xref: /openbmc/qemu/accel/tcg/cputlb.c (revision 1b65b4f5)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto-common.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43 #include "tcg/oversized-guest.h"
44 
45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
46 /* #define DEBUG_TLB */
47 /* #define DEBUG_TLB_LOG */
48 
49 #ifdef DEBUG_TLB
50 # define DEBUG_TLB_GATE 1
51 # ifdef DEBUG_TLB_LOG
52 #  define DEBUG_TLB_LOG_GATE 1
53 # else
54 #  define DEBUG_TLB_LOG_GATE 0
55 # endif
56 #else
57 # define DEBUG_TLB_GATE 0
58 # define DEBUG_TLB_LOG_GATE 0
59 #endif
60 
61 #define tlb_debug(fmt, ...) do { \
62     if (DEBUG_TLB_LOG_GATE) { \
63         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
64                       ## __VA_ARGS__); \
65     } else if (DEBUG_TLB_GATE) { \
66         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
67     } \
68 } while (0)
69 
70 #define assert_cpu_is_self(cpu) do {                              \
71         if (DEBUG_TLB_GATE) {                                     \
72             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
73         }                                                         \
74     } while (0)
75 
76 /* run_on_cpu_data.target_ptr should always be big enough for a
77  * target_ulong even on 32 bit builds */
78 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
79 
80 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
81  */
82 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
83 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
84 
85 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
86 {
87     return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
88 }
89 
90 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
91 {
92     return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
93 }
94 
95 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
96                              size_t max_entries)
97 {
98     desc->window_begin_ns = ns;
99     desc->window_max_entries = max_entries;
100 }
101 
102 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr)
103 {
104     CPUJumpCache *jc = cpu->tb_jmp_cache;
105     int i, i0;
106 
107     if (unlikely(!jc)) {
108         return;
109     }
110 
111     i0 = tb_jmp_cache_hash_page(page_addr);
112     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
113         qatomic_set(&jc->array[i0 + i].tb, NULL);
114     }
115 }
116 
117 /**
118  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
119  * @desc: The CPUTLBDesc portion of the TLB
120  * @fast: The CPUTLBDescFast portion of the same TLB
121  *
122  * Called with tlb_lock_held.
123  *
124  * We have two main constraints when resizing a TLB: (1) we only resize it
125  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
126  * the array or unnecessarily flushing it), which means we do not control how
127  * frequently the resizing can occur; (2) we don't have access to the guest's
128  * future scheduling decisions, and therefore have to decide the magnitude of
129  * the resize based on past observations.
130  *
131  * In general, a memory-hungry process can benefit greatly from an appropriately
132  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
133  * we just have to make the TLB as large as possible; while an oversized TLB
134  * results in minimal TLB miss rates, it also takes longer to be flushed
135  * (flushes can be _very_ frequent), and the reduced locality can also hurt
136  * performance.
137  *
138  * To achieve near-optimal performance for all kinds of workloads, we:
139  *
140  * 1. Aggressively increase the size of the TLB when the use rate of the
141  * TLB being flushed is high, since it is likely that in the near future this
142  * memory-hungry process will execute again, and its memory hungriness will
143  * probably be similar.
144  *
145  * 2. Slowly reduce the size of the TLB as the use rate declines over a
146  * reasonably large time window. The rationale is that if in such a time window
147  * we have not observed a high TLB use rate, it is likely that we won't observe
148  * it in the near future. In that case, once a time window expires we downsize
149  * the TLB to match the maximum use rate observed in the window.
150  *
151  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
152  * since in that range performance is likely near-optimal. Recall that the TLB
153  * is direct mapped, so we want the use rate to be low (or at least not too
154  * high), since otherwise we are likely to have a significant amount of
155  * conflict misses.
156  */
157 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
158                                   int64_t now)
159 {
160     size_t old_size = tlb_n_entries(fast);
161     size_t rate;
162     size_t new_size = old_size;
163     int64_t window_len_ms = 100;
164     int64_t window_len_ns = window_len_ms * 1000 * 1000;
165     bool window_expired = now > desc->window_begin_ns + window_len_ns;
166 
167     if (desc->n_used_entries > desc->window_max_entries) {
168         desc->window_max_entries = desc->n_used_entries;
169     }
170     rate = desc->window_max_entries * 100 / old_size;
171 
172     if (rate > 70) {
173         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
174     } else if (rate < 30 && window_expired) {
175         size_t ceil = pow2ceil(desc->window_max_entries);
176         size_t expected_rate = desc->window_max_entries * 100 / ceil;
177 
178         /*
179          * Avoid undersizing when the max number of entries seen is just below
180          * a pow2. For instance, if max_entries == 1025, the expected use rate
181          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
182          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
183          * later. Thus, make sure that the expected use rate remains below 70%.
184          * (and since we double the size, that means the lowest rate we'd
185          * expect to get is 35%, which is still in the 30-70% range where
186          * we consider that the size is appropriate.)
187          */
188         if (expected_rate > 70) {
189             ceil *= 2;
190         }
191         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
192     }
193 
194     if (new_size == old_size) {
195         if (window_expired) {
196             tlb_window_reset(desc, now, desc->n_used_entries);
197         }
198         return;
199     }
200 
201     g_free(fast->table);
202     g_free(desc->fulltlb);
203 
204     tlb_window_reset(desc, now, 0);
205     /* desc->n_used_entries is cleared by the caller */
206     fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
207     fast->table = g_try_new(CPUTLBEntry, new_size);
208     desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
209 
210     /*
211      * If the allocations fail, try smaller sizes. We just freed some
212      * memory, so going back to half of new_size has a good chance of working.
213      * Increased memory pressure elsewhere in the system might cause the
214      * allocations to fail though, so we progressively reduce the allocation
215      * size, aborting if we cannot even allocate the smallest TLB we support.
216      */
217     while (fast->table == NULL || desc->fulltlb == NULL) {
218         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
219             error_report("%s: %s", __func__, strerror(errno));
220             abort();
221         }
222         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
223         fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
224 
225         g_free(fast->table);
226         g_free(desc->fulltlb);
227         fast->table = g_try_new(CPUTLBEntry, new_size);
228         desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
229     }
230 }
231 
232 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
233 {
234     desc->n_used_entries = 0;
235     desc->large_page_addr = -1;
236     desc->large_page_mask = -1;
237     desc->vindex = 0;
238     memset(fast->table, -1, sizeof_tlb(fast));
239     memset(desc->vtable, -1, sizeof(desc->vtable));
240 }
241 
242 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
243                                         int64_t now)
244 {
245     CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
246     CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
247 
248     tlb_mmu_resize_locked(desc, fast, now);
249     tlb_mmu_flush_locked(desc, fast);
250 }
251 
252 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
253 {
254     size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
255 
256     tlb_window_reset(desc, now, 0);
257     desc->n_used_entries = 0;
258     fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
259     fast->table = g_new(CPUTLBEntry, n_entries);
260     desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
261     tlb_mmu_flush_locked(desc, fast);
262 }
263 
264 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
265 {
266     env_tlb(env)->d[mmu_idx].n_used_entries++;
267 }
268 
269 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
270 {
271     env_tlb(env)->d[mmu_idx].n_used_entries--;
272 }
273 
274 void tlb_init(CPUState *cpu)
275 {
276     CPUArchState *env = cpu->env_ptr;
277     int64_t now = get_clock_realtime();
278     int i;
279 
280     qemu_spin_init(&env_tlb(env)->c.lock);
281 
282     /* All tlbs are initialized flushed. */
283     env_tlb(env)->c.dirty = 0;
284 
285     for (i = 0; i < NB_MMU_MODES; i++) {
286         tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
287     }
288 }
289 
290 void tlb_destroy(CPUState *cpu)
291 {
292     CPUArchState *env = cpu->env_ptr;
293     int i;
294 
295     qemu_spin_destroy(&env_tlb(env)->c.lock);
296     for (i = 0; i < NB_MMU_MODES; i++) {
297         CPUTLBDesc *desc = &env_tlb(env)->d[i];
298         CPUTLBDescFast *fast = &env_tlb(env)->f[i];
299 
300         g_free(fast->table);
301         g_free(desc->fulltlb);
302     }
303 }
304 
305 /* flush_all_helper: run fn across all cpus
306  *
307  * If the wait flag is set then the src cpu's helper will be queued as
308  * "safe" work and the loop exited creating a synchronisation point
309  * where all queued work will be finished before execution starts
310  * again.
311  */
312 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
313                              run_on_cpu_data d)
314 {
315     CPUState *cpu;
316 
317     CPU_FOREACH(cpu) {
318         if (cpu != src) {
319             async_run_on_cpu(cpu, fn, d);
320         }
321     }
322 }
323 
324 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
325 {
326     CPUState *cpu;
327     size_t full = 0, part = 0, elide = 0;
328 
329     CPU_FOREACH(cpu) {
330         CPUArchState *env = cpu->env_ptr;
331 
332         full += qatomic_read(&env_tlb(env)->c.full_flush_count);
333         part += qatomic_read(&env_tlb(env)->c.part_flush_count);
334         elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
335     }
336     *pfull = full;
337     *ppart = part;
338     *pelide = elide;
339 }
340 
341 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
342 {
343     CPUArchState *env = cpu->env_ptr;
344     uint16_t asked = data.host_int;
345     uint16_t all_dirty, work, to_clean;
346     int64_t now = get_clock_realtime();
347 
348     assert_cpu_is_self(cpu);
349 
350     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
351 
352     qemu_spin_lock(&env_tlb(env)->c.lock);
353 
354     all_dirty = env_tlb(env)->c.dirty;
355     to_clean = asked & all_dirty;
356     all_dirty &= ~to_clean;
357     env_tlb(env)->c.dirty = all_dirty;
358 
359     for (work = to_clean; work != 0; work &= work - 1) {
360         int mmu_idx = ctz32(work);
361         tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
362     }
363 
364     qemu_spin_unlock(&env_tlb(env)->c.lock);
365 
366     tcg_flush_jmp_cache(cpu);
367 
368     if (to_clean == ALL_MMUIDX_BITS) {
369         qatomic_set(&env_tlb(env)->c.full_flush_count,
370                    env_tlb(env)->c.full_flush_count + 1);
371     } else {
372         qatomic_set(&env_tlb(env)->c.part_flush_count,
373                    env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
374         if (to_clean != asked) {
375             qatomic_set(&env_tlb(env)->c.elide_flush_count,
376                        env_tlb(env)->c.elide_flush_count +
377                        ctpop16(asked & ~to_clean));
378         }
379     }
380 }
381 
382 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
383 {
384     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
385 
386     if (cpu->created && !qemu_cpu_is_self(cpu)) {
387         async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
388                          RUN_ON_CPU_HOST_INT(idxmap));
389     } else {
390         tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
391     }
392 }
393 
394 void tlb_flush(CPUState *cpu)
395 {
396     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
397 }
398 
399 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
400 {
401     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
402 
403     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
404 
405     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
406     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
407 }
408 
409 void tlb_flush_all_cpus(CPUState *src_cpu)
410 {
411     tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
412 }
413 
414 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
415 {
416     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
417 
418     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
419 
420     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
421     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
422 }
423 
424 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
425 {
426     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
427 }
428 
429 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
430                                       vaddr page, vaddr mask)
431 {
432     page &= mask;
433     mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
434 
435     return (page == (tlb_entry->addr_read & mask) ||
436             page == (tlb_addr_write(tlb_entry) & mask) ||
437             page == (tlb_entry->addr_code & mask));
438 }
439 
440 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page)
441 {
442     return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
443 }
444 
445 /**
446  * tlb_entry_is_empty - return true if the entry is not in use
447  * @te: pointer to CPUTLBEntry
448  */
449 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
450 {
451     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
452 }
453 
454 /* Called with tlb_c.lock held */
455 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
456                                         vaddr page,
457                                         vaddr mask)
458 {
459     if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
460         memset(tlb_entry, -1, sizeof(*tlb_entry));
461         return true;
462     }
463     return false;
464 }
465 
466 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page)
467 {
468     return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
469 }
470 
471 /* Called with tlb_c.lock held */
472 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
473                                             vaddr page,
474                                             vaddr mask)
475 {
476     CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
477     int k;
478 
479     assert_cpu_is_self(env_cpu(env));
480     for (k = 0; k < CPU_VTLB_SIZE; k++) {
481         if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
482             tlb_n_used_entries_dec(env, mmu_idx);
483         }
484     }
485 }
486 
487 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
488                                               vaddr page)
489 {
490     tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
491 }
492 
493 static void tlb_flush_page_locked(CPUArchState *env, int midx, vaddr page)
494 {
495     vaddr lp_addr = env_tlb(env)->d[midx].large_page_addr;
496     vaddr lp_mask = env_tlb(env)->d[midx].large_page_mask;
497 
498     /* Check if we need to flush due to large pages.  */
499     if ((page & lp_mask) == lp_addr) {
500         tlb_debug("forcing full flush midx %d (%"
501                   VADDR_PRIx "/%" VADDR_PRIx ")\n",
502                   midx, lp_addr, lp_mask);
503         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
504     } else {
505         if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
506             tlb_n_used_entries_dec(env, midx);
507         }
508         tlb_flush_vtlb_page_locked(env, midx, page);
509     }
510 }
511 
512 /**
513  * tlb_flush_page_by_mmuidx_async_0:
514  * @cpu: cpu on which to flush
515  * @addr: page of virtual address to flush
516  * @idxmap: set of mmu_idx to flush
517  *
518  * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
519  * at @addr from the tlbs indicated by @idxmap from @cpu.
520  */
521 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
522                                              vaddr addr,
523                                              uint16_t idxmap)
524 {
525     CPUArchState *env = cpu->env_ptr;
526     int mmu_idx;
527 
528     assert_cpu_is_self(cpu);
529 
530     tlb_debug("page addr: %" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap);
531 
532     qemu_spin_lock(&env_tlb(env)->c.lock);
533     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
534         if ((idxmap >> mmu_idx) & 1) {
535             tlb_flush_page_locked(env, mmu_idx, addr);
536         }
537     }
538     qemu_spin_unlock(&env_tlb(env)->c.lock);
539 
540     /*
541      * Discard jump cache entries for any tb which might potentially
542      * overlap the flushed page, which includes the previous.
543      */
544     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
545     tb_jmp_cache_clear_page(cpu, addr);
546 }
547 
548 /**
549  * tlb_flush_page_by_mmuidx_async_1:
550  * @cpu: cpu on which to flush
551  * @data: encoded addr + idxmap
552  *
553  * Helper for tlb_flush_page_by_mmuidx and friends, called through
554  * async_run_on_cpu.  The idxmap parameter is encoded in the page
555  * offset of the target_ptr field.  This limits the set of mmu_idx
556  * that can be passed via this method.
557  */
558 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
559                                              run_on_cpu_data data)
560 {
561     vaddr addr_and_idxmap = data.target_ptr;
562     vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK;
563     uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
564 
565     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
566 }
567 
568 typedef struct {
569     vaddr addr;
570     uint16_t idxmap;
571 } TLBFlushPageByMMUIdxData;
572 
573 /**
574  * tlb_flush_page_by_mmuidx_async_2:
575  * @cpu: cpu on which to flush
576  * @data: allocated addr + idxmap
577  *
578  * Helper for tlb_flush_page_by_mmuidx and friends, called through
579  * async_run_on_cpu.  The addr+idxmap parameters are stored in a
580  * TLBFlushPageByMMUIdxData structure that has been allocated
581  * specifically for this helper.  Free the structure when done.
582  */
583 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
584                                              run_on_cpu_data data)
585 {
586     TLBFlushPageByMMUIdxData *d = data.host_ptr;
587 
588     tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
589     g_free(d);
590 }
591 
592 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap)
593 {
594     tlb_debug("addr: %" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap);
595 
596     /* This should already be page aligned */
597     addr &= TARGET_PAGE_MASK;
598 
599     if (qemu_cpu_is_self(cpu)) {
600         tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
601     } else if (idxmap < TARGET_PAGE_SIZE) {
602         /*
603          * Most targets have only a few mmu_idx.  In the case where
604          * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
605          * allocating memory for this operation.
606          */
607         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
608                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
609     } else {
610         TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
611 
612         /* Otherwise allocate a structure, freed by the worker.  */
613         d->addr = addr;
614         d->idxmap = idxmap;
615         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
616                          RUN_ON_CPU_HOST_PTR(d));
617     }
618 }
619 
620 void tlb_flush_page(CPUState *cpu, vaddr addr)
621 {
622     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
623 }
624 
625 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr,
626                                        uint16_t idxmap)
627 {
628     tlb_debug("addr: %" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
629 
630     /* This should already be page aligned */
631     addr &= TARGET_PAGE_MASK;
632 
633     /*
634      * Allocate memory to hold addr+idxmap only when needed.
635      * See tlb_flush_page_by_mmuidx for details.
636      */
637     if (idxmap < TARGET_PAGE_SIZE) {
638         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
639                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
640     } else {
641         CPUState *dst_cpu;
642 
643         /* Allocate a separate data block for each destination cpu.  */
644         CPU_FOREACH(dst_cpu) {
645             if (dst_cpu != src_cpu) {
646                 TLBFlushPageByMMUIdxData *d
647                     = g_new(TLBFlushPageByMMUIdxData, 1);
648 
649                 d->addr = addr;
650                 d->idxmap = idxmap;
651                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
652                                  RUN_ON_CPU_HOST_PTR(d));
653             }
654         }
655     }
656 
657     tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
658 }
659 
660 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr)
661 {
662     tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
663 }
664 
665 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
666                                               vaddr addr,
667                                               uint16_t idxmap)
668 {
669     tlb_debug("addr: %" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap);
670 
671     /* This should already be page aligned */
672     addr &= TARGET_PAGE_MASK;
673 
674     /*
675      * Allocate memory to hold addr+idxmap only when needed.
676      * See tlb_flush_page_by_mmuidx for details.
677      */
678     if (idxmap < TARGET_PAGE_SIZE) {
679         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
680                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
681         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
682                               RUN_ON_CPU_TARGET_PTR(addr | idxmap));
683     } else {
684         CPUState *dst_cpu;
685         TLBFlushPageByMMUIdxData *d;
686 
687         /* Allocate a separate data block for each destination cpu.  */
688         CPU_FOREACH(dst_cpu) {
689             if (dst_cpu != src_cpu) {
690                 d = g_new(TLBFlushPageByMMUIdxData, 1);
691                 d->addr = addr;
692                 d->idxmap = idxmap;
693                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
694                                  RUN_ON_CPU_HOST_PTR(d));
695             }
696         }
697 
698         d = g_new(TLBFlushPageByMMUIdxData, 1);
699         d->addr = addr;
700         d->idxmap = idxmap;
701         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
702                               RUN_ON_CPU_HOST_PTR(d));
703     }
704 }
705 
706 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr)
707 {
708     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
709 }
710 
711 static void tlb_flush_range_locked(CPUArchState *env, int midx,
712                                    vaddr addr, vaddr len,
713                                    unsigned bits)
714 {
715     CPUTLBDesc *d = &env_tlb(env)->d[midx];
716     CPUTLBDescFast *f = &env_tlb(env)->f[midx];
717     vaddr mask = MAKE_64BIT_MASK(0, bits);
718 
719     /*
720      * If @bits is smaller than the tlb size, there may be multiple entries
721      * within the TLB; otherwise all addresses that match under @mask hit
722      * the same TLB entry.
723      * TODO: Perhaps allow bits to be a few bits less than the size.
724      * For now, just flush the entire TLB.
725      *
726      * If @len is larger than the tlb size, then it will take longer to
727      * test all of the entries in the TLB than it will to flush it all.
728      */
729     if (mask < f->mask || len > f->mask) {
730         tlb_debug("forcing full flush midx %d ("
731                   "%" VADDR_PRIx "/%" VADDR_PRIx "+%" VADDR_PRIx ")\n",
732                   midx, addr, mask, len);
733         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
734         return;
735     }
736 
737     /*
738      * Check if we need to flush due to large pages.
739      * Because large_page_mask contains all 1's from the msb,
740      * we only need to test the end of the range.
741      */
742     if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
743         tlb_debug("forcing full flush midx %d ("
744                   "%" VADDR_PRIx "/%" VADDR_PRIx ")\n",
745                   midx, d->large_page_addr, d->large_page_mask);
746         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
747         return;
748     }
749 
750     for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) {
751         vaddr page = addr + i;
752         CPUTLBEntry *entry = tlb_entry(env, midx, page);
753 
754         if (tlb_flush_entry_mask_locked(entry, page, mask)) {
755             tlb_n_used_entries_dec(env, midx);
756         }
757         tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
758     }
759 }
760 
761 typedef struct {
762     vaddr addr;
763     vaddr len;
764     uint16_t idxmap;
765     uint16_t bits;
766 } TLBFlushRangeData;
767 
768 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
769                                               TLBFlushRangeData d)
770 {
771     CPUArchState *env = cpu->env_ptr;
772     int mmu_idx;
773 
774     assert_cpu_is_self(cpu);
775 
776     tlb_debug("range: %" VADDR_PRIx "/%u+%" VADDR_PRIx " mmu_map:0x%x\n",
777               d.addr, d.bits, d.len, d.idxmap);
778 
779     qemu_spin_lock(&env_tlb(env)->c.lock);
780     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
781         if ((d.idxmap >> mmu_idx) & 1) {
782             tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
783         }
784     }
785     qemu_spin_unlock(&env_tlb(env)->c.lock);
786 
787     /*
788      * If the length is larger than the jump cache size, then it will take
789      * longer to clear each entry individually than it will to clear it all.
790      */
791     if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
792         tcg_flush_jmp_cache(cpu);
793         return;
794     }
795 
796     /*
797      * Discard jump cache entries for any tb which might potentially
798      * overlap the flushed pages, which includes the previous.
799      */
800     d.addr -= TARGET_PAGE_SIZE;
801     for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
802         tb_jmp_cache_clear_page(cpu, d.addr);
803         d.addr += TARGET_PAGE_SIZE;
804     }
805 }
806 
807 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
808                                               run_on_cpu_data data)
809 {
810     TLBFlushRangeData *d = data.host_ptr;
811     tlb_flush_range_by_mmuidx_async_0(cpu, *d);
812     g_free(d);
813 }
814 
815 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr,
816                                vaddr len, uint16_t idxmap,
817                                unsigned bits)
818 {
819     TLBFlushRangeData d;
820 
821     /*
822      * If all bits are significant, and len is small,
823      * this devolves to tlb_flush_page.
824      */
825     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
826         tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
827         return;
828     }
829     /* If no page bits are significant, this devolves to tlb_flush. */
830     if (bits < TARGET_PAGE_BITS) {
831         tlb_flush_by_mmuidx(cpu, idxmap);
832         return;
833     }
834 
835     /* This should already be page aligned */
836     d.addr = addr & TARGET_PAGE_MASK;
837     d.len = len;
838     d.idxmap = idxmap;
839     d.bits = bits;
840 
841     if (qemu_cpu_is_self(cpu)) {
842         tlb_flush_range_by_mmuidx_async_0(cpu, d);
843     } else {
844         /* Otherwise allocate a structure, freed by the worker.  */
845         TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
846         async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
847                          RUN_ON_CPU_HOST_PTR(p));
848     }
849 }
850 
851 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr,
852                                    uint16_t idxmap, unsigned bits)
853 {
854     tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
855 }
856 
857 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
858                                         vaddr addr, vaddr len,
859                                         uint16_t idxmap, unsigned bits)
860 {
861     TLBFlushRangeData d;
862     CPUState *dst_cpu;
863 
864     /*
865      * If all bits are significant, and len is small,
866      * this devolves to tlb_flush_page.
867      */
868     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
869         tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
870         return;
871     }
872     /* If no page bits are significant, this devolves to tlb_flush. */
873     if (bits < TARGET_PAGE_BITS) {
874         tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
875         return;
876     }
877 
878     /* This should already be page aligned */
879     d.addr = addr & TARGET_PAGE_MASK;
880     d.len = len;
881     d.idxmap = idxmap;
882     d.bits = bits;
883 
884     /* Allocate a separate data block for each destination cpu.  */
885     CPU_FOREACH(dst_cpu) {
886         if (dst_cpu != src_cpu) {
887             TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
888             async_run_on_cpu(dst_cpu,
889                              tlb_flush_range_by_mmuidx_async_1,
890                              RUN_ON_CPU_HOST_PTR(p));
891         }
892     }
893 
894     tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
895 }
896 
897 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
898                                             vaddr addr, uint16_t idxmap,
899                                             unsigned bits)
900 {
901     tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
902                                        idxmap, bits);
903 }
904 
905 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
906                                                vaddr addr,
907                                                vaddr len,
908                                                uint16_t idxmap,
909                                                unsigned bits)
910 {
911     TLBFlushRangeData d, *p;
912     CPUState *dst_cpu;
913 
914     /*
915      * If all bits are significant, and len is small,
916      * this devolves to tlb_flush_page.
917      */
918     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
919         tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
920         return;
921     }
922     /* If no page bits are significant, this devolves to tlb_flush. */
923     if (bits < TARGET_PAGE_BITS) {
924         tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
925         return;
926     }
927 
928     /* This should already be page aligned */
929     d.addr = addr & TARGET_PAGE_MASK;
930     d.len = len;
931     d.idxmap = idxmap;
932     d.bits = bits;
933 
934     /* Allocate a separate data block for each destination cpu.  */
935     CPU_FOREACH(dst_cpu) {
936         if (dst_cpu != src_cpu) {
937             p = g_memdup(&d, sizeof(d));
938             async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
939                              RUN_ON_CPU_HOST_PTR(p));
940         }
941     }
942 
943     p = g_memdup(&d, sizeof(d));
944     async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
945                           RUN_ON_CPU_HOST_PTR(p));
946 }
947 
948 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
949                                                    vaddr addr,
950                                                    uint16_t idxmap,
951                                                    unsigned bits)
952 {
953     tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
954                                               idxmap, bits);
955 }
956 
957 /* update the TLBs so that writes to code in the virtual page 'addr'
958    can be detected */
959 void tlb_protect_code(ram_addr_t ram_addr)
960 {
961     cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
962                                              TARGET_PAGE_SIZE,
963                                              DIRTY_MEMORY_CODE);
964 }
965 
966 /* update the TLB so that writes in physical page 'phys_addr' are no longer
967    tested for self modifying code */
968 void tlb_unprotect_code(ram_addr_t ram_addr)
969 {
970     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
971 }
972 
973 
974 /*
975  * Dirty write flag handling
976  *
977  * When the TCG code writes to a location it looks up the address in
978  * the TLB and uses that data to compute the final address. If any of
979  * the lower bits of the address are set then the slow path is forced.
980  * There are a number of reasons to do this but for normal RAM the
981  * most usual is detecting writes to code regions which may invalidate
982  * generated code.
983  *
984  * Other vCPUs might be reading their TLBs during guest execution, so we update
985  * te->addr_write with qatomic_set. We don't need to worry about this for
986  * oversized guests as MTTCG is disabled for them.
987  *
988  * Called with tlb_c.lock held.
989  */
990 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
991                                          uintptr_t start, uintptr_t length)
992 {
993     uintptr_t addr = tlb_entry->addr_write;
994 
995     if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
996                  TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
997         addr &= TARGET_PAGE_MASK;
998         addr += tlb_entry->addend;
999         if ((addr - start) < length) {
1000 #if TARGET_LONG_BITS == 32
1001             uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write;
1002             ptr_write += HOST_BIG_ENDIAN;
1003             qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY);
1004 #elif TCG_OVERSIZED_GUEST
1005             tlb_entry->addr_write |= TLB_NOTDIRTY;
1006 #else
1007             qatomic_set(&tlb_entry->addr_write,
1008                         tlb_entry->addr_write | TLB_NOTDIRTY);
1009 #endif
1010         }
1011     }
1012 }
1013 
1014 /*
1015  * Called with tlb_c.lock held.
1016  * Called only from the vCPU context, i.e. the TLB's owner thread.
1017  */
1018 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1019 {
1020     *d = *s;
1021 }
1022 
1023 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1024  * the target vCPU).
1025  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1026  * thing actually updated is the target TLB entry ->addr_write flags.
1027  */
1028 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1029 {
1030     CPUArchState *env;
1031 
1032     int mmu_idx;
1033 
1034     env = cpu->env_ptr;
1035     qemu_spin_lock(&env_tlb(env)->c.lock);
1036     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1037         unsigned int i;
1038         unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1039 
1040         for (i = 0; i < n; i++) {
1041             tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1042                                          start1, length);
1043         }
1044 
1045         for (i = 0; i < CPU_VTLB_SIZE; i++) {
1046             tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1047                                          start1, length);
1048         }
1049     }
1050     qemu_spin_unlock(&env_tlb(env)->c.lock);
1051 }
1052 
1053 /* Called with tlb_c.lock held */
1054 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1055                                          vaddr addr)
1056 {
1057     if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) {
1058         tlb_entry->addr_write = addr;
1059     }
1060 }
1061 
1062 /* update the TLB corresponding to virtual page vaddr
1063    so that it is no longer dirty */
1064 void tlb_set_dirty(CPUState *cpu, vaddr addr)
1065 {
1066     CPUArchState *env = cpu->env_ptr;
1067     int mmu_idx;
1068 
1069     assert_cpu_is_self(cpu);
1070 
1071     addr &= TARGET_PAGE_MASK;
1072     qemu_spin_lock(&env_tlb(env)->c.lock);
1073     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1074         tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, addr), addr);
1075     }
1076 
1077     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1078         int k;
1079         for (k = 0; k < CPU_VTLB_SIZE; k++) {
1080             tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], addr);
1081         }
1082     }
1083     qemu_spin_unlock(&env_tlb(env)->c.lock);
1084 }
1085 
1086 /* Our TLB does not support large pages, so remember the area covered by
1087    large pages and trigger a full TLB flush if these are invalidated.  */
1088 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1089                                vaddr addr, uint64_t size)
1090 {
1091     vaddr lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1092     vaddr lp_mask = ~(size - 1);
1093 
1094     if (lp_addr == (vaddr)-1) {
1095         /* No previous large page.  */
1096         lp_addr = addr;
1097     } else {
1098         /* Extend the existing region to include the new page.
1099            This is a compromise between unnecessary flushes and
1100            the cost of maintaining a full variable size TLB.  */
1101         lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1102         while (((lp_addr ^ addr) & lp_mask) != 0) {
1103             lp_mask <<= 1;
1104         }
1105     }
1106     env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1107     env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1108 }
1109 
1110 /*
1111  * Add a new TLB entry. At most one entry for a given virtual address
1112  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1113  * supplied size is only used by tlb_flush_page.
1114  *
1115  * Called from TCG-generated code, which is under an RCU read-side
1116  * critical section.
1117  */
1118 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1119                        vaddr addr, CPUTLBEntryFull *full)
1120 {
1121     CPUArchState *env = cpu->env_ptr;
1122     CPUTLB *tlb = env_tlb(env);
1123     CPUTLBDesc *desc = &tlb->d[mmu_idx];
1124     MemoryRegionSection *section;
1125     unsigned int index;
1126     vaddr address;
1127     vaddr write_address;
1128     uintptr_t addend;
1129     CPUTLBEntry *te, tn;
1130     hwaddr iotlb, xlat, sz, paddr_page;
1131     vaddr addr_page;
1132     int asidx, wp_flags, prot;
1133     bool is_ram, is_romd;
1134 
1135     assert_cpu_is_self(cpu);
1136 
1137     if (full->lg_page_size <= TARGET_PAGE_BITS) {
1138         sz = TARGET_PAGE_SIZE;
1139     } else {
1140         sz = (hwaddr)1 << full->lg_page_size;
1141         tlb_add_large_page(env, mmu_idx, addr, sz);
1142     }
1143     addr_page = addr & TARGET_PAGE_MASK;
1144     paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1145 
1146     prot = full->prot;
1147     asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1148     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1149                                                 &xlat, &sz, full->attrs, &prot);
1150     assert(sz >= TARGET_PAGE_SIZE);
1151 
1152     tlb_debug("vaddr=%" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx
1153               " prot=%x idx=%d\n",
1154               addr, full->phys_addr, prot, mmu_idx);
1155 
1156     address = addr_page;
1157     if (full->lg_page_size < TARGET_PAGE_BITS) {
1158         /* Repeat the MMU check and TLB fill on every access.  */
1159         address |= TLB_INVALID_MASK;
1160     }
1161     if (full->attrs.byte_swap) {
1162         address |= TLB_BSWAP;
1163     }
1164 
1165     is_ram = memory_region_is_ram(section->mr);
1166     is_romd = memory_region_is_romd(section->mr);
1167 
1168     if (is_ram || is_romd) {
1169         /* RAM and ROMD both have associated host memory. */
1170         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1171     } else {
1172         /* I/O does not; force the host address to NULL. */
1173         addend = 0;
1174     }
1175 
1176     write_address = address;
1177     if (is_ram) {
1178         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1179         /*
1180          * Computing is_clean is expensive; avoid all that unless
1181          * the page is actually writable.
1182          */
1183         if (prot & PAGE_WRITE) {
1184             if (section->readonly) {
1185                 write_address |= TLB_DISCARD_WRITE;
1186             } else if (cpu_physical_memory_is_clean(iotlb)) {
1187                 write_address |= TLB_NOTDIRTY;
1188             }
1189         }
1190     } else {
1191         /* I/O or ROMD */
1192         iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1193         /*
1194          * Writes to romd devices must go through MMIO to enable write.
1195          * Reads to romd devices go through the ram_ptr found above,
1196          * but of course reads to I/O must go through MMIO.
1197          */
1198         write_address |= TLB_MMIO;
1199         if (!is_romd) {
1200             address = write_address;
1201         }
1202     }
1203 
1204     wp_flags = cpu_watchpoint_address_matches(cpu, addr_page,
1205                                               TARGET_PAGE_SIZE);
1206 
1207     index = tlb_index(env, mmu_idx, addr_page);
1208     te = tlb_entry(env, mmu_idx, addr_page);
1209 
1210     /*
1211      * Hold the TLB lock for the rest of the function. We could acquire/release
1212      * the lock several times in the function, but it is faster to amortize the
1213      * acquisition cost by acquiring it just once. Note that this leads to
1214      * a longer critical section, but this is not a concern since the TLB lock
1215      * is unlikely to be contended.
1216      */
1217     qemu_spin_lock(&tlb->c.lock);
1218 
1219     /* Note that the tlb is no longer clean.  */
1220     tlb->c.dirty |= 1 << mmu_idx;
1221 
1222     /* Make sure there's no cached translation for the new page.  */
1223     tlb_flush_vtlb_page_locked(env, mmu_idx, addr_page);
1224 
1225     /*
1226      * Only evict the old entry to the victim tlb if it's for a
1227      * different page; otherwise just overwrite the stale data.
1228      */
1229     if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) {
1230         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1231         CPUTLBEntry *tv = &desc->vtable[vidx];
1232 
1233         /* Evict the old entry into the victim tlb.  */
1234         copy_tlb_helper_locked(tv, te);
1235         desc->vfulltlb[vidx] = desc->fulltlb[index];
1236         tlb_n_used_entries_dec(env, mmu_idx);
1237     }
1238 
1239     /* refill the tlb */
1240     /*
1241      * At this point iotlb contains a physical section number in the lower
1242      * TARGET_PAGE_BITS, and either
1243      *  + the ram_addr_t of the page base of the target RAM (RAM)
1244      *  + the offset within section->mr of the page base (I/O, ROMD)
1245      * We subtract the vaddr_page (which is page aligned and thus won't
1246      * disturb the low bits) to give an offset which can be added to the
1247      * (non-page-aligned) vaddr of the eventual memory access to get
1248      * the MemoryRegion offset for the access. Note that the vaddr we
1249      * subtract here is that of the page base, and not the same as the
1250      * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1251      */
1252     desc->fulltlb[index] = *full;
1253     desc->fulltlb[index].xlat_section = iotlb - addr_page;
1254     desc->fulltlb[index].phys_addr = paddr_page;
1255 
1256     /* Now calculate the new entry */
1257     tn.addend = addend - addr_page;
1258     if (prot & PAGE_READ) {
1259         tn.addr_read = address;
1260         if (wp_flags & BP_MEM_READ) {
1261             tn.addr_read |= TLB_WATCHPOINT;
1262         }
1263     } else {
1264         tn.addr_read = -1;
1265     }
1266 
1267     if (prot & PAGE_EXEC) {
1268         tn.addr_code = address;
1269     } else {
1270         tn.addr_code = -1;
1271     }
1272 
1273     tn.addr_write = -1;
1274     if (prot & PAGE_WRITE) {
1275         tn.addr_write = write_address;
1276         if (prot & PAGE_WRITE_INV) {
1277             tn.addr_write |= TLB_INVALID_MASK;
1278         }
1279         if (wp_flags & BP_MEM_WRITE) {
1280             tn.addr_write |= TLB_WATCHPOINT;
1281         }
1282     }
1283 
1284     copy_tlb_helper_locked(te, &tn);
1285     tlb_n_used_entries_inc(env, mmu_idx);
1286     qemu_spin_unlock(&tlb->c.lock);
1287 }
1288 
1289 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr,
1290                              hwaddr paddr, MemTxAttrs attrs, int prot,
1291                              int mmu_idx, uint64_t size)
1292 {
1293     CPUTLBEntryFull full = {
1294         .phys_addr = paddr,
1295         .attrs = attrs,
1296         .prot = prot,
1297         .lg_page_size = ctz64(size)
1298     };
1299 
1300     assert(is_power_of_2(size));
1301     tlb_set_page_full(cpu, mmu_idx, addr, &full);
1302 }
1303 
1304 void tlb_set_page(CPUState *cpu, vaddr addr,
1305                   hwaddr paddr, int prot,
1306                   int mmu_idx, uint64_t size)
1307 {
1308     tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED,
1309                             prot, mmu_idx, size);
1310 }
1311 
1312 /*
1313  * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1314  * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1315  * be discarded and looked up again (e.g. via tlb_entry()).
1316  */
1317 static void tlb_fill(CPUState *cpu, vaddr addr, int size,
1318                      MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1319 {
1320     bool ok;
1321 
1322     /*
1323      * This is not a probe, so only valid return is success; failure
1324      * should result in exception + longjmp to the cpu loop.
1325      */
1326     ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1327                                     access_type, mmu_idx, false, retaddr);
1328     assert(ok);
1329 }
1330 
1331 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1332                                         MMUAccessType access_type,
1333                                         int mmu_idx, uintptr_t retaddr)
1334 {
1335     cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1336                                           mmu_idx, retaddr);
1337 }
1338 
1339 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1340                                           vaddr addr, unsigned size,
1341                                           MMUAccessType access_type,
1342                                           int mmu_idx, MemTxAttrs attrs,
1343                                           MemTxResult response,
1344                                           uintptr_t retaddr)
1345 {
1346     CPUClass *cc = CPU_GET_CLASS(cpu);
1347 
1348     if (!cpu->ignore_memory_transaction_failures &&
1349         cc->tcg_ops->do_transaction_failed) {
1350         cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1351                                            access_type, mmu_idx, attrs,
1352                                            response, retaddr);
1353     }
1354 }
1355 
1356 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full,
1357                          int mmu_idx, vaddr addr, uintptr_t retaddr,
1358                          MMUAccessType access_type, MemOp op)
1359 {
1360     CPUState *cpu = env_cpu(env);
1361     hwaddr mr_offset;
1362     MemoryRegionSection *section;
1363     MemoryRegion *mr;
1364     uint64_t val;
1365     MemTxResult r;
1366 
1367     section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1368     mr = section->mr;
1369     mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1370     cpu->mem_io_pc = retaddr;
1371     if (!cpu->can_do_io) {
1372         cpu_io_recompile(cpu, retaddr);
1373     }
1374 
1375     {
1376         QEMU_IOTHREAD_LOCK_GUARD();
1377         r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs);
1378     }
1379 
1380     if (r != MEMTX_OK) {
1381         hwaddr physaddr = mr_offset +
1382             section->offset_within_address_space -
1383             section->offset_within_region;
1384 
1385         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1386                                mmu_idx, full->attrs, r, retaddr);
1387     }
1388     return val;
1389 }
1390 
1391 /*
1392  * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin.
1393  * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match
1394  * because of the side effect of io_writex changing memory layout.
1395  */
1396 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section,
1397                             hwaddr mr_offset)
1398 {
1399 #ifdef CONFIG_PLUGIN
1400     SavedIOTLB *saved = &cs->saved_iotlb;
1401     saved->section = section;
1402     saved->mr_offset = mr_offset;
1403 #endif
1404 }
1405 
1406 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
1407                       int mmu_idx, uint64_t val, vaddr addr,
1408                       uintptr_t retaddr, MemOp op)
1409 {
1410     CPUState *cpu = env_cpu(env);
1411     hwaddr mr_offset;
1412     MemoryRegionSection *section;
1413     MemoryRegion *mr;
1414     MemTxResult r;
1415 
1416     section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1417     mr = section->mr;
1418     mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1419     if (!cpu->can_do_io) {
1420         cpu_io_recompile(cpu, retaddr);
1421     }
1422     cpu->mem_io_pc = retaddr;
1423 
1424     /*
1425      * The memory_region_dispatch may trigger a flush/resize
1426      * so for plugins we save the iotlb_data just in case.
1427      */
1428     save_iotlb_data(cpu, section, mr_offset);
1429 
1430     {
1431         QEMU_IOTHREAD_LOCK_GUARD();
1432         r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
1433     }
1434 
1435     if (r != MEMTX_OK) {
1436         hwaddr physaddr = mr_offset +
1437             section->offset_within_address_space -
1438             section->offset_within_region;
1439 
1440         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1441                                MMU_DATA_STORE, mmu_idx, full->attrs, r,
1442                                retaddr);
1443     }
1444 }
1445 
1446 /* Return true if ADDR is present in the victim tlb, and has been copied
1447    back to the main tlb.  */
1448 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1449                            MMUAccessType access_type, vaddr page)
1450 {
1451     size_t vidx;
1452 
1453     assert_cpu_is_self(env_cpu(env));
1454     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1455         CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1456         uint64_t cmp = tlb_read_idx(vtlb, access_type);
1457 
1458         if (cmp == page) {
1459             /* Found entry in victim tlb, swap tlb and iotlb.  */
1460             CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1461 
1462             qemu_spin_lock(&env_tlb(env)->c.lock);
1463             copy_tlb_helper_locked(&tmptlb, tlb);
1464             copy_tlb_helper_locked(tlb, vtlb);
1465             copy_tlb_helper_locked(vtlb, &tmptlb);
1466             qemu_spin_unlock(&env_tlb(env)->c.lock);
1467 
1468             CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1469             CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
1470             CPUTLBEntryFull tmpf;
1471             tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1472             return true;
1473         }
1474     }
1475     return false;
1476 }
1477 
1478 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1479                            CPUTLBEntryFull *full, uintptr_t retaddr)
1480 {
1481     ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1482 
1483     trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1484 
1485     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1486         tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1487     }
1488 
1489     /*
1490      * Set both VGA and migration bits for simplicity and to remove
1491      * the notdirty callback faster.
1492      */
1493     cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1494 
1495     /* We remove the notdirty callback only if the code has been flushed. */
1496     if (!cpu_physical_memory_is_clean(ram_addr)) {
1497         trace_memory_notdirty_set_dirty(mem_vaddr);
1498         tlb_set_dirty(cpu, mem_vaddr);
1499     }
1500 }
1501 
1502 static int probe_access_internal(CPUArchState *env, vaddr addr,
1503                                  int fault_size, MMUAccessType access_type,
1504                                  int mmu_idx, bool nonfault,
1505                                  void **phost, CPUTLBEntryFull **pfull,
1506                                  uintptr_t retaddr)
1507 {
1508     uintptr_t index = tlb_index(env, mmu_idx, addr);
1509     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1510     uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1511     vaddr page_addr = addr & TARGET_PAGE_MASK;
1512     int flags = TLB_FLAGS_MASK;
1513 
1514     if (!tlb_hit_page(tlb_addr, page_addr)) {
1515         if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) {
1516             CPUState *cs = env_cpu(env);
1517 
1518             if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1519                                            mmu_idx, nonfault, retaddr)) {
1520                 /* Non-faulting page table read failed.  */
1521                 *phost = NULL;
1522                 *pfull = NULL;
1523                 return TLB_INVALID_MASK;
1524             }
1525 
1526             /* TLB resize via tlb_fill may have moved the entry.  */
1527             index = tlb_index(env, mmu_idx, addr);
1528             entry = tlb_entry(env, mmu_idx, addr);
1529 
1530             /*
1531              * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1532              * to force the next access through tlb_fill.  We've just
1533              * called tlb_fill, so we know that this entry *is* valid.
1534              */
1535             flags &= ~TLB_INVALID_MASK;
1536         }
1537         tlb_addr = tlb_read_idx(entry, access_type);
1538     }
1539     flags &= tlb_addr;
1540 
1541     *pfull = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1542 
1543     /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
1544     if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1545         *phost = NULL;
1546         return TLB_MMIO;
1547     }
1548 
1549     /* Everything else is RAM. */
1550     *phost = (void *)((uintptr_t)addr + entry->addend);
1551     return flags;
1552 }
1553 
1554 int probe_access_full(CPUArchState *env, vaddr addr, int size,
1555                       MMUAccessType access_type, int mmu_idx,
1556                       bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1557                       uintptr_t retaddr)
1558 {
1559     int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1560                                       nonfault, phost, pfull, retaddr);
1561 
1562     /* Handle clean RAM pages.  */
1563     if (unlikely(flags & TLB_NOTDIRTY)) {
1564         notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1565         flags &= ~TLB_NOTDIRTY;
1566     }
1567 
1568     return flags;
1569 }
1570 
1571 int probe_access_flags(CPUArchState *env, vaddr addr, int size,
1572                        MMUAccessType access_type, int mmu_idx,
1573                        bool nonfault, void **phost, uintptr_t retaddr)
1574 {
1575     CPUTLBEntryFull *full;
1576     int flags;
1577 
1578     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1579 
1580     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1581                                   nonfault, phost, &full, retaddr);
1582 
1583     /* Handle clean RAM pages. */
1584     if (unlikely(flags & TLB_NOTDIRTY)) {
1585         notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1586         flags &= ~TLB_NOTDIRTY;
1587     }
1588 
1589     return flags;
1590 }
1591 
1592 void *probe_access(CPUArchState *env, vaddr addr, int size,
1593                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1594 {
1595     CPUTLBEntryFull *full;
1596     void *host;
1597     int flags;
1598 
1599     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1600 
1601     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1602                                   false, &host, &full, retaddr);
1603 
1604     /* Per the interface, size == 0 merely faults the access. */
1605     if (size == 0) {
1606         return NULL;
1607     }
1608 
1609     if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1610         /* Handle watchpoints.  */
1611         if (flags & TLB_WATCHPOINT) {
1612             int wp_access = (access_type == MMU_DATA_STORE
1613                              ? BP_MEM_WRITE : BP_MEM_READ);
1614             cpu_check_watchpoint(env_cpu(env), addr, size,
1615                                  full->attrs, wp_access, retaddr);
1616         }
1617 
1618         /* Handle clean RAM pages.  */
1619         if (flags & TLB_NOTDIRTY) {
1620             notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1621         }
1622     }
1623 
1624     return host;
1625 }
1626 
1627 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1628                         MMUAccessType access_type, int mmu_idx)
1629 {
1630     CPUTLBEntryFull *full;
1631     void *host;
1632     int flags;
1633 
1634     flags = probe_access_internal(env, addr, 0, access_type,
1635                                   mmu_idx, true, &host, &full, 0);
1636 
1637     /* No combination of flags are expected by the caller. */
1638     return flags ? NULL : host;
1639 }
1640 
1641 /*
1642  * Return a ram_addr_t for the virtual address for execution.
1643  *
1644  * Return -1 if we can't translate and execute from an entire page
1645  * of RAM.  This will force us to execute by loading and translating
1646  * one insn at a time, without caching.
1647  *
1648  * NOTE: This function will trigger an exception if the page is
1649  * not executable.
1650  */
1651 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr,
1652                                         void **hostp)
1653 {
1654     CPUTLBEntryFull *full;
1655     void *p;
1656 
1657     (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
1658                                 cpu_mmu_index(env, true), false, &p, &full, 0);
1659     if (p == NULL) {
1660         return -1;
1661     }
1662 
1663     if (full->lg_page_size < TARGET_PAGE_BITS) {
1664         return -1;
1665     }
1666 
1667     if (hostp) {
1668         *hostp = p;
1669     }
1670     return qemu_ram_addr_from_host_nofail(p);
1671 }
1672 
1673 /* Load/store with atomicity primitives. */
1674 #include "ldst_atomicity.c.inc"
1675 
1676 #ifdef CONFIG_PLUGIN
1677 /*
1678  * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1679  * This should be a hot path as we will have just looked this path up
1680  * in the softmmu lookup code (or helper). We don't handle re-fills or
1681  * checking the victim table. This is purely informational.
1682  *
1683  * This almost never fails as the memory access being instrumented
1684  * should have just filled the TLB. The one corner case is io_writex
1685  * which can cause TLB flushes and potential resizing of the TLBs
1686  * losing the information we need. In those cases we need to recover
1687  * data from a copy of the CPUTLBEntryFull. As long as this always occurs
1688  * from the same thread (which a mem callback will be) this is safe.
1689  */
1690 
1691 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx,
1692                        bool is_store, struct qemu_plugin_hwaddr *data)
1693 {
1694     CPUArchState *env = cpu->env_ptr;
1695     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1696     uintptr_t index = tlb_index(env, mmu_idx, addr);
1697     uint64_t tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1698 
1699     if (likely(tlb_hit(tlb_addr, addr))) {
1700         /* We must have an iotlb entry for MMIO */
1701         if (tlb_addr & TLB_MMIO) {
1702             CPUTLBEntryFull *full;
1703             full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1704             data->is_io = true;
1705             data->v.io.section =
1706                 iotlb_to_section(cpu, full->xlat_section, full->attrs);
1707             data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1708         } else {
1709             data->is_io = false;
1710             data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1711         }
1712         return true;
1713     } else {
1714         SavedIOTLB *saved = &cpu->saved_iotlb;
1715         data->is_io = true;
1716         data->v.io.section = saved->section;
1717         data->v.io.offset = saved->mr_offset;
1718         return true;
1719     }
1720 }
1721 
1722 #endif
1723 
1724 /*
1725  * Probe for a load/store operation.
1726  * Return the host address and into @flags.
1727  */
1728 
1729 typedef struct MMULookupPageData {
1730     CPUTLBEntryFull *full;
1731     void *haddr;
1732     vaddr addr;
1733     int flags;
1734     int size;
1735 } MMULookupPageData;
1736 
1737 typedef struct MMULookupLocals {
1738     MMULookupPageData page[2];
1739     MemOp memop;
1740     int mmu_idx;
1741 } MMULookupLocals;
1742 
1743 /**
1744  * mmu_lookup1: translate one page
1745  * @env: cpu context
1746  * @data: lookup parameters
1747  * @mmu_idx: virtual address context
1748  * @access_type: load/store/code
1749  * @ra: return address into tcg generated code, or 0
1750  *
1751  * Resolve the translation for the one page at @data.addr, filling in
1752  * the rest of @data with the results.  If the translation fails,
1753  * tlb_fill will longjmp out.  Return true if the softmmu tlb for
1754  * @mmu_idx may have resized.
1755  */
1756 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data,
1757                         int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1758 {
1759     vaddr addr = data->addr;
1760     uintptr_t index = tlb_index(env, mmu_idx, addr);
1761     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1762     uint64_t tlb_addr = tlb_read_idx(entry, access_type);
1763     bool maybe_resized = false;
1764 
1765     /* If the TLB entry is for a different page, reload and try again.  */
1766     if (!tlb_hit(tlb_addr, addr)) {
1767         if (!victim_tlb_hit(env, mmu_idx, index, access_type,
1768                             addr & TARGET_PAGE_MASK)) {
1769             tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra);
1770             maybe_resized = true;
1771             index = tlb_index(env, mmu_idx, addr);
1772             entry = tlb_entry(env, mmu_idx, addr);
1773         }
1774         tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1775     }
1776 
1777     data->flags = tlb_addr & TLB_FLAGS_MASK;
1778     data->full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1779     /* Compute haddr speculatively; depending on flags it might be invalid. */
1780     data->haddr = (void *)((uintptr_t)addr + entry->addend);
1781 
1782     return maybe_resized;
1783 }
1784 
1785 /**
1786  * mmu_watch_or_dirty
1787  * @env: cpu context
1788  * @data: lookup parameters
1789  * @access_type: load/store/code
1790  * @ra: return address into tcg generated code, or 0
1791  *
1792  * Trigger watchpoints for @data.addr:@data.size;
1793  * record writes to protected clean pages.
1794  */
1795 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data,
1796                                MMUAccessType access_type, uintptr_t ra)
1797 {
1798     CPUTLBEntryFull *full = data->full;
1799     vaddr addr = data->addr;
1800     int flags = data->flags;
1801     int size = data->size;
1802 
1803     /* On watchpoint hit, this will longjmp out.  */
1804     if (flags & TLB_WATCHPOINT) {
1805         int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1806         cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra);
1807         flags &= ~TLB_WATCHPOINT;
1808     }
1809 
1810     /* Note that notdirty is only set for writes. */
1811     if (flags & TLB_NOTDIRTY) {
1812         notdirty_write(env_cpu(env), addr, size, full, ra);
1813         flags &= ~TLB_NOTDIRTY;
1814     }
1815     data->flags = flags;
1816 }
1817 
1818 /**
1819  * mmu_lookup: translate page(s)
1820  * @env: cpu context
1821  * @addr: virtual address
1822  * @oi: combined mmu_idx and MemOp
1823  * @ra: return address into tcg generated code, or 0
1824  * @access_type: load/store/code
1825  * @l: output result
1826  *
1827  * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1828  * bytes.  Return true if the lookup crosses a page boundary.
1829  */
1830 static bool mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1831                        uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1832 {
1833     unsigned a_bits;
1834     bool crosspage;
1835     int flags;
1836 
1837     l->memop = get_memop(oi);
1838     l->mmu_idx = get_mmuidx(oi);
1839 
1840     tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1841 
1842     /* Handle CPU specific unaligned behaviour */
1843     a_bits = get_alignment_bits(l->memop);
1844     if (addr & ((1 << a_bits) - 1)) {
1845         cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra);
1846     }
1847 
1848     l->page[0].addr = addr;
1849     l->page[0].size = memop_size(l->memop);
1850     l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1851     l->page[1].size = 0;
1852     crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1853 
1854     if (likely(!crosspage)) {
1855         mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1856 
1857         flags = l->page[0].flags;
1858         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1859             mmu_watch_or_dirty(env, &l->page[0], type, ra);
1860         }
1861         if (unlikely(flags & TLB_BSWAP)) {
1862             l->memop ^= MO_BSWAP;
1863         }
1864     } else {
1865         /* Finish compute of page crossing. */
1866         int size0 = l->page[1].addr - addr;
1867         l->page[1].size = l->page[0].size - size0;
1868         l->page[0].size = size0;
1869 
1870         /*
1871          * Lookup both pages, recognizing exceptions from either.  If the
1872          * second lookup potentially resized, refresh first CPUTLBEntryFull.
1873          */
1874         mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1875         if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) {
1876             uintptr_t index = tlb_index(env, l->mmu_idx, addr);
1877             l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index];
1878         }
1879 
1880         flags = l->page[0].flags | l->page[1].flags;
1881         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1882             mmu_watch_or_dirty(env, &l->page[0], type, ra);
1883             mmu_watch_or_dirty(env, &l->page[1], type, ra);
1884         }
1885 
1886         /*
1887          * Since target/sparc is the only user of TLB_BSWAP, and all
1888          * Sparc accesses are aligned, any treatment across two pages
1889          * would be arbitrary.  Refuse it until there's a use.
1890          */
1891         tcg_debug_assert((flags & TLB_BSWAP) == 0);
1892     }
1893 
1894     return crosspage;
1895 }
1896 
1897 /*
1898  * Probe for an atomic operation.  Do not allow unaligned operations,
1899  * or io operations to proceed.  Return the host address.
1900  */
1901 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi,
1902                                int size, uintptr_t retaddr)
1903 {
1904     uintptr_t mmu_idx = get_mmuidx(oi);
1905     MemOp mop = get_memop(oi);
1906     int a_bits = get_alignment_bits(mop);
1907     uintptr_t index;
1908     CPUTLBEntry *tlbe;
1909     vaddr tlb_addr;
1910     void *hostaddr;
1911     CPUTLBEntryFull *full;
1912 
1913     tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1914 
1915     /* Adjust the given return address.  */
1916     retaddr -= GETPC_ADJ;
1917 
1918     /* Enforce guest required alignment.  */
1919     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1920         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1921         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1922                              mmu_idx, retaddr);
1923     }
1924 
1925     /* Enforce qemu required alignment.  */
1926     if (unlikely(addr & (size - 1))) {
1927         /* We get here if guest alignment was not requested,
1928            or was not enforced by cpu_unaligned_access above.
1929            We might widen the access and emulate, but for now
1930            mark an exception and exit the cpu loop.  */
1931         goto stop_the_world;
1932     }
1933 
1934     index = tlb_index(env, mmu_idx, addr);
1935     tlbe = tlb_entry(env, mmu_idx, addr);
1936 
1937     /* Check TLB entry and enforce page permissions.  */
1938     tlb_addr = tlb_addr_write(tlbe);
1939     if (!tlb_hit(tlb_addr, addr)) {
1940         if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE,
1941                             addr & TARGET_PAGE_MASK)) {
1942             tlb_fill(env_cpu(env), addr, size,
1943                      MMU_DATA_STORE, mmu_idx, retaddr);
1944             index = tlb_index(env, mmu_idx, addr);
1945             tlbe = tlb_entry(env, mmu_idx, addr);
1946         }
1947         tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1948     }
1949 
1950     /*
1951      * Let the guest notice RMW on a write-only page.
1952      * We have just verified that the page is writable.
1953      * Subpage lookups may have left TLB_INVALID_MASK set,
1954      * but addr_read will only be -1 if PAGE_READ was unset.
1955      */
1956     if (unlikely(tlbe->addr_read == -1)) {
1957         tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
1958         /*
1959          * Since we don't support reads and writes to different
1960          * addresses, and we do have the proper page loaded for
1961          * write, this shouldn't ever return.  But just in case,
1962          * handle via stop-the-world.
1963          */
1964         goto stop_the_world;
1965     }
1966     /* Collect TLB_WATCHPOINT for read. */
1967     tlb_addr |= tlbe->addr_read;
1968 
1969     /* Notice an IO access or a needs-MMU-lookup access */
1970     if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1971         /* There's really nothing that can be done to
1972            support this apart from stop-the-world.  */
1973         goto stop_the_world;
1974     }
1975 
1976     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1977     full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1978 
1979     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1980         notdirty_write(env_cpu(env), addr, size, full, retaddr);
1981     }
1982 
1983     if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
1984         cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs,
1985                              BP_MEM_READ | BP_MEM_WRITE, retaddr);
1986     }
1987 
1988     return hostaddr;
1989 
1990  stop_the_world:
1991     cpu_loop_exit_atomic(env_cpu(env), retaddr);
1992 }
1993 
1994 /*
1995  * Load Helpers
1996  *
1997  * We support two different access types. SOFTMMU_CODE_ACCESS is
1998  * specifically for reading instructions from system memory. It is
1999  * called by the translation loop and in some helpers where the code
2000  * is disassembled. It shouldn't be called directly by guest code.
2001  *
2002  * For the benefit of TCG generated code, we want to avoid the
2003  * complication of ABI-specific return type promotion and always
2004  * return a value extended to the register size of the host. This is
2005  * tcg_target_long, except in the case of a 32-bit host and 64-bit
2006  * data, and for that we always have uint64_t.
2007  *
2008  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2009  */
2010 
2011 /**
2012  * do_ld_mmio_beN:
2013  * @env: cpu context
2014  * @p: translation parameters
2015  * @ret_be: accumulated data
2016  * @mmu_idx: virtual address context
2017  * @ra: return address into tcg generated code, or 0
2018  *
2019  * Load @p->size bytes from @p->addr, which is memory-mapped i/o.
2020  * The bytes are concatenated in big-endian order with @ret_be.
2021  */
2022 static uint64_t do_ld_mmio_beN(CPUArchState *env, MMULookupPageData *p,
2023                                uint64_t ret_be, int mmu_idx,
2024                                MMUAccessType type, uintptr_t ra)
2025 {
2026     CPUTLBEntryFull *full = p->full;
2027     vaddr addr = p->addr;
2028     int i, size = p->size;
2029 
2030     QEMU_IOTHREAD_LOCK_GUARD();
2031     for (i = 0; i < size; i++) {
2032         uint8_t x = io_readx(env, full, mmu_idx, addr + i, ra, type, MO_UB);
2033         ret_be = (ret_be << 8) | x;
2034     }
2035     return ret_be;
2036 }
2037 
2038 /**
2039  * do_ld_bytes_beN
2040  * @p: translation parameters
2041  * @ret_be: accumulated data
2042  *
2043  * Load @p->size bytes from @p->haddr, which is RAM.
2044  * The bytes to concatenated in big-endian order with @ret_be.
2045  */
2046 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2047 {
2048     uint8_t *haddr = p->haddr;
2049     int i, size = p->size;
2050 
2051     for (i = 0; i < size; i++) {
2052         ret_be = (ret_be << 8) | haddr[i];
2053     }
2054     return ret_be;
2055 }
2056 
2057 /**
2058  * do_ld_parts_beN
2059  * @p: translation parameters
2060  * @ret_be: accumulated data
2061  *
2062  * As do_ld_bytes_beN, but atomically on each aligned part.
2063  */
2064 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2065 {
2066     void *haddr = p->haddr;
2067     int size = p->size;
2068 
2069     do {
2070         uint64_t x;
2071         int n;
2072 
2073         /*
2074          * Find minimum of alignment and size.
2075          * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2076          * would have only checked the low bits of addr|size once at the start,
2077          * but is just as easy.
2078          */
2079         switch (((uintptr_t)haddr | size) & 7) {
2080         case 4:
2081             x = cpu_to_be32(load_atomic4(haddr));
2082             ret_be = (ret_be << 32) | x;
2083             n = 4;
2084             break;
2085         case 2:
2086         case 6:
2087             x = cpu_to_be16(load_atomic2(haddr));
2088             ret_be = (ret_be << 16) | x;
2089             n = 2;
2090             break;
2091         default:
2092             x = *(uint8_t *)haddr;
2093             ret_be = (ret_be << 8) | x;
2094             n = 1;
2095             break;
2096         case 0:
2097             g_assert_not_reached();
2098         }
2099         haddr += n;
2100         size -= n;
2101     } while (size != 0);
2102     return ret_be;
2103 }
2104 
2105 /**
2106  * do_ld_parts_be4
2107  * @p: translation parameters
2108  * @ret_be: accumulated data
2109  *
2110  * As do_ld_bytes_beN, but with one atomic load.
2111  * Four aligned bytes are guaranteed to cover the load.
2112  */
2113 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2114 {
2115     int o = p->addr & 3;
2116     uint32_t x = load_atomic4(p->haddr - o);
2117 
2118     x = cpu_to_be32(x);
2119     x <<= o * 8;
2120     x >>= (4 - p->size) * 8;
2121     return (ret_be << (p->size * 8)) | x;
2122 }
2123 
2124 /**
2125  * do_ld_parts_be8
2126  * @p: translation parameters
2127  * @ret_be: accumulated data
2128  *
2129  * As do_ld_bytes_beN, but with one atomic load.
2130  * Eight aligned bytes are guaranteed to cover the load.
2131  */
2132 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra,
2133                                 MMULookupPageData *p, uint64_t ret_be)
2134 {
2135     int o = p->addr & 7;
2136     uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o);
2137 
2138     x = cpu_to_be64(x);
2139     x <<= o * 8;
2140     x >>= (8 - p->size) * 8;
2141     return (ret_be << (p->size * 8)) | x;
2142 }
2143 
2144 /**
2145  * do_ld_parts_be16
2146  * @p: translation parameters
2147  * @ret_be: accumulated data
2148  *
2149  * As do_ld_bytes_beN, but with one atomic load.
2150  * 16 aligned bytes are guaranteed to cover the load.
2151  */
2152 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra,
2153                                MMULookupPageData *p, uint64_t ret_be)
2154 {
2155     int o = p->addr & 15;
2156     Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o);
2157     int size = p->size;
2158 
2159     if (!HOST_BIG_ENDIAN) {
2160         y = bswap128(y);
2161     }
2162     y = int128_lshift(y, o * 8);
2163     y = int128_urshift(y, (16 - size) * 8);
2164     x = int128_make64(ret_be);
2165     x = int128_lshift(x, size * 8);
2166     return int128_or(x, y);
2167 }
2168 
2169 /*
2170  * Wrapper for the above.
2171  */
2172 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p,
2173                           uint64_t ret_be, int mmu_idx, MMUAccessType type,
2174                           MemOp mop, uintptr_t ra)
2175 {
2176     MemOp atom;
2177     unsigned tmp, half_size;
2178 
2179     if (unlikely(p->flags & TLB_MMIO)) {
2180         return do_ld_mmio_beN(env, p, ret_be, mmu_idx, type, ra);
2181     }
2182 
2183     /*
2184      * It is a given that we cross a page and therefore there is no
2185      * atomicity for the load as a whole, but subobjects may need attention.
2186      */
2187     atom = mop & MO_ATOM_MASK;
2188     switch (atom) {
2189     case MO_ATOM_SUBALIGN:
2190         return do_ld_parts_beN(p, ret_be);
2191 
2192     case MO_ATOM_IFALIGN_PAIR:
2193     case MO_ATOM_WITHIN16_PAIR:
2194         tmp = mop & MO_SIZE;
2195         tmp = tmp ? tmp - 1 : 0;
2196         half_size = 1 << tmp;
2197         if (atom == MO_ATOM_IFALIGN_PAIR
2198             ? p->size == half_size
2199             : p->size >= half_size) {
2200             if (!HAVE_al8_fast && p->size < 4) {
2201                 return do_ld_whole_be4(p, ret_be);
2202             } else {
2203                 return do_ld_whole_be8(env, ra, p, ret_be);
2204             }
2205         }
2206         /* fall through */
2207 
2208     case MO_ATOM_IFALIGN:
2209     case MO_ATOM_WITHIN16:
2210     case MO_ATOM_NONE:
2211         return do_ld_bytes_beN(p, ret_be);
2212 
2213     default:
2214         g_assert_not_reached();
2215     }
2216 }
2217 
2218 /*
2219  * Wrapper for the above, for 8 < size < 16.
2220  */
2221 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p,
2222                           uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra)
2223 {
2224     int size = p->size;
2225     uint64_t b;
2226     MemOp atom;
2227 
2228     if (unlikely(p->flags & TLB_MMIO)) {
2229         p->size = size - 8;
2230         a = do_ld_mmio_beN(env, p, a, mmu_idx, MMU_DATA_LOAD, ra);
2231         p->addr += p->size;
2232         p->size = 8;
2233         b = do_ld_mmio_beN(env, p, 0, mmu_idx, MMU_DATA_LOAD, ra);
2234         return int128_make128(b, a);
2235     }
2236 
2237     /*
2238      * It is a given that we cross a page and therefore there is no
2239      * atomicity for the load as a whole, but subobjects may need attention.
2240      */
2241     atom = mop & MO_ATOM_MASK;
2242     switch (atom) {
2243     case MO_ATOM_SUBALIGN:
2244         p->size = size - 8;
2245         a = do_ld_parts_beN(p, a);
2246         p->haddr += size - 8;
2247         p->size = 8;
2248         b = do_ld_parts_beN(p, 0);
2249         break;
2250 
2251     case MO_ATOM_WITHIN16_PAIR:
2252         /* Since size > 8, this is the half that must be atomic. */
2253         return do_ld_whole_be16(env, ra, p, a);
2254 
2255     case MO_ATOM_IFALIGN_PAIR:
2256         /*
2257          * Since size > 8, both halves are misaligned,
2258          * and so neither is atomic.
2259          */
2260     case MO_ATOM_IFALIGN:
2261     case MO_ATOM_WITHIN16:
2262     case MO_ATOM_NONE:
2263         p->size = size - 8;
2264         a = do_ld_bytes_beN(p, a);
2265         b = ldq_be_p(p->haddr + size - 8);
2266         break;
2267 
2268     default:
2269         g_assert_not_reached();
2270     }
2271 
2272     return int128_make128(b, a);
2273 }
2274 
2275 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2276                        MMUAccessType type, uintptr_t ra)
2277 {
2278     if (unlikely(p->flags & TLB_MMIO)) {
2279         return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB);
2280     } else {
2281         return *(uint8_t *)p->haddr;
2282     }
2283 }
2284 
2285 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2286                         MMUAccessType type, MemOp memop, uintptr_t ra)
2287 {
2288     uint64_t ret;
2289 
2290     if (unlikely(p->flags & TLB_MMIO)) {
2291         return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2292     }
2293 
2294     /* Perform the load host endian, then swap if necessary. */
2295     ret = load_atom_2(env, ra, p->haddr, memop);
2296     if (memop & MO_BSWAP) {
2297         ret = bswap16(ret);
2298     }
2299     return ret;
2300 }
2301 
2302 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2303                         MMUAccessType type, MemOp memop, uintptr_t ra)
2304 {
2305     uint32_t ret;
2306 
2307     if (unlikely(p->flags & TLB_MMIO)) {
2308         return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2309     }
2310 
2311     /* Perform the load host endian. */
2312     ret = load_atom_4(env, ra, p->haddr, memop);
2313     if (memop & MO_BSWAP) {
2314         ret = bswap32(ret);
2315     }
2316     return ret;
2317 }
2318 
2319 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2320                         MMUAccessType type, MemOp memop, uintptr_t ra)
2321 {
2322     uint64_t ret;
2323 
2324     if (unlikely(p->flags & TLB_MMIO)) {
2325         return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2326     }
2327 
2328     /* Perform the load host endian. */
2329     ret = load_atom_8(env, ra, p->haddr, memop);
2330     if (memop & MO_BSWAP) {
2331         ret = bswap64(ret);
2332     }
2333     return ret;
2334 }
2335 
2336 static uint8_t do_ld1_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2337                           uintptr_t ra, MMUAccessType access_type)
2338 {
2339     MMULookupLocals l;
2340     bool crosspage;
2341 
2342     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2343     tcg_debug_assert(!crosspage);
2344 
2345     return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2346 }
2347 
2348 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr,
2349                                  MemOpIdx oi, uintptr_t retaddr)
2350 {
2351     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2352     return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2353 }
2354 
2355 static uint16_t do_ld2_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2356                            uintptr_t ra, MMUAccessType access_type)
2357 {
2358     MMULookupLocals l;
2359     bool crosspage;
2360     uint16_t ret;
2361     uint8_t a, b;
2362 
2363     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2364     if (likely(!crosspage)) {
2365         return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2366     }
2367 
2368     a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2369     b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra);
2370 
2371     if ((l.memop & MO_BSWAP) == MO_LE) {
2372         ret = a | (b << 8);
2373     } else {
2374         ret = b | (a << 8);
2375     }
2376     return ret;
2377 }
2378 
2379 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr,
2380                                  MemOpIdx oi, uintptr_t retaddr)
2381 {
2382     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2383     return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2384 }
2385 
2386 static uint32_t do_ld4_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2387                            uintptr_t ra, MMUAccessType access_type)
2388 {
2389     MMULookupLocals l;
2390     bool crosspage;
2391     uint32_t ret;
2392 
2393     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2394     if (likely(!crosspage)) {
2395         return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2396     }
2397 
2398     ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2399     ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2400     if ((l.memop & MO_BSWAP) == MO_LE) {
2401         ret = bswap32(ret);
2402     }
2403     return ret;
2404 }
2405 
2406 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr,
2407                                  MemOpIdx oi, uintptr_t retaddr)
2408 {
2409     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2410     return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2411 }
2412 
2413 static uint64_t do_ld8_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi,
2414                            uintptr_t ra, MMUAccessType access_type)
2415 {
2416     MMULookupLocals l;
2417     bool crosspage;
2418     uint64_t ret;
2419 
2420     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2421     if (likely(!crosspage)) {
2422         return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2423     }
2424 
2425     ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2426     ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2427     if ((l.memop & MO_BSWAP) == MO_LE) {
2428         ret = bswap64(ret);
2429     }
2430     return ret;
2431 }
2432 
2433 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr,
2434                         MemOpIdx oi, uintptr_t retaddr)
2435 {
2436     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2437     return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2438 }
2439 
2440 /*
2441  * Provide signed versions of the load routines as well.  We can of course
2442  * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2443  */
2444 
2445 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr,
2446                                  MemOpIdx oi, uintptr_t retaddr)
2447 {
2448     return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr);
2449 }
2450 
2451 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr,
2452                                  MemOpIdx oi, uintptr_t retaddr)
2453 {
2454     return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr);
2455 }
2456 
2457 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr,
2458                                  MemOpIdx oi, uintptr_t retaddr)
2459 {
2460     return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr);
2461 }
2462 
2463 static Int128 do_ld16_mmu(CPUArchState *env, vaddr addr,
2464                           MemOpIdx oi, uintptr_t ra)
2465 {
2466     MMULookupLocals l;
2467     bool crosspage;
2468     uint64_t a, b;
2469     Int128 ret;
2470     int first;
2471 
2472     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l);
2473     if (likely(!crosspage)) {
2474         /* Perform the load host endian. */
2475         if (unlikely(l.page[0].flags & TLB_MMIO)) {
2476             QEMU_IOTHREAD_LOCK_GUARD();
2477             a = io_readx(env, l.page[0].full, l.mmu_idx, addr,
2478                          ra, MMU_DATA_LOAD, MO_64);
2479             b = io_readx(env, l.page[0].full, l.mmu_idx, addr + 8,
2480                          ra, MMU_DATA_LOAD, MO_64);
2481             ret = int128_make128(HOST_BIG_ENDIAN ? b : a,
2482                                  HOST_BIG_ENDIAN ? a : b);
2483         } else {
2484             ret = load_atom_16(env, ra, l.page[0].haddr, l.memop);
2485         }
2486         if (l.memop & MO_BSWAP) {
2487             ret = bswap128(ret);
2488         }
2489         return ret;
2490     }
2491 
2492     first = l.page[0].size;
2493     if (first == 8) {
2494         MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64;
2495 
2496         a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2497         b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra);
2498         if ((mop8 & MO_BSWAP) == MO_LE) {
2499             ret = int128_make128(a, b);
2500         } else {
2501             ret = int128_make128(b, a);
2502         }
2503         return ret;
2504     }
2505 
2506     if (first < 8) {
2507         a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx,
2508                       MMU_DATA_LOAD, l.memop, ra);
2509         ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra);
2510     } else {
2511         ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra);
2512         b = int128_getlo(ret);
2513         ret = int128_lshift(ret, l.page[1].size * 8);
2514         a = int128_gethi(ret);
2515         b = do_ld_beN(env, &l.page[1], b, l.mmu_idx,
2516                       MMU_DATA_LOAD, l.memop, ra);
2517         ret = int128_make128(b, a);
2518     }
2519     if ((l.memop & MO_BSWAP) == MO_LE) {
2520         ret = bswap128(ret);
2521     }
2522     return ret;
2523 }
2524 
2525 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr,
2526                        uint32_t oi, uintptr_t retaddr)
2527 {
2528     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2529     return do_ld16_mmu(env, addr, oi, retaddr);
2530 }
2531 
2532 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi)
2533 {
2534     return helper_ld16_mmu(env, addr, oi, GETPC());
2535 }
2536 
2537 /*
2538  * Load helpers for cpu_ldst.h.
2539  */
2540 
2541 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2542 {
2543     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2544 }
2545 
2546 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2547 {
2548     uint8_t ret;
2549 
2550     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB);
2551     ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2552     plugin_load_cb(env, addr, oi);
2553     return ret;
2554 }
2555 
2556 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr,
2557                      MemOpIdx oi, uintptr_t ra)
2558 {
2559     uint16_t ret;
2560 
2561     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2562     ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2563     plugin_load_cb(env, addr, oi);
2564     return ret;
2565 }
2566 
2567 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr,
2568                      MemOpIdx oi, uintptr_t ra)
2569 {
2570     uint32_t ret;
2571 
2572     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2573     ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2574     plugin_load_cb(env, addr, oi);
2575     return ret;
2576 }
2577 
2578 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr,
2579                      MemOpIdx oi, uintptr_t ra)
2580 {
2581     uint64_t ret;
2582 
2583     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2584     ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2585     plugin_load_cb(env, addr, oi);
2586     return ret;
2587 }
2588 
2589 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr,
2590                     MemOpIdx oi, uintptr_t ra)
2591 {
2592     Int128 ret;
2593 
2594     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2595     ret = do_ld16_mmu(env, addr, oi, ra);
2596     plugin_load_cb(env, addr, oi);
2597     return ret;
2598 }
2599 
2600 /*
2601  * Store Helpers
2602  */
2603 
2604 /**
2605  * do_st_mmio_leN:
2606  * @env: cpu context
2607  * @p: translation parameters
2608  * @val_le: data to store
2609  * @mmu_idx: virtual address context
2610  * @ra: return address into tcg generated code, or 0
2611  *
2612  * Store @p->size bytes at @p->addr, which is memory-mapped i/o.
2613  * The bytes to store are extracted in little-endian order from @val_le;
2614  * return the bytes of @val_le beyond @p->size that have not been stored.
2615  */
2616 static uint64_t do_st_mmio_leN(CPUArchState *env, MMULookupPageData *p,
2617                                uint64_t val_le, int mmu_idx, uintptr_t ra)
2618 {
2619     CPUTLBEntryFull *full = p->full;
2620     vaddr addr = p->addr;
2621     int i, size = p->size;
2622 
2623     QEMU_IOTHREAD_LOCK_GUARD();
2624     for (i = 0; i < size; i++, val_le >>= 8) {
2625         io_writex(env, full, mmu_idx, val_le, addr + i, ra, MO_UB);
2626     }
2627     return val_le;
2628 }
2629 
2630 /*
2631  * Wrapper for the above.
2632  */
2633 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p,
2634                           uint64_t val_le, int mmu_idx,
2635                           MemOp mop, uintptr_t ra)
2636 {
2637     MemOp atom;
2638     unsigned tmp, half_size;
2639 
2640     if (unlikely(p->flags & TLB_MMIO)) {
2641         return do_st_mmio_leN(env, p, val_le, mmu_idx, ra);
2642     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2643         return val_le >> (p->size * 8);
2644     }
2645 
2646     /*
2647      * It is a given that we cross a page and therefore there is no atomicity
2648      * for the store as a whole, but subobjects may need attention.
2649      */
2650     atom = mop & MO_ATOM_MASK;
2651     switch (atom) {
2652     case MO_ATOM_SUBALIGN:
2653         return store_parts_leN(p->haddr, p->size, val_le);
2654 
2655     case MO_ATOM_IFALIGN_PAIR:
2656     case MO_ATOM_WITHIN16_PAIR:
2657         tmp = mop & MO_SIZE;
2658         tmp = tmp ? tmp - 1 : 0;
2659         half_size = 1 << tmp;
2660         if (atom == MO_ATOM_IFALIGN_PAIR
2661             ? p->size == half_size
2662             : p->size >= half_size) {
2663             if (!HAVE_al8_fast && p->size <= 4) {
2664                 return store_whole_le4(p->haddr, p->size, val_le);
2665             } else if (HAVE_al8) {
2666                 return store_whole_le8(p->haddr, p->size, val_le);
2667             } else {
2668                 cpu_loop_exit_atomic(env_cpu(env), ra);
2669             }
2670         }
2671         /* fall through */
2672 
2673     case MO_ATOM_IFALIGN:
2674     case MO_ATOM_WITHIN16:
2675     case MO_ATOM_NONE:
2676         return store_bytes_leN(p->haddr, p->size, val_le);
2677 
2678     default:
2679         g_assert_not_reached();
2680     }
2681 }
2682 
2683 /*
2684  * Wrapper for the above, for 8 < size < 16.
2685  */
2686 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p,
2687                             Int128 val_le, int mmu_idx,
2688                             MemOp mop, uintptr_t ra)
2689 {
2690     int size = p->size;
2691     MemOp atom;
2692 
2693     if (unlikely(p->flags & TLB_MMIO)) {
2694         p->size = 8;
2695         do_st_mmio_leN(env, p, int128_getlo(val_le), mmu_idx, ra);
2696         p->size = size - 8;
2697         p->addr += 8;
2698         return do_st_mmio_leN(env, p, int128_gethi(val_le), mmu_idx, ra);
2699     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2700         return int128_gethi(val_le) >> ((size - 8) * 8);
2701     }
2702 
2703     /*
2704      * It is a given that we cross a page and therefore there is no atomicity
2705      * for the store as a whole, but subobjects may need attention.
2706      */
2707     atom = mop & MO_ATOM_MASK;
2708     switch (atom) {
2709     case MO_ATOM_SUBALIGN:
2710         store_parts_leN(p->haddr, 8, int128_getlo(val_le));
2711         return store_parts_leN(p->haddr + 8, p->size - 8,
2712                                int128_gethi(val_le));
2713 
2714     case MO_ATOM_WITHIN16_PAIR:
2715         /* Since size > 8, this is the half that must be atomic. */
2716         if (!HAVE_ATOMIC128_RW) {
2717             cpu_loop_exit_atomic(env_cpu(env), ra);
2718         }
2719         return store_whole_le16(p->haddr, p->size, val_le);
2720 
2721     case MO_ATOM_IFALIGN_PAIR:
2722         /*
2723          * Since size > 8, both halves are misaligned,
2724          * and so neither is atomic.
2725          */
2726     case MO_ATOM_IFALIGN:
2727     case MO_ATOM_WITHIN16:
2728     case MO_ATOM_NONE:
2729         stq_le_p(p->haddr, int128_getlo(val_le));
2730         return store_bytes_leN(p->haddr + 8, p->size - 8,
2731                                int128_gethi(val_le));
2732 
2733     default:
2734         g_assert_not_reached();
2735     }
2736 }
2737 
2738 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val,
2739                     int mmu_idx, uintptr_t ra)
2740 {
2741     if (unlikely(p->flags & TLB_MMIO)) {
2742         io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB);
2743     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2744         /* nothing */
2745     } else {
2746         *(uint8_t *)p->haddr = val;
2747     }
2748 }
2749 
2750 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val,
2751                     int mmu_idx, MemOp memop, uintptr_t ra)
2752 {
2753     if (unlikely(p->flags & TLB_MMIO)) {
2754         io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2755     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2756         /* nothing */
2757     } else {
2758         /* Swap to host endian if necessary, then store. */
2759         if (memop & MO_BSWAP) {
2760             val = bswap16(val);
2761         }
2762         store_atom_2(env, ra, p->haddr, memop, val);
2763     }
2764 }
2765 
2766 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val,
2767                     int mmu_idx, MemOp memop, uintptr_t ra)
2768 {
2769     if (unlikely(p->flags & TLB_MMIO)) {
2770         io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2771     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2772         /* nothing */
2773     } else {
2774         /* Swap to host endian if necessary, then store. */
2775         if (memop & MO_BSWAP) {
2776             val = bswap32(val);
2777         }
2778         store_atom_4(env, ra, p->haddr, memop, val);
2779     }
2780 }
2781 
2782 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val,
2783                     int mmu_idx, MemOp memop, uintptr_t ra)
2784 {
2785     if (unlikely(p->flags & TLB_MMIO)) {
2786         io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2787     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2788         /* nothing */
2789     } else {
2790         /* Swap to host endian if necessary, then store. */
2791         if (memop & MO_BSWAP) {
2792             val = bswap64(val);
2793         }
2794         store_atom_8(env, ra, p->haddr, memop, val);
2795     }
2796 }
2797 
2798 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2799                     MemOpIdx oi, uintptr_t ra)
2800 {
2801     MMULookupLocals l;
2802     bool crosspage;
2803 
2804     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2805     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2806     tcg_debug_assert(!crosspage);
2807 
2808     do_st_1(env, &l.page[0], val, l.mmu_idx, ra);
2809 }
2810 
2811 static void do_st2_mmu(CPUArchState *env, vaddr addr, uint16_t val,
2812                        MemOpIdx oi, uintptr_t ra)
2813 {
2814     MMULookupLocals l;
2815     bool crosspage;
2816     uint8_t a, b;
2817 
2818     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2819     if (likely(!crosspage)) {
2820         do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2821         return;
2822     }
2823 
2824     if ((l.memop & MO_BSWAP) == MO_LE) {
2825         a = val, b = val >> 8;
2826     } else {
2827         b = val, a = val >> 8;
2828     }
2829     do_st_1(env, &l.page[0], a, l.mmu_idx, ra);
2830     do_st_1(env, &l.page[1], b, l.mmu_idx, ra);
2831 }
2832 
2833 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2834                     MemOpIdx oi, uintptr_t retaddr)
2835 {
2836     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2837     do_st2_mmu(env, addr, val, oi, retaddr);
2838 }
2839 
2840 static void do_st4_mmu(CPUArchState *env, vaddr addr, uint32_t val,
2841                        MemOpIdx oi, uintptr_t ra)
2842 {
2843     MMULookupLocals l;
2844     bool crosspage;
2845 
2846     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2847     if (likely(!crosspage)) {
2848         do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2849         return;
2850     }
2851 
2852     /* Swap to little endian for simplicity, then store by bytes. */
2853     if ((l.memop & MO_BSWAP) != MO_LE) {
2854         val = bswap32(val);
2855     }
2856     val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2857     (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2858 }
2859 
2860 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val,
2861                     MemOpIdx oi, uintptr_t retaddr)
2862 {
2863     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2864     do_st4_mmu(env, addr, val, oi, retaddr);
2865 }
2866 
2867 static void do_st8_mmu(CPUArchState *env, vaddr addr, uint64_t val,
2868                        MemOpIdx oi, uintptr_t ra)
2869 {
2870     MMULookupLocals l;
2871     bool crosspage;
2872 
2873     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2874     if (likely(!crosspage)) {
2875         do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2876         return;
2877     }
2878 
2879     /* Swap to little endian for simplicity, then store by bytes. */
2880     if ((l.memop & MO_BSWAP) != MO_LE) {
2881         val = bswap64(val);
2882     }
2883     val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2884     (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2885 }
2886 
2887 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val,
2888                     MemOpIdx oi, uintptr_t retaddr)
2889 {
2890     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2891     do_st8_mmu(env, addr, val, oi, retaddr);
2892 }
2893 
2894 static void do_st16_mmu(CPUArchState *env, vaddr addr, Int128 val,
2895                         MemOpIdx oi, uintptr_t ra)
2896 {
2897     MMULookupLocals l;
2898     bool crosspage;
2899     uint64_t a, b;
2900     int first;
2901 
2902     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2903     if (likely(!crosspage)) {
2904         /* Swap to host endian if necessary, then store. */
2905         if (l.memop & MO_BSWAP) {
2906             val = bswap128(val);
2907         }
2908         if (unlikely(l.page[0].flags & TLB_MMIO)) {
2909             QEMU_IOTHREAD_LOCK_GUARD();
2910             if (HOST_BIG_ENDIAN) {
2911                 b = int128_getlo(val), a = int128_gethi(val);
2912             } else {
2913                 a = int128_getlo(val), b = int128_gethi(val);
2914             }
2915             io_writex(env, l.page[0].full, l.mmu_idx, a, addr, ra, MO_64);
2916             io_writex(env, l.page[0].full, l.mmu_idx, b, addr + 8, ra, MO_64);
2917         } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) {
2918             /* nothing */
2919         } else {
2920             store_atom_16(env, ra, l.page[0].haddr, l.memop, val);
2921         }
2922         return;
2923     }
2924 
2925     first = l.page[0].size;
2926     if (first == 8) {
2927         MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64;
2928 
2929         if (l.memop & MO_BSWAP) {
2930             val = bswap128(val);
2931         }
2932         if (HOST_BIG_ENDIAN) {
2933             b = int128_getlo(val), a = int128_gethi(val);
2934         } else {
2935             a = int128_getlo(val), b = int128_gethi(val);
2936         }
2937         do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra);
2938         do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra);
2939         return;
2940     }
2941 
2942     if ((l.memop & MO_BSWAP) != MO_LE) {
2943         val = bswap128(val);
2944     }
2945     if (first < 8) {
2946         do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra);
2947         val = int128_urshift(val, first * 8);
2948         do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2949     } else {
2950         b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2951         do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra);
2952     }
2953 }
2954 
2955 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val,
2956                      MemOpIdx oi, uintptr_t retaddr)
2957 {
2958     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
2959     do_st16_mmu(env, addr, val, oi, retaddr);
2960 }
2961 
2962 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi)
2963 {
2964     helper_st16_mmu(env, addr, val, oi, GETPC());
2965 }
2966 
2967 /*
2968  * Store Helpers for cpu_ldst.h
2969  */
2970 
2971 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2972 {
2973     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2974 }
2975 
2976 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2977                  MemOpIdx oi, uintptr_t retaddr)
2978 {
2979     helper_stb_mmu(env, addr, val, oi, retaddr);
2980     plugin_store_cb(env, addr, oi);
2981 }
2982 
2983 void cpu_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2984                  MemOpIdx oi, uintptr_t retaddr)
2985 {
2986     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2987     do_st2_mmu(env, addr, val, oi, retaddr);
2988     plugin_store_cb(env, addr, oi);
2989 }
2990 
2991 void cpu_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2992                     MemOpIdx oi, uintptr_t retaddr)
2993 {
2994     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2995     do_st4_mmu(env, addr, val, oi, retaddr);
2996     plugin_store_cb(env, addr, oi);
2997 }
2998 
2999 void cpu_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
3000                  MemOpIdx oi, uintptr_t retaddr)
3001 {
3002     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
3003     do_st8_mmu(env, addr, val, oi, retaddr);
3004     plugin_store_cb(env, addr, oi);
3005 }
3006 
3007 void cpu_st16_mmu(CPUArchState *env, target_ulong addr, Int128 val,
3008                   MemOpIdx oi, uintptr_t retaddr)
3009 {
3010     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128);
3011     do_st16_mmu(env, addr, val, oi, retaddr);
3012     plugin_store_cb(env, addr, oi);
3013 }
3014 
3015 #include "ldst_common.c.inc"
3016 
3017 /*
3018  * First set of functions passes in OI and RETADDR.
3019  * This makes them callable from other helpers.
3020  */
3021 
3022 #define ATOMIC_NAME(X) \
3023     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
3024 
3025 #define ATOMIC_MMU_CLEANUP
3026 
3027 #include "atomic_common.c.inc"
3028 
3029 #define DATA_SIZE 1
3030 #include "atomic_template.h"
3031 
3032 #define DATA_SIZE 2
3033 #include "atomic_template.h"
3034 
3035 #define DATA_SIZE 4
3036 #include "atomic_template.h"
3037 
3038 #ifdef CONFIG_ATOMIC64
3039 #define DATA_SIZE 8
3040 #include "atomic_template.h"
3041 #endif
3042 
3043 #if defined(CONFIG_ATOMIC128) || defined(CONFIG_CMPXCHG128)
3044 #define DATA_SIZE 16
3045 #include "atomic_template.h"
3046 #endif
3047 
3048 /* Code access functions.  */
3049 
3050 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
3051 {
3052     MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
3053     return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3054 }
3055 
3056 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
3057 {
3058     MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
3059     return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3060 }
3061 
3062 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
3063 {
3064     MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
3065     return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3066 }
3067 
3068 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
3069 {
3070     MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
3071     return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH);
3072 }
3073 
3074 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
3075                          MemOpIdx oi, uintptr_t retaddr)
3076 {
3077     return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3078 }
3079 
3080 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
3081                           MemOpIdx oi, uintptr_t retaddr)
3082 {
3083     return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3084 }
3085 
3086 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
3087                           MemOpIdx oi, uintptr_t retaddr)
3088 {
3089     return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3090 }
3091 
3092 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
3093                           MemOpIdx oi, uintptr_t retaddr)
3094 {
3095     return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
3096 }
3097