full: page parameters 2045 * @ret_be: accumulated data 2046 * @addr: virtual address 2047 * @size: number of bytes 2048 * @mmu_idx: virtual address context 2049 * @ra: return address into tcg generated code, or 0 2050 * Context: BQL held 2051 * 2052 * Load @size bytes from @addr, which is memory-mapped i/o. 2053 * The bytes are concatenated in big-endian order with @ret_be. 2054 */ 2055 static uint64_t int_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 2056 uint64_t ret_be, vaddr addr, int size, 2057 int mmu_idx, MMUAccessType type, uintptr_t ra, 2058 MemoryRegion *mr, hwaddr mr_offset) 2059 { 2060 do { 2061 MemOp this_mop; 2062 unsigned this_size; 2063 uint64_t val; 2064 MemTxResult r; 2065 2066 /* Read aligned pieces up to 8 bytes. */ 2067 this_mop = ctz32(size | (int)addr | 8); 2068 this_size = 1 << this_mop; 2069 this_mop |= MO_BE; 2070 2071 r = memory_region_dispatch_read(mr, mr_offset, &val, 2072 this_mop, full->attrs); 2073 if (unlikely(r != MEMTX_OK)) { 2074 io_failed(cpu, full, addr, this_size, type, mmu_idx, r, ra); 2075 } 2076 if (this_size == 8) { 2077 return val; 2078 } 2079 2080 ret_be = (ret_be << (this_size * 8)) | val; 2081 addr += this_size; 2082 mr_offset += this_size; 2083 size -= this_size; 2084 } while (size); 2085 2086 return ret_be; 2087 } 2088 2089 static uint64_t do_ld_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 2090 uint64_t ret_be, vaddr addr, int size, 2091 int mmu_idx, MMUAccessType type, uintptr_t ra) 2092 { 2093 MemoryRegionSection *section; 2094 MemoryRegion *mr; 2095 hwaddr mr_offset; 2096 MemTxAttrs attrs; 2097 2098 tcg_debug_assert(size > 0 && size <= 8); 2099 2100 attrs = full->attrs; 2101 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2102 mr = section->mr; 2103 2104 BQL_LOCK_GUARD(); 2105 return int_ld_mmio_beN(cpu, full, ret_be, addr, size, mmu_idx, 2106 type, ra, mr, mr_offset); 2107 } 2108 2109 static Int128 do_ld16_mmio_beN(CPUState *cpu, CPUTLBEntryFull *full, 2110 uint64_t ret_be, vaddr addr, int size, 2111 int mmu_idx, uintptr_t ra) 2112 { 2113 MemoryRegionSection *section; 2114 MemoryRegion *mr; 2115 hwaddr mr_offset; 2116 MemTxAttrs attrs; 2117 uint64_t a, b; 2118 2119 tcg_debug_assert(size > 8 && size <= 16); 2120 2121 attrs = full->attrs; 2122 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2123 mr = section->mr; 2124 2125 BQL_LOCK_GUARD(); 2126 a = int_ld_mmio_beN(cpu, full, ret_be, addr, size - 8, mmu_idx, 2127 MMU_DATA_LOAD, ra, mr, mr_offset); 2128 b = int_ld_mmio_beN(cpu, full, ret_be, addr + size - 8, 8, mmu_idx, 2129 MMU_DATA_LOAD, ra, mr, mr_offset + size - 8); 2130 return int128_make128(b, a); 2131 } 2132 2133 /** 2134 * do_ld_bytes_beN 2135 * @p: translation parameters 2136 * @ret_be: accumulated data 2137 * 2138 * Load @p->size bytes from @p->haddr, which is RAM. 2139 * The bytes to concatenated in big-endian order with @ret_be. 2140 */ 2141 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) 2142 { 2143 uint8_t *haddr = p->haddr; 2144 int i, size = p->size; 2145 2146 for (i = 0; i < size; i++) { 2147 ret_be = (ret_be << 8) | haddr[i]; 2148 } 2149 return ret_be; 2150 } 2151 2152 /** 2153 * do_ld_parts_beN 2154 * @p: translation parameters 2155 * @ret_be: accumulated data 2156 * 2157 * As do_ld_bytes_beN, but atomically on each aligned part. 2158 */ 2159 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be) 2160 { 2161 void *haddr = p->haddr; 2162 int size = p->size; 2163 2164 do { 2165 uint64_t x; 2166 int n; 2167 2168 /* 2169 * Find minimum of alignment and size. 2170 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which 2171 * would have only checked the low bits of addr|size once at the start, 2172 * but is just as easy. 2173 */ 2174 switch (((uintptr_t)haddr | size) & 7) { 2175 case 4: 2176 x = cpu_to_be32(load_atomic4(haddr)); 2177 ret_be = (ret_be << 32) | x; 2178 n = 4; 2179 break; 2180 case 2: 2181 case 6: 2182 x = cpu_to_be16(load_atomic2(haddr)); 2183 ret_be = (ret_be << 16) | x; 2184 n = 2; 2185 break; 2186 default: 2187 x = *(uint8_t *)haddr; 2188 ret_be = (ret_be << 8) | x; 2189 n = 1; 2190 break; 2191 case 0: 2192 g_assert_not_reached(); 2193 } 2194 haddr += n; 2195 size -= n; 2196 } while (size != 0); 2197 return ret_be; 2198 } 2199 2200 /** 2201 * do_ld_parts_be4 2202 * @p: translation parameters 2203 * @ret_be: accumulated data 2204 * 2205 * As do_ld_bytes_beN, but with one atomic load. 2206 * Four aligned bytes are guaranteed to cover the load. 2207 */ 2208 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be) 2209 { 2210 int o = p->addr & 3; 2211 uint32_t x = load_atomic4(p->haddr - o); 2212 2213 x = cpu_to_be32(x); 2214 x <<= o * 8; 2215 x >>= (4 - p->size) * 8; 2216 return (ret_be << (p->size * 8)) | x; 2217 } 2218 2219 /** 2220 * do_ld_parts_be8 2221 * @p: translation parameters 2222 * @ret_be: accumulated data 2223 * 2224 * As do_ld_bytes_beN, but with one atomic load. 2225 * Eight aligned bytes are guaranteed to cover the load. 2226 */ 2227 static uint64_t do_ld_whole_be8(CPUState *cpu, uintptr_t ra, 2228 MMULookupPageData *p, uint64_t ret_be) 2229 { 2230 int o = p->addr & 7; 2231 uint64_t x = load_atomic8_or_exit(cpu, ra, p->haddr - o); 2232 2233 x = cpu_to_be64(x); 2234 x <<= o * 8; 2235 x >>= (8 - p->size) * 8; 2236 return (ret_be << (p->size * 8)) | x; 2237 } 2238 2239 /** 2240 * do_ld_parts_be16 2241 * @p: translation parameters 2242 * @ret_be: accumulated data 2243 * 2244 * As do_ld_bytes_beN, but with one atomic load. 2245 * 16 aligned bytes are guaranteed to cover the load. 2246 */ 2247 static Int128 do_ld_whole_be16(CPUState *cpu, uintptr_t ra, 2248 MMULookupPageData *p, uint64_t ret_be) 2249 { 2250 int o = p->addr & 15; 2251 Int128 x, y = load_atomic16_or_exit(cpu, ra, p->haddr - o); 2252 int size = p->size; 2253 2254 if (!HOST_BIG_ENDIAN) { 2255 y = bswap128(y); 2256 } 2257 y = int128_lshift(y, o * 8); 2258 y = int128_urshift(y, (16 - size) * 8); 2259 x = int128_make64(ret_be); 2260 x = int128_lshift(x, size * 8); 2261 return int128_or(x, y); 2262 } 2263 2264 /* 2265 * Wrapper for the above. 2266 */ 2267 static uint64_t do_ld_beN(CPUState *cpu, MMULookupPageData *p, 2268 uint64_t ret_be, int mmu_idx, MMUAccessType type, 2269 MemOp mop, uintptr_t ra) 2270 { 2271 MemOp atom; 2272 unsigned tmp, half_size; 2273 2274 if (unlikely(p->flags & TLB_MMIO)) { 2275 return do_ld_mmio_beN(cpu, p->full, ret_be, p->addr, p->size, 2276 mmu_idx, type, ra); 2277 } 2278 2279 /* 2280 * It is a given that we cross a page and therefore there is no 2281 * atomicity for the load as a whole, but subobjects may need attention. 2282 */ 2283 atom = mop & MO_ATOM_MASK; 2284 switch (atom) { 2285 case MO_ATOM_SUBALIGN: 2286 return do_ld_parts_beN(p, ret_be); 2287 2288 case MO_ATOM_IFALIGN_PAIR: 2289 case MO_ATOM_WITHIN16_PAIR: 2290 tmp = mop & MO_SIZE; 2291 tmp = tmp ? tmp - 1 : 0; 2292 half_size = 1 << tmp; 2293 if (atom == MO_ATOM_IFALIGN_PAIR 2294 ? p->size == half_size 2295 : p->size >= half_size) { 2296 if (!HAVE_al8_fast && p->size < 4) { 2297 return do_ld_whole_be4(p, ret_be); 2298 } else { 2299 return do_ld_whole_be8(cpu, ra, p, ret_be); 2300 } 2301 } 2302 /* fall through */ 2303 2304 case MO_ATOM_IFALIGN: 2305 case MO_ATOM_WITHIN16: 2306 case MO_ATOM_NONE: 2307 return do_ld_bytes_beN(p, ret_be); 2308 2309 default: 2310 g_assert_not_reached(); 2311 } 2312 } 2313 2314 /* 2315 * Wrapper for the above, for 8 < size < 16. 2316 */ 2317 static Int128 do_ld16_beN(CPUState *cpu, MMULookupPageData *p, 2318 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra) 2319 { 2320 int size = p->size; 2321 uint64_t b; 2322 MemOp atom; 2323 2324 if (unlikely(p->flags & TLB_MMIO)) { 2325 return do_ld16_mmio_beN(cpu, p->full, a, p->addr, size, mmu_idx, ra); 2326 } 2327 2328 /* 2329 * It is a given that we cross a page and therefore there is no 2330 * atomicity for the load as a whole, but subobjects may need attention. 2331 */ 2332 atom = mop & MO_ATOM_MASK; 2333 switch (atom) { 2334 case MO_ATOM_SUBALIGN: 2335 p->size = size - 8; 2336 a = do_ld_parts_beN(p, a); 2337 p->haddr += size - 8; 2338 p->size = 8; 2339 b = do_ld_parts_beN(p, 0); 2340 break; 2341 2342 case MO_ATOM_WITHIN16_PAIR: 2343 /* Since size > 8, this is the half that must be atomic. */ 2344 return do_ld_whole_be16(cpu, ra, p, a); 2345 2346 case MO_ATOM_IFALIGN_PAIR: 2347 /* 2348 * Since size > 8, both halves are misaligned, 2349 * and so neither is atomic. 2350 */ 2351 case MO_ATOM_IFALIGN: 2352 case MO_ATOM_WITHIN16: 2353 case MO_ATOM_NONE: 2354 p->size = size - 8; 2355 a = do_ld_bytes_beN(p, a); 2356 b = ldq_be_p(p->haddr + size - 8); 2357 break; 2358 2359 default: 2360 g_assert_not_reached(); 2361 } 2362 2363 return int128_make128(b, a); 2364 } 2365 2366 static uint8_t do_ld_1(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2367 MMUAccessType type, uintptr_t ra) 2368 { 2369 if (unlikely(p->flags & TLB_MMIO)) { 2370 return do_ld_mmio_beN(cpu, p->full, 0, p->addr, 1, mmu_idx, type, ra); 2371 } else { 2372 return *(uint8_t *)p->haddr; 2373 } 2374 } 2375 2376 static uint16_t do_ld_2(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2377 MMUAccessType type, MemOp memop, uintptr_t ra) 2378 { 2379 uint16_t ret; 2380 2381 if (unlikely(p->flags & TLB_MMIO)) { 2382 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 2, mmu_idx, type, ra); 2383 if ((memop & MO_BSWAP) == MO_LE) { 2384 ret = bswap16(ret); 2385 } 2386 } else { 2387 /* Perform the load host endian, then swap if necessary. */ 2388 ret = load_atom_2(cpu, ra, p->haddr, memop); 2389 if (memop & MO_BSWAP) { 2390 ret = bswap16(ret); 2391 } 2392 } 2393 return ret; 2394 } 2395 2396 static uint32_t do_ld_4(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2397 MMUAccessType type, MemOp memop, uintptr_t ra) 2398 { 2399 uint32_t ret; 2400 2401 if (unlikely(p->flags & TLB_MMIO)) { 2402 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 4, mmu_idx, type, ra); 2403 if ((memop & MO_BSWAP) == MO_LE) { 2404 ret = bswap32(ret); 2405 } 2406 } else { 2407 /* Perform the load host endian. */ 2408 ret = load_atom_4(cpu, ra, p->haddr, memop); 2409 if (memop & MO_BSWAP) { 2410 ret = bswap32(ret); 2411 } 2412 } 2413 return ret; 2414 } 2415 2416 static uint64_t do_ld_8(CPUState *cpu, MMULookupPageData *p, int mmu_idx, 2417 MMUAccessType type, MemOp memop, uintptr_t ra) 2418 { 2419 uint64_t ret; 2420 2421 if (unlikely(p->flags & TLB_MMIO)) { 2422 ret = do_ld_mmio_beN(cpu, p->full, 0, p->addr, 8, mmu_idx, type, ra); 2423 if ((memop & MO_BSWAP) == MO_LE) { 2424 ret = bswap64(ret); 2425 } 2426 } else { 2427 /* Perform the load host endian. */ 2428 ret = load_atom_8(cpu, ra, p->haddr, memop); 2429 if (memop & MO_BSWAP) { 2430 ret = bswap64(ret); 2431 } 2432 } 2433 return ret; 2434 } 2435 2436 static uint8_t do_ld1_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2437 uintptr_t ra, MMUAccessType access_type) 2438 { 2439 MMULookupLocals l; 2440 bool crosspage; 2441 2442 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2443 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2444 tcg_debug_assert(!crosspage); 2445 2446 return do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra); 2447 } 2448 2449 static uint16_t do_ld2_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2450 uintptr_t ra, MMUAccessType access_type) 2451 { 2452 MMULookupLocals l; 2453 bool crosspage; 2454 uint16_t ret; 2455 uint8_t a, b; 2456 2457 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2458 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2459 if (likely(!crosspage)) { 2460 return do_ld_2(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2461 } 2462 2463 a = do_ld_1(cpu, &l.page[0], l.mmu_idx, access_type, ra); 2464 b = do_ld_1(cpu, &l.page[1], l.mmu_idx, access_type, ra); 2465 2466 if ((l.memop & MO_BSWAP) == MO_LE) { 2467 ret = a | (b << 8); 2468 } else { 2469 ret = b | (a << 8); 2470 } 2471 return ret; 2472 } 2473 2474 static uint32_t do_ld4_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2475 uintptr_t ra, MMUAccessType access_type) 2476 { 2477 MMULookupLocals l; 2478 bool crosspage; 2479 uint32_t ret; 2480 2481 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2482 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2483 if (likely(!crosspage)) { 2484 return do_ld_4(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2485 } 2486 2487 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2488 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2489 if ((l.memop & MO_BSWAP) == MO_LE) { 2490 ret = bswap32(ret); 2491 } 2492 return ret; 2493 } 2494 2495 static uint64_t do_ld8_mmu(CPUState *cpu, vaddr addr, MemOpIdx oi, 2496 uintptr_t ra, MMUAccessType access_type) 2497 { 2498 MMULookupLocals l; 2499 bool crosspage; 2500 uint64_t ret; 2501 2502 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2503 crosspage = mmu_lookup(cpu, addr, oi, ra, access_type, &l); 2504 if (likely(!crosspage)) { 2505 return do_ld_8(cpu, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2506 } 2507 2508 ret = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2509 ret = do_ld_beN(cpu, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2510 if ((l.memop & MO_BSWAP) == MO_LE) { 2511 ret = bswap64(ret); 2512 } 2513 return ret; 2514 } 2515 2516 static Int128 do_ld16_mmu(CPUState *cpu, vaddr addr, 2517 MemOpIdx oi, uintptr_t ra) 2518 { 2519 MMULookupLocals l; 2520 bool crosspage; 2521 uint64_t a, b; 2522 Int128 ret; 2523 int first; 2524 2525 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2526 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_LOAD, &l); 2527 if (likely(!crosspage)) { 2528 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2529 ret = do_ld16_mmio_beN(cpu, l.page[0].full, 0, addr, 16, 2530 l.mmu_idx, ra); 2531 if ((l.memop & MO_BSWAP) == MO_LE) { 2532 ret = bswap128(ret); 2533 } 2534 } else { 2535 /* Perform the load host endian. */ 2536 ret = load_atom_16(cpu, ra, l.page[0].haddr, l.memop); 2537 if (l.memop & MO_BSWAP) { 2538 ret = bswap128(ret); 2539 } 2540 } 2541 return ret; 2542 } 2543 2544 first = l.page[0].size; 2545 if (first == 8) { 2546 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64; 2547 2548 a = do_ld_8(cpu, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2549 b = do_ld_8(cpu, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2550 if ((mop8 & MO_BSWAP) == MO_LE) { 2551 ret = int128_make128(a, b); 2552 } else { 2553 ret = int128_make128(b, a); 2554 } 2555 return ret; 2556 } 2557 2558 if (first < 8) { 2559 a = do_ld_beN(cpu, &l.page[0], 0, l.mmu_idx, 2560 MMU_DATA_LOAD, l.memop, ra); 2561 ret = do_ld16_beN(cpu, &l.page[1], a, l.mmu_idx, l.memop, ra); 2562 } else { 2563 ret = do_ld16_beN(cpu, &l.page[0], 0, l.mmu_idx, l.memop, ra); 2564 b = int128_getlo(ret); 2565 ret = int128_lshift(ret, l.page[1].size * 8); 2566 a = int128_gethi(ret); 2567 b = do_ld_beN(cpu, &l.page[1], b, l.mmu_idx, 2568 MMU_DATA_LOAD, l.memop, ra); 2569 ret = int128_make128(b, a); 2570 } 2571 if ((l.memop & MO_BSWAP) == MO_LE) { 2572 ret = bswap128(ret); 2573 } 2574 return ret; 2575 } 2576 2577 /* 2578 * Store Helpers 2579 */ 2580 2581 /** 2582 * do_st_mmio_leN: 2583 * @cpu: generic cpu state 2584 * @full: page parameters 2585 * @val_le: data to store 2586 * @addr: virtual address 2587 * @size: number of bytes 2588 * @mmu_idx: virtual address context 2589 * @ra: return address into tcg generated code, or 0 2590 * Context: BQL held 2591 * 2592 * Store @size bytes at @addr, which is memory-mapped i/o. 2593 * The bytes to store are extracted in little-endian order from @val_le; 2594 * return the bytes of @val_le beyond @p->size that have not been stored. 2595 */ 2596 static uint64_t int_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2597 uint64_t val_le, vaddr addr, int size, 2598 int mmu_idx, uintptr_t ra, 2599 MemoryRegion *mr, hwaddr mr_offset) 2600 { 2601 do { 2602 MemOp this_mop; 2603 unsigned this_size; 2604 MemTxResult r; 2605 2606 /* Store aligned pieces up to 8 bytes. */ 2607 this_mop = ctz32(size | (int)addr | 8); 2608 this_size = 1 << this_mop; 2609 this_mop |= MO_LE; 2610 2611 r = memory_region_dispatch_write(mr, mr_offset, val_le, 2612 this_mop, full->attrs); 2613 if (unlikely(r != MEMTX_OK)) { 2614 io_failed(cpu, full, addr, this_size, MMU_DATA_STORE, 2615 mmu_idx, r, ra); 2616 } 2617 if (this_size == 8) { 2618 return 0; 2619 } 2620 2621 val_le >>= this_size * 8; 2622 addr += this_size; 2623 mr_offset += this_size; 2624 size -= this_size; 2625 } while (size); 2626 2627 return val_le; 2628 } 2629 2630 static uint64_t do_st_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2631 uint64_t val_le, vaddr addr, int size, 2632 int mmu_idx, uintptr_t ra) 2633 { 2634 MemoryRegionSection *section; 2635 hwaddr mr_offset; 2636 MemoryRegion *mr; 2637 MemTxAttrs attrs; 2638 2639 tcg_debug_assert(size > 0 && size <= 8); 2640 2641 attrs = full->attrs; 2642 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2643 mr = section->mr; 2644 2645 BQL_LOCK_GUARD(); 2646 return int_st_mmio_leN(cpu, full, val_le, addr, size, mmu_idx, 2647 ra, mr, mr_offset); 2648 } 2649 2650 static uint64_t do_st16_mmio_leN(CPUState *cpu, CPUTLBEntryFull *full, 2651 Int128 val_le, vaddr addr, int size, 2652 int mmu_idx, uintptr_t ra) 2653 { 2654 MemoryRegionSection *section; 2655 MemoryRegion *mr; 2656 hwaddr mr_offset; 2657 MemTxAttrs attrs; 2658 2659 tcg_debug_assert(size > 8 && size <= 16); 2660 2661 attrs = full->attrs; 2662 section = io_prepare(&mr_offset, cpu, full->xlat_section, attrs, addr, ra); 2663 mr = section->mr; 2664 2665 BQL_LOCK_GUARD(); 2666 int_st_mmio_leN(cpu, full, int128_getlo(val_le), addr, 8, 2667 mmu_idx, ra, mr, mr_offset); 2668 return int_st_mmio_leN(cpu, full, int128_gethi(val_le), addr + 8, 2669 size - 8, mmu_idx, ra, mr, mr_offset + 8); 2670 } 2671 2672 /* 2673 * Wrapper for the above. 2674 */ 2675 static uint64_t do_st_leN(CPUState *cpu, MMULookupPageData *p, 2676 uint64_t val_le, int mmu_idx, 2677 MemOp mop, uintptr_t ra) 2678 { 2679 MemOp atom; 2680 unsigned tmp, half_size; 2681 2682 if (unlikely(p->flags & TLB_MMIO)) { 2683 return do_st_mmio_leN(cpu, p->full, val_le, p->addr, 2684 p->size, mmu_idx, ra); 2685 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2686 return val_le >> (p->size * 8); 2687 } 2688 2689 /* 2690 * It is a given that we cross a page and therefore there is no atomicity 2691 * for the store as a whole, but subobjects may need attention. 2692 */ 2693 atom = mop & MO_ATOM_MASK; 2694 switch (atom) { 2695 case MO_ATOM_SUBALIGN: 2696 return store_parts_leN(p->haddr, p->size, val_le); 2697 2698 case MO_ATOM_IFALIGN_PAIR: 2699 case MO_ATOM_WITHIN16_PAIR: 2700 tmp = mop & MO_SIZE; 2701 tmp = tmp ? tmp - 1 : 0; 2702 half_size = 1 << tmp; 2703 if (atom == MO_ATOM_IFALIGN_PAIR 2704 ? p->size == half_size 2705 : p->size >= half_size) { 2706 if (!HAVE_al8_fast && p->size <= 4) { 2707 return store_whole_le4(p->haddr, p->size, val_le); 2708 } else if (HAVE_al8) { 2709 return store_whole_le8(p->haddr, p->size, val_le); 2710 } else { 2711 cpu_loop_exit_atomic(cpu, ra); 2712 } 2713 } 2714 /* fall through */ 2715 2716 case MO_ATOM_IFALIGN: 2717 case MO_ATOM_WITHIN16: 2718 case MO_ATOM_NONE: 2719 return store_bytes_leN(p->haddr, p->size, val_le); 2720 2721 default: 2722 g_assert_not_reached(); 2723 } 2724 } 2725 2726 /* 2727 * Wrapper for the above, for 8 < size < 16. 2728 */ 2729 static uint64_t do_st16_leN(CPUState *cpu, MMULookupPageData *p, 2730 Int128 val_le, int mmu_idx, 2731 MemOp mop, uintptr_t ra) 2732 { 2733 int size = p->size; 2734 MemOp atom; 2735 2736 if (unlikely(p->flags & TLB_MMIO)) { 2737 return do_st16_mmio_leN(cpu, p->full, val_le, p->addr, 2738 size, mmu_idx, ra); 2739 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2740 return int128_gethi(val_le) >> ((size - 8) * 8); 2741 } 2742 2743 /* 2744 * It is a given that we cross a page and therefore there is no atomicity 2745 * for the store as a whole, but subobjects may need attention. 2746 */ 2747 atom = mop & MO_ATOM_MASK; 2748 switch (atom) { 2749 case MO_ATOM_SUBALIGN: 2750 store_parts_leN(p->haddr, 8, int128_getlo(val_le)); 2751 return store_parts_leN(p->haddr + 8, p->size - 8, 2752 int128_gethi(val_le)); 2753 2754 case MO_ATOM_WITHIN16_PAIR: 2755 /* Since size > 8, this is the half that must be atomic. */ 2756 if (!HAVE_CMPXCHG128) { 2757 cpu_loop_exit_atomic(cpu, ra); 2758 } 2759 return store_whole_le16(p->haddr, p->size, val_le); 2760 2761 case MO_ATOM_IFALIGN_PAIR: 2762 /* 2763 * Since size > 8, both halves are misaligned, 2764 * and so neither is atomic. 2765 */ 2766 case MO_ATOM_IFALIGN: 2767 case MO_ATOM_WITHIN16: 2768 case MO_ATOM_NONE: 2769 stq_le_p(p->haddr, int128_getlo(val_le)); 2770 return store_bytes_leN(p->haddr + 8, p->size - 8, 2771 int128_gethi(val_le)); 2772 2773 default: 2774 g_assert_not_reached(); 2775 } 2776 } 2777 2778 static void do_st_1(CPUState *cpu, MMULookupPageData *p, uint8_t val, 2779 int mmu_idx, uintptr_t ra) 2780 { 2781 if (unlikely(p->flags & TLB_MMIO)) { 2782 do_st_mmio_leN(cpu, p->full, val, p->addr, 1, mmu_idx, ra); 2783 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2784 /* nothing */ 2785 } else { 2786 *(uint8_t *)p->haddr = val; 2787 } 2788 } 2789 2790 static void do_st_2(CPUState *cpu, MMULookupPageData *p, uint16_t val, 2791 int mmu_idx, MemOp memop, uintptr_t ra) 2792 { 2793 if (unlikely(p->flags & TLB_MMIO)) { 2794 if ((memop & MO_BSWAP) != MO_LE) { 2795 val = bswap16(val); 2796 } 2797 do_st_mmio_leN(cpu, p->full, val, p->addr, 2, mmu_idx, ra); 2798 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2799 /* nothing */ 2800 } else { 2801 /* Swap to host endian if necessary, then store. */ 2802 if (memop & MO_BSWAP) { 2803 val = bswap16(val); 2804 } 2805 store_atom_2(cpu, ra, p->haddr, memop, val); 2806 } 2807 } 2808 2809 static void do_st_4(CPUState *cpu, MMULookupPageData *p, uint32_t val, 2810 int mmu_idx, MemOp memop, uintptr_t ra) 2811 { 2812 if (unlikely(p->flags & TLB_MMIO)) { 2813 if ((memop & MO_BSWAP) != MO_LE) { 2814 val = bswap32(val); 2815 } 2816 do_st_mmio_leN(cpu, p->full, val, p->addr, 4, mmu_idx, ra); 2817 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2818 /* nothing */ 2819 } else { 2820 /* Swap to host endian if necessary, then store. */ 2821 if (memop & MO_BSWAP) { 2822 val = bswap32(val); 2823 } 2824 store_atom_4(cpu, ra, p->haddr, memop, val); 2825 } 2826 } 2827 2828 static void do_st_8(CPUState *cpu, MMULookupPageData *p, uint64_t val, 2829 int mmu_idx, MemOp memop, uintptr_t ra) 2830 { 2831 if (unlikely(p->flags & TLB_MMIO)) { 2832 if ((memop & MO_BSWAP) != MO_LE) { 2833 val = bswap64(val); 2834 } 2835 do_st_mmio_leN(cpu, p->full, val, p->addr, 8, mmu_idx, ra); 2836 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2837 /* nothing */ 2838 } else { 2839 /* Swap to host endian if necessary, then store. */ 2840 if (memop & MO_BSWAP) { 2841 val = bswap64(val); 2842 } 2843 store_atom_8(cpu, ra, p->haddr, memop, val); 2844 } 2845 } 2846 2847 static void do_st1_mmu(CPUState *cpu, vaddr addr, uint8_t val, 2848 MemOpIdx oi, uintptr_t ra) 2849 { 2850 MMULookupLocals l; 2851 bool crosspage; 2852 2853 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2854 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2855 tcg_debug_assert(!crosspage); 2856 2857 do_st_1(cpu, &l.page[0], val, l.mmu_idx, ra); 2858 } 2859 2860 static void do_st2_mmu(CPUState *cpu, vaddr addr, uint16_t val, 2861 MemOpIdx oi, uintptr_t ra) 2862 { 2863 MMULookupLocals l; 2864 bool crosspage; 2865 uint8_t a, b; 2866 2867 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2868 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2869 if (likely(!crosspage)) { 2870 do_st_2(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2871 return; 2872 } 2873 2874 if ((l.memop & MO_BSWAP) == MO_LE) { 2875 a = val, b = val >> 8; 2876 } else { 2877 b = val, a = val >> 8; 2878 } 2879 do_st_1(cpu, &l.page[0], a, l.mmu_idx, ra); 2880 do_st_1(cpu, &l.page[1], b, l.mmu_idx, ra); 2881 } 2882 2883 static void do_st4_mmu(CPUState *cpu, vaddr addr, uint32_t val, 2884 MemOpIdx oi, uintptr_t ra) 2885 { 2886 MMULookupLocals l; 2887 bool crosspage; 2888 2889 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2890 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2891 if (likely(!crosspage)) { 2892 do_st_4(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2893 return; 2894 } 2895 2896 /* Swap to little endian for simplicity, then store by bytes. */ 2897 if ((l.memop & MO_BSWAP) != MO_LE) { 2898 val = bswap32(val); 2899 } 2900 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2901 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2902 } 2903 2904 static void do_st8_mmu(CPUState *cpu, vaddr addr, uint64_t val, 2905 MemOpIdx oi, uintptr_t ra) 2906 { 2907 MMULookupLocals l; 2908 bool crosspage; 2909 2910 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2911 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2912 if (likely(!crosspage)) { 2913 do_st_8(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2914 return; 2915 } 2916 2917 /* Swap to little endian for simplicity, then store by bytes. */ 2918 if ((l.memop & MO_BSWAP) != MO_LE) { 2919 val = bswap64(val); 2920 } 2921 val = do_st_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2922 (void) do_st_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2923 } 2924 2925 static void do_st16_mmu(CPUState *cpu, vaddr addr, Int128 val, 2926 MemOpIdx oi, uintptr_t ra) 2927 { 2928 MMULookupLocals l; 2929 bool crosspage; 2930 uint64_t a, b; 2931 int first; 2932 2933 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2934 crosspage = mmu_lookup(cpu, addr, oi, ra, MMU_DATA_STORE, &l); 2935 if (likely(!crosspage)) { 2936 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2937 if ((l.memop & MO_BSWAP) != MO_LE) { 2938 val = bswap128(val); 2939 } 2940 do_st16_mmio_leN(cpu, l.page[0].full, val, addr, 16, l.mmu_idx, ra); 2941 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) { 2942 /* nothing */ 2943 } else { 2944 /* Swap to host endian if necessary, then store. */ 2945 if (l.memop & MO_BSWAP) { 2946 val = bswap128(val); 2947 } 2948 store_atom_16(cpu, ra, l.page[0].haddr, l.memop, val); 2949 } 2950 return; 2951 } 2952 2953 first = l.page[0].size; 2954 if (first == 8) { 2955 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64; 2956 2957 if (l.memop & MO_BSWAP) { 2958 val = bswap128(val); 2959 } 2960 if (HOST_BIG_ENDIAN) { 2961 b = int128_getlo(val), a = int128_gethi(val); 2962 } else { 2963 a = int128_getlo(val), b = int128_gethi(val); 2964 } 2965 do_st_8(cpu, &l.page[0], a, l.mmu_idx, mop8, ra); 2966 do_st_8(cpu, &l.page[1], b, l.mmu_idx, mop8, ra); 2967 return; 2968 } 2969 2970 if ((l.memop & MO_BSWAP) != MO_LE) { 2971 val = bswap128(val); 2972 } 2973 if (first < 8) { 2974 do_st_leN(cpu, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra); 2975 val = int128_urshift(val, first * 8); 2976 do_st16_leN(cpu, &l.page[1], val, l.mmu_idx, l.memop, ra); 2977 } else { 2978 b = do_st16_leN(cpu, &l.page[0], val, l.mmu_idx, l.memop, ra); 2979 do_st_leN(cpu, &l.page[1], b, l.mmu_idx, l.memop, ra); 2980 } 2981 } 2982 2983 #include "ldst_common.c.inc" 2984 2985 /* 2986 * First set of functions passes in OI and RETADDR. 2987 * This makes them callable from other helpers. 2988 */ 2989 2990 #define ATOMIC_NAME(X) \ 2991 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 2992 2993 #define ATOMIC_MMU_CLEANUP 2994 2995 #include "atomic_common.c.inc" 2996 2997 #define DATA_SIZE 1 2998 #include "atomic_template.h" 2999 3000 #define DATA_SIZE 2 3001 #include "atomic_template.h" 3002 3003 #define DATA_SIZE 4 3004 #include "atomic_template.h" 3005 3006 #ifdef CONFIG_ATOMIC64 3007 #define DATA_SIZE 8 3008 #include "atomic_template.h" 3009 #endif 3010 3011 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128 3012 #define DATA_SIZE 16 3013 #include "atomic_template.h" 3014 #endif 3015 3016 /* Code access functions. */ 3017 3018 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 3019 { 3020 CPUState *cs = env_cpu(env); 3021 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(cs, true)); 3022 return do_ld1_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 3023 } 3024 3025 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 3026 { 3027 CPUState *cs = env_cpu(env); 3028 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(cs, true)); 3029 return do_ld2_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 3030 } 3031 3032 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 3033 { 3034 CPUState *cs = env_cpu(env); 3035 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(cs, true)); 3036 return do_ld4_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 3037 } 3038 3039 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 3040 { 3041 CPUState *cs = env_cpu(env); 3042 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(cs, true)); 3043 return do_ld8_mmu(cs, addr, oi, 0, MMU_INST_FETCH); 3044 } 3045 3046 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, 3047 MemOpIdx oi, uintptr_t retaddr) 3048 { 3049 return do_ld1_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 3050 } 3051 3052 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, 3053 MemOpIdx oi, uintptr_t retaddr) 3054 { 3055 return do_ld2_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 3056 } 3057 3058 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, 3059 MemOpIdx oi, uintptr_t retaddr) 3060 { 3061 return do_ld4_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 3062 } 3063 3064 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, 3065 MemOpIdx oi, uintptr_t retaddr) 3066 { 3067 return do_ld8_mmu(env_cpu(env), addr, oi, retaddr, MMU_INST_FETCH); 3068 } 3069