xref: /openbmc/qemu/accel/tcg/cputlb.c (revision 14776ab5)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/address-spaces.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "tcg/tcg.h"
31 #include "qemu/error-report.h"
32 #include "exec/log.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/atomic.h"
35 #include "qemu/atomic128.h"
36 
37 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
38 /* #define DEBUG_TLB */
39 /* #define DEBUG_TLB_LOG */
40 
41 #ifdef DEBUG_TLB
42 # define DEBUG_TLB_GATE 1
43 # ifdef DEBUG_TLB_LOG
44 #  define DEBUG_TLB_LOG_GATE 1
45 # else
46 #  define DEBUG_TLB_LOG_GATE 0
47 # endif
48 #else
49 # define DEBUG_TLB_GATE 0
50 # define DEBUG_TLB_LOG_GATE 0
51 #endif
52 
53 #define tlb_debug(fmt, ...) do { \
54     if (DEBUG_TLB_LOG_GATE) { \
55         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
56                       ## __VA_ARGS__); \
57     } else if (DEBUG_TLB_GATE) { \
58         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
59     } \
60 } while (0)
61 
62 #define assert_cpu_is_self(cpu) do {                              \
63         if (DEBUG_TLB_GATE) {                                     \
64             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
65         }                                                         \
66     } while (0)
67 
68 /* run_on_cpu_data.target_ptr should always be big enough for a
69  * target_ulong even on 32 bit builds */
70 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
71 
72 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
73  */
74 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
75 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
76 
77 static inline size_t sizeof_tlb(CPUArchState *env, uintptr_t mmu_idx)
78 {
79     return env_tlb(env)->f[mmu_idx].mask + (1 << CPU_TLB_ENTRY_BITS);
80 }
81 
82 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
83                              size_t max_entries)
84 {
85     desc->window_begin_ns = ns;
86     desc->window_max_entries = max_entries;
87 }
88 
89 static void tlb_dyn_init(CPUArchState *env)
90 {
91     int i;
92 
93     for (i = 0; i < NB_MMU_MODES; i++) {
94         CPUTLBDesc *desc = &env_tlb(env)->d[i];
95         size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
96 
97         tlb_window_reset(desc, get_clock_realtime(), 0);
98         desc->n_used_entries = 0;
99         env_tlb(env)->f[i].mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
100         env_tlb(env)->f[i].table = g_new(CPUTLBEntry, n_entries);
101         env_tlb(env)->d[i].iotlb = g_new(CPUIOTLBEntry, n_entries);
102     }
103 }
104 
105 /**
106  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
107  * @env: CPU that owns the TLB
108  * @mmu_idx: MMU index of the TLB
109  *
110  * Called with tlb_lock_held.
111  *
112  * We have two main constraints when resizing a TLB: (1) we only resize it
113  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
114  * the array or unnecessarily flushing it), which means we do not control how
115  * frequently the resizing can occur; (2) we don't have access to the guest's
116  * future scheduling decisions, and therefore have to decide the magnitude of
117  * the resize based on past observations.
118  *
119  * In general, a memory-hungry process can benefit greatly from an appropriately
120  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
121  * we just have to make the TLB as large as possible; while an oversized TLB
122  * results in minimal TLB miss rates, it also takes longer to be flushed
123  * (flushes can be _very_ frequent), and the reduced locality can also hurt
124  * performance.
125  *
126  * To achieve near-optimal performance for all kinds of workloads, we:
127  *
128  * 1. Aggressively increase the size of the TLB when the use rate of the
129  * TLB being flushed is high, since it is likely that in the near future this
130  * memory-hungry process will execute again, and its memory hungriness will
131  * probably be similar.
132  *
133  * 2. Slowly reduce the size of the TLB as the use rate declines over a
134  * reasonably large time window. The rationale is that if in such a time window
135  * we have not observed a high TLB use rate, it is likely that we won't observe
136  * it in the near future. In that case, once a time window expires we downsize
137  * the TLB to match the maximum use rate observed in the window.
138  *
139  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
140  * since in that range performance is likely near-optimal. Recall that the TLB
141  * is direct mapped, so we want the use rate to be low (or at least not too
142  * high), since otherwise we are likely to have a significant amount of
143  * conflict misses.
144  */
145 static void tlb_mmu_resize_locked(CPUArchState *env, int mmu_idx)
146 {
147     CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
148     size_t old_size = tlb_n_entries(env, mmu_idx);
149     size_t rate;
150     size_t new_size = old_size;
151     int64_t now = get_clock_realtime();
152     int64_t window_len_ms = 100;
153     int64_t window_len_ns = window_len_ms * 1000 * 1000;
154     bool window_expired = now > desc->window_begin_ns + window_len_ns;
155 
156     if (desc->n_used_entries > desc->window_max_entries) {
157         desc->window_max_entries = desc->n_used_entries;
158     }
159     rate = desc->window_max_entries * 100 / old_size;
160 
161     if (rate > 70) {
162         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
163     } else if (rate < 30 && window_expired) {
164         size_t ceil = pow2ceil(desc->window_max_entries);
165         size_t expected_rate = desc->window_max_entries * 100 / ceil;
166 
167         /*
168          * Avoid undersizing when the max number of entries seen is just below
169          * a pow2. For instance, if max_entries == 1025, the expected use rate
170          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
171          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
172          * later. Thus, make sure that the expected use rate remains below 70%.
173          * (and since we double the size, that means the lowest rate we'd
174          * expect to get is 35%, which is still in the 30-70% range where
175          * we consider that the size is appropriate.)
176          */
177         if (expected_rate > 70) {
178             ceil *= 2;
179         }
180         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
181     }
182 
183     if (new_size == old_size) {
184         if (window_expired) {
185             tlb_window_reset(desc, now, desc->n_used_entries);
186         }
187         return;
188     }
189 
190     g_free(env_tlb(env)->f[mmu_idx].table);
191     g_free(env_tlb(env)->d[mmu_idx].iotlb);
192 
193     tlb_window_reset(desc, now, 0);
194     /* desc->n_used_entries is cleared by the caller */
195     env_tlb(env)->f[mmu_idx].mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
196     env_tlb(env)->f[mmu_idx].table = g_try_new(CPUTLBEntry, new_size);
197     env_tlb(env)->d[mmu_idx].iotlb = g_try_new(CPUIOTLBEntry, new_size);
198     /*
199      * If the allocations fail, try smaller sizes. We just freed some
200      * memory, so going back to half of new_size has a good chance of working.
201      * Increased memory pressure elsewhere in the system might cause the
202      * allocations to fail though, so we progressively reduce the allocation
203      * size, aborting if we cannot even allocate the smallest TLB we support.
204      */
205     while (env_tlb(env)->f[mmu_idx].table == NULL ||
206            env_tlb(env)->d[mmu_idx].iotlb == NULL) {
207         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
208             error_report("%s: %s", __func__, strerror(errno));
209             abort();
210         }
211         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
212         env_tlb(env)->f[mmu_idx].mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
213 
214         g_free(env_tlb(env)->f[mmu_idx].table);
215         g_free(env_tlb(env)->d[mmu_idx].iotlb);
216         env_tlb(env)->f[mmu_idx].table = g_try_new(CPUTLBEntry, new_size);
217         env_tlb(env)->d[mmu_idx].iotlb = g_try_new(CPUIOTLBEntry, new_size);
218     }
219 }
220 
221 static inline void tlb_table_flush_by_mmuidx(CPUArchState *env, int mmu_idx)
222 {
223     tlb_mmu_resize_locked(env, mmu_idx);
224     memset(env_tlb(env)->f[mmu_idx].table, -1, sizeof_tlb(env, mmu_idx));
225     env_tlb(env)->d[mmu_idx].n_used_entries = 0;
226 }
227 
228 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
229 {
230     env_tlb(env)->d[mmu_idx].n_used_entries++;
231 }
232 
233 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
234 {
235     env_tlb(env)->d[mmu_idx].n_used_entries--;
236 }
237 
238 void tlb_init(CPUState *cpu)
239 {
240     CPUArchState *env = cpu->env_ptr;
241 
242     qemu_spin_init(&env_tlb(env)->c.lock);
243 
244     /* Ensure that cpu_reset performs a full flush.  */
245     env_tlb(env)->c.dirty = ALL_MMUIDX_BITS;
246 
247     tlb_dyn_init(env);
248 }
249 
250 /* flush_all_helper: run fn across all cpus
251  *
252  * If the wait flag is set then the src cpu's helper will be queued as
253  * "safe" work and the loop exited creating a synchronisation point
254  * where all queued work will be finished before execution starts
255  * again.
256  */
257 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
258                              run_on_cpu_data d)
259 {
260     CPUState *cpu;
261 
262     CPU_FOREACH(cpu) {
263         if (cpu != src) {
264             async_run_on_cpu(cpu, fn, d);
265         }
266     }
267 }
268 
269 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
270 {
271     CPUState *cpu;
272     size_t full = 0, part = 0, elide = 0;
273 
274     CPU_FOREACH(cpu) {
275         CPUArchState *env = cpu->env_ptr;
276 
277         full += atomic_read(&env_tlb(env)->c.full_flush_count);
278         part += atomic_read(&env_tlb(env)->c.part_flush_count);
279         elide += atomic_read(&env_tlb(env)->c.elide_flush_count);
280     }
281     *pfull = full;
282     *ppart = part;
283     *pelide = elide;
284 }
285 
286 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx)
287 {
288     tlb_table_flush_by_mmuidx(env, mmu_idx);
289     env_tlb(env)->d[mmu_idx].large_page_addr = -1;
290     env_tlb(env)->d[mmu_idx].large_page_mask = -1;
291     env_tlb(env)->d[mmu_idx].vindex = 0;
292     memset(env_tlb(env)->d[mmu_idx].vtable, -1,
293            sizeof(env_tlb(env)->d[0].vtable));
294 }
295 
296 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
297 {
298     CPUArchState *env = cpu->env_ptr;
299     uint16_t asked = data.host_int;
300     uint16_t all_dirty, work, to_clean;
301 
302     assert_cpu_is_self(cpu);
303 
304     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
305 
306     qemu_spin_lock(&env_tlb(env)->c.lock);
307 
308     all_dirty = env_tlb(env)->c.dirty;
309     to_clean = asked & all_dirty;
310     all_dirty &= ~to_clean;
311     env_tlb(env)->c.dirty = all_dirty;
312 
313     for (work = to_clean; work != 0; work &= work - 1) {
314         int mmu_idx = ctz32(work);
315         tlb_flush_one_mmuidx_locked(env, mmu_idx);
316     }
317 
318     qemu_spin_unlock(&env_tlb(env)->c.lock);
319 
320     cpu_tb_jmp_cache_clear(cpu);
321 
322     if (to_clean == ALL_MMUIDX_BITS) {
323         atomic_set(&env_tlb(env)->c.full_flush_count,
324                    env_tlb(env)->c.full_flush_count + 1);
325     } else {
326         atomic_set(&env_tlb(env)->c.part_flush_count,
327                    env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
328         if (to_clean != asked) {
329             atomic_set(&env_tlb(env)->c.elide_flush_count,
330                        env_tlb(env)->c.elide_flush_count +
331                        ctpop16(asked & ~to_clean));
332         }
333     }
334 }
335 
336 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
337 {
338     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
339 
340     if (cpu->created && !qemu_cpu_is_self(cpu)) {
341         async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
342                          RUN_ON_CPU_HOST_INT(idxmap));
343     } else {
344         tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
345     }
346 }
347 
348 void tlb_flush(CPUState *cpu)
349 {
350     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
351 }
352 
353 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
354 {
355     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
356 
357     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
358 
359     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
360     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
361 }
362 
363 void tlb_flush_all_cpus(CPUState *src_cpu)
364 {
365     tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
366 }
367 
368 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
369 {
370     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
371 
372     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
373 
374     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
375     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
376 }
377 
378 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
379 {
380     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
381 }
382 
383 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
384                                         target_ulong page)
385 {
386     return tlb_hit_page(tlb_entry->addr_read, page) ||
387            tlb_hit_page(tlb_addr_write(tlb_entry), page) ||
388            tlb_hit_page(tlb_entry->addr_code, page);
389 }
390 
391 /**
392  * tlb_entry_is_empty - return true if the entry is not in use
393  * @te: pointer to CPUTLBEntry
394  */
395 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
396 {
397     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
398 }
399 
400 /* Called with tlb_c.lock held */
401 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
402                                           target_ulong page)
403 {
404     if (tlb_hit_page_anyprot(tlb_entry, page)) {
405         memset(tlb_entry, -1, sizeof(*tlb_entry));
406         return true;
407     }
408     return false;
409 }
410 
411 /* Called with tlb_c.lock held */
412 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
413                                               target_ulong page)
414 {
415     CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
416     int k;
417 
418     assert_cpu_is_self(env_cpu(env));
419     for (k = 0; k < CPU_VTLB_SIZE; k++) {
420         if (tlb_flush_entry_locked(&d->vtable[k], page)) {
421             tlb_n_used_entries_dec(env, mmu_idx);
422         }
423     }
424 }
425 
426 static void tlb_flush_page_locked(CPUArchState *env, int midx,
427                                   target_ulong page)
428 {
429     target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
430     target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
431 
432     /* Check if we need to flush due to large pages.  */
433     if ((page & lp_mask) == lp_addr) {
434         tlb_debug("forcing full flush midx %d ("
435                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
436                   midx, lp_addr, lp_mask);
437         tlb_flush_one_mmuidx_locked(env, midx);
438     } else {
439         if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
440             tlb_n_used_entries_dec(env, midx);
441         }
442         tlb_flush_vtlb_page_locked(env, midx, page);
443     }
444 }
445 
446 /* As we are going to hijack the bottom bits of the page address for a
447  * mmuidx bit mask we need to fail to build if we can't do that
448  */
449 QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN);
450 
451 static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu,
452                                                 run_on_cpu_data data)
453 {
454     CPUArchState *env = cpu->env_ptr;
455     target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
456     target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
457     unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
458     int mmu_idx;
459 
460     assert_cpu_is_self(cpu);
461 
462     tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%lx\n",
463               addr, mmu_idx_bitmap);
464 
465     qemu_spin_lock(&env_tlb(env)->c.lock);
466     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
467         if (test_bit(mmu_idx, &mmu_idx_bitmap)) {
468             tlb_flush_page_locked(env, mmu_idx, addr);
469         }
470     }
471     qemu_spin_unlock(&env_tlb(env)->c.lock);
472 
473     tb_flush_jmp_cache(cpu, addr);
474 }
475 
476 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
477 {
478     target_ulong addr_and_mmu_idx;
479 
480     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
481 
482     /* This should already be page aligned */
483     addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
484     addr_and_mmu_idx |= idxmap;
485 
486     if (!qemu_cpu_is_self(cpu)) {
487         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_work,
488                          RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
489     } else {
490         tlb_flush_page_by_mmuidx_async_work(
491             cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
492     }
493 }
494 
495 void tlb_flush_page(CPUState *cpu, target_ulong addr)
496 {
497     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
498 }
499 
500 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
501                                        uint16_t idxmap)
502 {
503     const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work;
504     target_ulong addr_and_mmu_idx;
505 
506     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
507 
508     /* This should already be page aligned */
509     addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
510     addr_and_mmu_idx |= idxmap;
511 
512     flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
513     fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
514 }
515 
516 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
517 {
518     tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
519 }
520 
521 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
522                                               target_ulong addr,
523                                               uint16_t idxmap)
524 {
525     const run_on_cpu_func fn = tlb_flush_page_by_mmuidx_async_work;
526     target_ulong addr_and_mmu_idx;
527 
528     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
529 
530     /* This should already be page aligned */
531     addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
532     addr_and_mmu_idx |= idxmap;
533 
534     flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
535     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
536 }
537 
538 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
539 {
540     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
541 }
542 
543 /* update the TLBs so that writes to code in the virtual page 'addr'
544    can be detected */
545 void tlb_protect_code(ram_addr_t ram_addr)
546 {
547     cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
548                                              DIRTY_MEMORY_CODE);
549 }
550 
551 /* update the TLB so that writes in physical page 'phys_addr' are no longer
552    tested for self modifying code */
553 void tlb_unprotect_code(ram_addr_t ram_addr)
554 {
555     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
556 }
557 
558 
559 /*
560  * Dirty write flag handling
561  *
562  * When the TCG code writes to a location it looks up the address in
563  * the TLB and uses that data to compute the final address. If any of
564  * the lower bits of the address are set then the slow path is forced.
565  * There are a number of reasons to do this but for normal RAM the
566  * most usual is detecting writes to code regions which may invalidate
567  * generated code.
568  *
569  * Other vCPUs might be reading their TLBs during guest execution, so we update
570  * te->addr_write with atomic_set. We don't need to worry about this for
571  * oversized guests as MTTCG is disabled for them.
572  *
573  * Called with tlb_c.lock held.
574  */
575 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
576                                          uintptr_t start, uintptr_t length)
577 {
578     uintptr_t addr = tlb_entry->addr_write;
579 
580     if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
581         addr &= TARGET_PAGE_MASK;
582         addr += tlb_entry->addend;
583         if ((addr - start) < length) {
584 #if TCG_OVERSIZED_GUEST
585             tlb_entry->addr_write |= TLB_NOTDIRTY;
586 #else
587             atomic_set(&tlb_entry->addr_write,
588                        tlb_entry->addr_write | TLB_NOTDIRTY);
589 #endif
590         }
591     }
592 }
593 
594 /*
595  * Called with tlb_c.lock held.
596  * Called only from the vCPU context, i.e. the TLB's owner thread.
597  */
598 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
599 {
600     *d = *s;
601 }
602 
603 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
604  * the target vCPU).
605  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
606  * thing actually updated is the target TLB entry ->addr_write flags.
607  */
608 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
609 {
610     CPUArchState *env;
611 
612     int mmu_idx;
613 
614     env = cpu->env_ptr;
615     qemu_spin_lock(&env_tlb(env)->c.lock);
616     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
617         unsigned int i;
618         unsigned int n = tlb_n_entries(env, mmu_idx);
619 
620         for (i = 0; i < n; i++) {
621             tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
622                                          start1, length);
623         }
624 
625         for (i = 0; i < CPU_VTLB_SIZE; i++) {
626             tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
627                                          start1, length);
628         }
629     }
630     qemu_spin_unlock(&env_tlb(env)->c.lock);
631 }
632 
633 /* Called with tlb_c.lock held */
634 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
635                                          target_ulong vaddr)
636 {
637     if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
638         tlb_entry->addr_write = vaddr;
639     }
640 }
641 
642 /* update the TLB corresponding to virtual page vaddr
643    so that it is no longer dirty */
644 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
645 {
646     CPUArchState *env = cpu->env_ptr;
647     int mmu_idx;
648 
649     assert_cpu_is_self(cpu);
650 
651     vaddr &= TARGET_PAGE_MASK;
652     qemu_spin_lock(&env_tlb(env)->c.lock);
653     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
654         tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
655     }
656 
657     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
658         int k;
659         for (k = 0; k < CPU_VTLB_SIZE; k++) {
660             tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
661         }
662     }
663     qemu_spin_unlock(&env_tlb(env)->c.lock);
664 }
665 
666 /* Our TLB does not support large pages, so remember the area covered by
667    large pages and trigger a full TLB flush if these are invalidated.  */
668 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
669                                target_ulong vaddr, target_ulong size)
670 {
671     target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
672     target_ulong lp_mask = ~(size - 1);
673 
674     if (lp_addr == (target_ulong)-1) {
675         /* No previous large page.  */
676         lp_addr = vaddr;
677     } else {
678         /* Extend the existing region to include the new page.
679            This is a compromise between unnecessary flushes and
680            the cost of maintaining a full variable size TLB.  */
681         lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
682         while (((lp_addr ^ vaddr) & lp_mask) != 0) {
683             lp_mask <<= 1;
684         }
685     }
686     env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
687     env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
688 }
689 
690 /* Add a new TLB entry. At most one entry for a given virtual address
691  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
692  * supplied size is only used by tlb_flush_page.
693  *
694  * Called from TCG-generated code, which is under an RCU read-side
695  * critical section.
696  */
697 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
698                              hwaddr paddr, MemTxAttrs attrs, int prot,
699                              int mmu_idx, target_ulong size)
700 {
701     CPUArchState *env = cpu->env_ptr;
702     CPUTLB *tlb = env_tlb(env);
703     CPUTLBDesc *desc = &tlb->d[mmu_idx];
704     MemoryRegionSection *section;
705     unsigned int index;
706     target_ulong address;
707     target_ulong code_address;
708     uintptr_t addend;
709     CPUTLBEntry *te, tn;
710     hwaddr iotlb, xlat, sz, paddr_page;
711     target_ulong vaddr_page;
712     int asidx = cpu_asidx_from_attrs(cpu, attrs);
713 
714     assert_cpu_is_self(cpu);
715 
716     if (size <= TARGET_PAGE_SIZE) {
717         sz = TARGET_PAGE_SIZE;
718     } else {
719         tlb_add_large_page(env, mmu_idx, vaddr, size);
720         sz = size;
721     }
722     vaddr_page = vaddr & TARGET_PAGE_MASK;
723     paddr_page = paddr & TARGET_PAGE_MASK;
724 
725     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
726                                                 &xlat, &sz, attrs, &prot);
727     assert(sz >= TARGET_PAGE_SIZE);
728 
729     tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
730               " prot=%x idx=%d\n",
731               vaddr, paddr, prot, mmu_idx);
732 
733     address = vaddr_page;
734     if (size < TARGET_PAGE_SIZE) {
735         /*
736          * Slow-path the TLB entries; we will repeat the MMU check and TLB
737          * fill on every access.
738          */
739         address |= TLB_RECHECK;
740     }
741     if (!memory_region_is_ram(section->mr) &&
742         !memory_region_is_romd(section->mr)) {
743         /* IO memory case */
744         address |= TLB_MMIO;
745         addend = 0;
746     } else {
747         /* TLB_MMIO for rom/romd handled below */
748         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
749     }
750 
751     code_address = address;
752     iotlb = memory_region_section_get_iotlb(cpu, section, vaddr_page,
753                                             paddr_page, xlat, prot, &address);
754 
755     index = tlb_index(env, mmu_idx, vaddr_page);
756     te = tlb_entry(env, mmu_idx, vaddr_page);
757 
758     /*
759      * Hold the TLB lock for the rest of the function. We could acquire/release
760      * the lock several times in the function, but it is faster to amortize the
761      * acquisition cost by acquiring it just once. Note that this leads to
762      * a longer critical section, but this is not a concern since the TLB lock
763      * is unlikely to be contended.
764      */
765     qemu_spin_lock(&tlb->c.lock);
766 
767     /* Note that the tlb is no longer clean.  */
768     tlb->c.dirty |= 1 << mmu_idx;
769 
770     /* Make sure there's no cached translation for the new page.  */
771     tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
772 
773     /*
774      * Only evict the old entry to the victim tlb if it's for a
775      * different page; otherwise just overwrite the stale data.
776      */
777     if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
778         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
779         CPUTLBEntry *tv = &desc->vtable[vidx];
780 
781         /* Evict the old entry into the victim tlb.  */
782         copy_tlb_helper_locked(tv, te);
783         desc->viotlb[vidx] = desc->iotlb[index];
784         tlb_n_used_entries_dec(env, mmu_idx);
785     }
786 
787     /* refill the tlb */
788     /*
789      * At this point iotlb contains a physical section number in the lower
790      * TARGET_PAGE_BITS, and either
791      *  + the ram_addr_t of the page base of the target RAM (if NOTDIRTY or ROM)
792      *  + the offset within section->mr of the page base (otherwise)
793      * We subtract the vaddr_page (which is page aligned and thus won't
794      * disturb the low bits) to give an offset which can be added to the
795      * (non-page-aligned) vaddr of the eventual memory access to get
796      * the MemoryRegion offset for the access. Note that the vaddr we
797      * subtract here is that of the page base, and not the same as the
798      * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
799      */
800     desc->iotlb[index].addr = iotlb - vaddr_page;
801     desc->iotlb[index].attrs = attrs;
802 
803     /* Now calculate the new entry */
804     tn.addend = addend - vaddr_page;
805     if (prot & PAGE_READ) {
806         tn.addr_read = address;
807     } else {
808         tn.addr_read = -1;
809     }
810 
811     if (prot & PAGE_EXEC) {
812         tn.addr_code = code_address;
813     } else {
814         tn.addr_code = -1;
815     }
816 
817     tn.addr_write = -1;
818     if (prot & PAGE_WRITE) {
819         if ((memory_region_is_ram(section->mr) && section->readonly)
820             || memory_region_is_romd(section->mr)) {
821             /* Write access calls the I/O callback.  */
822             tn.addr_write = address | TLB_MMIO;
823         } else if (memory_region_is_ram(section->mr)
824                    && cpu_physical_memory_is_clean(
825                        memory_region_get_ram_addr(section->mr) + xlat)) {
826             tn.addr_write = address | TLB_NOTDIRTY;
827         } else {
828             tn.addr_write = address;
829         }
830         if (prot & PAGE_WRITE_INV) {
831             tn.addr_write |= TLB_INVALID_MASK;
832         }
833     }
834 
835     copy_tlb_helper_locked(te, &tn);
836     tlb_n_used_entries_inc(env, mmu_idx);
837     qemu_spin_unlock(&tlb->c.lock);
838 }
839 
840 /* Add a new TLB entry, but without specifying the memory
841  * transaction attributes to be used.
842  */
843 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
844                   hwaddr paddr, int prot,
845                   int mmu_idx, target_ulong size)
846 {
847     tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
848                             prot, mmu_idx, size);
849 }
850 
851 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
852 {
853     ram_addr_t ram_addr;
854 
855     ram_addr = qemu_ram_addr_from_host(ptr);
856     if (ram_addr == RAM_ADDR_INVALID) {
857         error_report("Bad ram pointer %p", ptr);
858         abort();
859     }
860     return ram_addr;
861 }
862 
863 /*
864  * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
865  * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
866  * be discarded and looked up again (e.g. via tlb_entry()).
867  */
868 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
869                      MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
870 {
871     CPUClass *cc = CPU_GET_CLASS(cpu);
872     bool ok;
873 
874     /*
875      * This is not a probe, so only valid return is success; failure
876      * should result in exception + longjmp to the cpu loop.
877      */
878     ok = cc->tlb_fill(cpu, addr, size, access_type, mmu_idx, false, retaddr);
879     assert(ok);
880 }
881 
882 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
883                          int mmu_idx, target_ulong addr, uintptr_t retaddr,
884                          MMUAccessType access_type, int size)
885 {
886     CPUState *cpu = env_cpu(env);
887     hwaddr mr_offset;
888     MemoryRegionSection *section;
889     MemoryRegion *mr;
890     uint64_t val;
891     bool locked = false;
892     MemTxResult r;
893 
894     section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
895     mr = section->mr;
896     mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
897     cpu->mem_io_pc = retaddr;
898     if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
899         cpu_io_recompile(cpu, retaddr);
900     }
901 
902     cpu->mem_io_vaddr = addr;
903     cpu->mem_io_access_type = access_type;
904 
905     if (mr->global_locking && !qemu_mutex_iothread_locked()) {
906         qemu_mutex_lock_iothread();
907         locked = true;
908     }
909     r = memory_region_dispatch_read(mr, mr_offset,
910                                     &val, size, iotlbentry->attrs);
911     if (r != MEMTX_OK) {
912         hwaddr physaddr = mr_offset +
913             section->offset_within_address_space -
914             section->offset_within_region;
915 
916         cpu_transaction_failed(cpu, physaddr, addr, size, access_type,
917                                mmu_idx, iotlbentry->attrs, r, retaddr);
918     }
919     if (locked) {
920         qemu_mutex_unlock_iothread();
921     }
922 
923     return val;
924 }
925 
926 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
927                       int mmu_idx, uint64_t val, target_ulong addr,
928                       uintptr_t retaddr, int size)
929 {
930     CPUState *cpu = env_cpu(env);
931     hwaddr mr_offset;
932     MemoryRegionSection *section;
933     MemoryRegion *mr;
934     bool locked = false;
935     MemTxResult r;
936 
937     section = iotlb_to_section(cpu, iotlbentry->addr, iotlbentry->attrs);
938     mr = section->mr;
939     mr_offset = (iotlbentry->addr & TARGET_PAGE_MASK) + addr;
940     if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
941         cpu_io_recompile(cpu, retaddr);
942     }
943     cpu->mem_io_vaddr = addr;
944     cpu->mem_io_pc = retaddr;
945 
946     if (mr->global_locking && !qemu_mutex_iothread_locked()) {
947         qemu_mutex_lock_iothread();
948         locked = true;
949     }
950     r = memory_region_dispatch_write(mr, mr_offset,
951                                      val, size, iotlbentry->attrs);
952     if (r != MEMTX_OK) {
953         hwaddr physaddr = mr_offset +
954             section->offset_within_address_space -
955             section->offset_within_region;
956 
957         cpu_transaction_failed(cpu, physaddr, addr, size, MMU_DATA_STORE,
958                                mmu_idx, iotlbentry->attrs, r, retaddr);
959     }
960     if (locked) {
961         qemu_mutex_unlock_iothread();
962     }
963 }
964 
965 static inline target_ulong tlb_read_ofs(CPUTLBEntry *entry, size_t ofs)
966 {
967 #if TCG_OVERSIZED_GUEST
968     return *(target_ulong *)((uintptr_t)entry + ofs);
969 #else
970     /* ofs might correspond to .addr_write, so use atomic_read */
971     return atomic_read((target_ulong *)((uintptr_t)entry + ofs));
972 #endif
973 }
974 
975 /* Return true if ADDR is present in the victim tlb, and has been copied
976    back to the main tlb.  */
977 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
978                            size_t elt_ofs, target_ulong page)
979 {
980     size_t vidx;
981 
982     assert_cpu_is_self(env_cpu(env));
983     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
984         CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
985         target_ulong cmp;
986 
987         /* elt_ofs might correspond to .addr_write, so use atomic_read */
988 #if TCG_OVERSIZED_GUEST
989         cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
990 #else
991         cmp = atomic_read((target_ulong *)((uintptr_t)vtlb + elt_ofs));
992 #endif
993 
994         if (cmp == page) {
995             /* Found entry in victim tlb, swap tlb and iotlb.  */
996             CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
997 
998             qemu_spin_lock(&env_tlb(env)->c.lock);
999             copy_tlb_helper_locked(&tmptlb, tlb);
1000             copy_tlb_helper_locked(tlb, vtlb);
1001             copy_tlb_helper_locked(vtlb, &tmptlb);
1002             qemu_spin_unlock(&env_tlb(env)->c.lock);
1003 
1004             CPUIOTLBEntry tmpio, *io = &env_tlb(env)->d[mmu_idx].iotlb[index];
1005             CPUIOTLBEntry *vio = &env_tlb(env)->d[mmu_idx].viotlb[vidx];
1006             tmpio = *io; *io = *vio; *vio = tmpio;
1007             return true;
1008         }
1009     }
1010     return false;
1011 }
1012 
1013 /* Macro to call the above, with local variables from the use context.  */
1014 #define VICTIM_TLB_HIT(TY, ADDR) \
1015   victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
1016                  (ADDR) & TARGET_PAGE_MASK)
1017 
1018 /* NOTE: this function can trigger an exception */
1019 /* NOTE2: the returned address is not exactly the physical address: it
1020  * is actually a ram_addr_t (in system mode; the user mode emulation
1021  * version of this function returns a guest virtual address).
1022  */
1023 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
1024 {
1025     uintptr_t mmu_idx = cpu_mmu_index(env, true);
1026     uintptr_t index = tlb_index(env, mmu_idx, addr);
1027     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1028     void *p;
1029 
1030     if (unlikely(!tlb_hit(entry->addr_code, addr))) {
1031         if (!VICTIM_TLB_HIT(addr_code, addr)) {
1032             tlb_fill(env_cpu(env), addr, 0, MMU_INST_FETCH, mmu_idx, 0);
1033             index = tlb_index(env, mmu_idx, addr);
1034             entry = tlb_entry(env, mmu_idx, addr);
1035         }
1036         assert(tlb_hit(entry->addr_code, addr));
1037     }
1038 
1039     if (unlikely(entry->addr_code & (TLB_RECHECK | TLB_MMIO))) {
1040         /*
1041          * Return -1 if we can't translate and execute from an entire
1042          * page of RAM here, which will cause us to execute by loading
1043          * and translating one insn at a time, without caching:
1044          *  - TLB_RECHECK: means the MMU protection covers a smaller range
1045          *    than a target page, so we must redo the MMU check every insn
1046          *  - TLB_MMIO: region is not backed by RAM
1047          */
1048         return -1;
1049     }
1050 
1051     p = (void *)((uintptr_t)addr + entry->addend);
1052     return qemu_ram_addr_from_host_nofail(p);
1053 }
1054 
1055 /* Probe for whether the specified guest write access is permitted.
1056  * If it is not permitted then an exception will be taken in the same
1057  * way as if this were a real write access (and we will not return).
1058  * Otherwise the function will return, and there will be a valid
1059  * entry in the TLB for this access.
1060  */
1061 void probe_write(CPUArchState *env, target_ulong addr, int size, int mmu_idx,
1062                  uintptr_t retaddr)
1063 {
1064     uintptr_t index = tlb_index(env, mmu_idx, addr);
1065     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1066 
1067     if (!tlb_hit(tlb_addr_write(entry), addr)) {
1068         /* TLB entry is for a different page */
1069         if (!VICTIM_TLB_HIT(addr_write, addr)) {
1070             tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
1071                      mmu_idx, retaddr);
1072         }
1073     }
1074 }
1075 
1076 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1077                         MMUAccessType access_type, int mmu_idx)
1078 {
1079     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1080     uintptr_t tlb_addr, page;
1081     size_t elt_ofs;
1082 
1083     switch (access_type) {
1084     case MMU_DATA_LOAD:
1085         elt_ofs = offsetof(CPUTLBEntry, addr_read);
1086         break;
1087     case MMU_DATA_STORE:
1088         elt_ofs = offsetof(CPUTLBEntry, addr_write);
1089         break;
1090     case MMU_INST_FETCH:
1091         elt_ofs = offsetof(CPUTLBEntry, addr_code);
1092         break;
1093     default:
1094         g_assert_not_reached();
1095     }
1096 
1097     page = addr & TARGET_PAGE_MASK;
1098     tlb_addr = tlb_read_ofs(entry, elt_ofs);
1099 
1100     if (!tlb_hit_page(tlb_addr, page)) {
1101         uintptr_t index = tlb_index(env, mmu_idx, addr);
1102 
1103         if (!victim_tlb_hit(env, mmu_idx, index, elt_ofs, page)) {
1104             CPUState *cs = env_cpu(env);
1105             CPUClass *cc = CPU_GET_CLASS(cs);
1106 
1107             if (!cc->tlb_fill(cs, addr, 0, access_type, mmu_idx, true, 0)) {
1108                 /* Non-faulting page table read failed.  */
1109                 return NULL;
1110             }
1111 
1112             /* TLB resize via tlb_fill may have moved the entry.  */
1113             entry = tlb_entry(env, mmu_idx, addr);
1114         }
1115         tlb_addr = tlb_read_ofs(entry, elt_ofs);
1116     }
1117 
1118     if (tlb_addr & ~TARGET_PAGE_MASK) {
1119         /* IO access */
1120         return NULL;
1121     }
1122 
1123     return (void *)((uintptr_t)addr + entry->addend);
1124 }
1125 
1126 /* Probe for a read-modify-write atomic operation.  Do not allow unaligned
1127  * operations, or io operations to proceed.  Return the host address.  */
1128 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1129                                TCGMemOpIdx oi, uintptr_t retaddr,
1130                                NotDirtyInfo *ndi)
1131 {
1132     size_t mmu_idx = get_mmuidx(oi);
1133     uintptr_t index = tlb_index(env, mmu_idx, addr);
1134     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1135     target_ulong tlb_addr = tlb_addr_write(tlbe);
1136     MemOp mop = get_memop(oi);
1137     int a_bits = get_alignment_bits(mop);
1138     int s_bits = mop & MO_SIZE;
1139     void *hostaddr;
1140 
1141     /* Adjust the given return address.  */
1142     retaddr -= GETPC_ADJ;
1143 
1144     /* Enforce guest required alignment.  */
1145     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1146         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1147         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1148                              mmu_idx, retaddr);
1149     }
1150 
1151     /* Enforce qemu required alignment.  */
1152     if (unlikely(addr & ((1 << s_bits) - 1))) {
1153         /* We get here if guest alignment was not requested,
1154            or was not enforced by cpu_unaligned_access above.
1155            We might widen the access and emulate, but for now
1156            mark an exception and exit the cpu loop.  */
1157         goto stop_the_world;
1158     }
1159 
1160     /* Check TLB entry and enforce page permissions.  */
1161     if (!tlb_hit(tlb_addr, addr)) {
1162         if (!VICTIM_TLB_HIT(addr_write, addr)) {
1163             tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_STORE,
1164                      mmu_idx, retaddr);
1165             index = tlb_index(env, mmu_idx, addr);
1166             tlbe = tlb_entry(env, mmu_idx, addr);
1167         }
1168         tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1169     }
1170 
1171     /* Notice an IO access or a needs-MMU-lookup access */
1172     if (unlikely(tlb_addr & (TLB_MMIO | TLB_RECHECK))) {
1173         /* There's really nothing that can be done to
1174            support this apart from stop-the-world.  */
1175         goto stop_the_world;
1176     }
1177 
1178     /* Let the guest notice RMW on a write-only page.  */
1179     if (unlikely(tlbe->addr_read != (tlb_addr & ~TLB_NOTDIRTY))) {
1180         tlb_fill(env_cpu(env), addr, 1 << s_bits, MMU_DATA_LOAD,
1181                  mmu_idx, retaddr);
1182         /* Since we don't support reads and writes to different addresses,
1183            and we do have the proper page loaded for write, this shouldn't
1184            ever return.  But just in case, handle via stop-the-world.  */
1185         goto stop_the_world;
1186     }
1187 
1188     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1189 
1190     ndi->active = false;
1191     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1192         ndi->active = true;
1193         memory_notdirty_write_prepare(ndi, env_cpu(env), addr,
1194                                       qemu_ram_addr_from_host_nofail(hostaddr),
1195                                       1 << s_bits);
1196     }
1197 
1198     return hostaddr;
1199 
1200  stop_the_world:
1201     cpu_loop_exit_atomic(env_cpu(env), retaddr);
1202 }
1203 
1204 #ifdef TARGET_WORDS_BIGENDIAN
1205 #define NEED_BE_BSWAP 0
1206 #define NEED_LE_BSWAP 1
1207 #else
1208 #define NEED_BE_BSWAP 1
1209 #define NEED_LE_BSWAP 0
1210 #endif
1211 
1212 /*
1213  * Byte Swap Helper
1214  *
1215  * This should all dead code away depending on the build host and
1216  * access type.
1217  */
1218 
1219 static inline uint64_t handle_bswap(uint64_t val, int size, bool big_endian)
1220 {
1221     if ((big_endian && NEED_BE_BSWAP) || (!big_endian && NEED_LE_BSWAP)) {
1222         switch (size) {
1223         case 1: return val;
1224         case 2: return bswap16(val);
1225         case 4: return bswap32(val);
1226         case 8: return bswap64(val);
1227         default:
1228             g_assert_not_reached();
1229         }
1230     } else {
1231         return val;
1232     }
1233 }
1234 
1235 /*
1236  * Load Helpers
1237  *
1238  * We support two different access types. SOFTMMU_CODE_ACCESS is
1239  * specifically for reading instructions from system memory. It is
1240  * called by the translation loop and in some helpers where the code
1241  * is disassembled. It shouldn't be called directly by guest code.
1242  */
1243 
1244 typedef uint64_t FullLoadHelper(CPUArchState *env, target_ulong addr,
1245                                 TCGMemOpIdx oi, uintptr_t retaddr);
1246 
1247 static inline uint64_t __attribute__((always_inline))
1248 load_helper(CPUArchState *env, target_ulong addr, TCGMemOpIdx oi,
1249             uintptr_t retaddr, size_t size, bool big_endian, bool code_read,
1250             FullLoadHelper *full_load)
1251 {
1252     uintptr_t mmu_idx = get_mmuidx(oi);
1253     uintptr_t index = tlb_index(env, mmu_idx, addr);
1254     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1255     target_ulong tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1256     const size_t tlb_off = code_read ?
1257         offsetof(CPUTLBEntry, addr_code) : offsetof(CPUTLBEntry, addr_read);
1258     const MMUAccessType access_type =
1259         code_read ? MMU_INST_FETCH : MMU_DATA_LOAD;
1260     unsigned a_bits = get_alignment_bits(get_memop(oi));
1261     void *haddr;
1262     uint64_t res;
1263 
1264     /* Handle CPU specific unaligned behaviour */
1265     if (addr & ((1 << a_bits) - 1)) {
1266         cpu_unaligned_access(env_cpu(env), addr, access_type,
1267                              mmu_idx, retaddr);
1268     }
1269 
1270     /* If the TLB entry is for a different page, reload and try again.  */
1271     if (!tlb_hit(tlb_addr, addr)) {
1272         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1273                             addr & TARGET_PAGE_MASK)) {
1274             tlb_fill(env_cpu(env), addr, size,
1275                      access_type, mmu_idx, retaddr);
1276             index = tlb_index(env, mmu_idx, addr);
1277             entry = tlb_entry(env, mmu_idx, addr);
1278         }
1279         tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1280     }
1281 
1282     /* Handle an IO access.  */
1283     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1284         if ((addr & (size - 1)) != 0) {
1285             goto do_unaligned_access;
1286         }
1287 
1288         if (tlb_addr & TLB_RECHECK) {
1289             /*
1290              * This is a TLB_RECHECK access, where the MMU protection
1291              * covers a smaller range than a target page, and we must
1292              * repeat the MMU check here. This tlb_fill() call might
1293              * longjump out if this access should cause a guest exception.
1294              */
1295             tlb_fill(env_cpu(env), addr, size,
1296                      access_type, mmu_idx, retaddr);
1297             index = tlb_index(env, mmu_idx, addr);
1298             entry = tlb_entry(env, mmu_idx, addr);
1299 
1300             tlb_addr = code_read ? entry->addr_code : entry->addr_read;
1301             tlb_addr &= ~TLB_RECHECK;
1302             if (!(tlb_addr & ~TARGET_PAGE_MASK)) {
1303                 /* RAM access */
1304                 goto do_aligned_access;
1305             }
1306         }
1307 
1308         res = io_readx(env, &env_tlb(env)->d[mmu_idx].iotlb[index],
1309                        mmu_idx, addr, retaddr, access_type, size);
1310         return handle_bswap(res, size, big_endian);
1311     }
1312 
1313     /* Handle slow unaligned access (it spans two pages or IO).  */
1314     if (size > 1
1315         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1316                     >= TARGET_PAGE_SIZE)) {
1317         target_ulong addr1, addr2;
1318         uint64_t r1, r2;
1319         unsigned shift;
1320     do_unaligned_access:
1321         addr1 = addr & ~((target_ulong)size - 1);
1322         addr2 = addr1 + size;
1323         r1 = full_load(env, addr1, oi, retaddr);
1324         r2 = full_load(env, addr2, oi, retaddr);
1325         shift = (addr & (size - 1)) * 8;
1326 
1327         if (big_endian) {
1328             /* Big-endian combine.  */
1329             res = (r1 << shift) | (r2 >> ((size * 8) - shift));
1330         } else {
1331             /* Little-endian combine.  */
1332             res = (r1 >> shift) | (r2 << ((size * 8) - shift));
1333         }
1334         return res & MAKE_64BIT_MASK(0, size * 8);
1335     }
1336 
1337  do_aligned_access:
1338     haddr = (void *)((uintptr_t)addr + entry->addend);
1339     switch (size) {
1340     case 1:
1341         res = ldub_p(haddr);
1342         break;
1343     case 2:
1344         if (big_endian) {
1345             res = lduw_be_p(haddr);
1346         } else {
1347             res = lduw_le_p(haddr);
1348         }
1349         break;
1350     case 4:
1351         if (big_endian) {
1352             res = (uint32_t)ldl_be_p(haddr);
1353         } else {
1354             res = (uint32_t)ldl_le_p(haddr);
1355         }
1356         break;
1357     case 8:
1358         if (big_endian) {
1359             res = ldq_be_p(haddr);
1360         } else {
1361             res = ldq_le_p(haddr);
1362         }
1363         break;
1364     default:
1365         g_assert_not_reached();
1366     }
1367 
1368     return res;
1369 }
1370 
1371 /*
1372  * For the benefit of TCG generated code, we want to avoid the
1373  * complication of ABI-specific return type promotion and always
1374  * return a value extended to the register size of the host. This is
1375  * tcg_target_long, except in the case of a 32-bit host and 64-bit
1376  * data, and for that we always have uint64_t.
1377  *
1378  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
1379  */
1380 
1381 static uint64_t full_ldub_mmu(CPUArchState *env, target_ulong addr,
1382                               TCGMemOpIdx oi, uintptr_t retaddr)
1383 {
1384     return load_helper(env, addr, oi, retaddr, 1, false, false,
1385                        full_ldub_mmu);
1386 }
1387 
1388 tcg_target_ulong helper_ret_ldub_mmu(CPUArchState *env, target_ulong addr,
1389                                      TCGMemOpIdx oi, uintptr_t retaddr)
1390 {
1391     return full_ldub_mmu(env, addr, oi, retaddr);
1392 }
1393 
1394 static uint64_t full_le_lduw_mmu(CPUArchState *env, target_ulong addr,
1395                                  TCGMemOpIdx oi, uintptr_t retaddr)
1396 {
1397     return load_helper(env, addr, oi, retaddr, 2, false, false,
1398                        full_le_lduw_mmu);
1399 }
1400 
1401 tcg_target_ulong helper_le_lduw_mmu(CPUArchState *env, target_ulong addr,
1402                                     TCGMemOpIdx oi, uintptr_t retaddr)
1403 {
1404     return full_le_lduw_mmu(env, addr, oi, retaddr);
1405 }
1406 
1407 static uint64_t full_be_lduw_mmu(CPUArchState *env, target_ulong addr,
1408                                  TCGMemOpIdx oi, uintptr_t retaddr)
1409 {
1410     return load_helper(env, addr, oi, retaddr, 2, true, false,
1411                        full_be_lduw_mmu);
1412 }
1413 
1414 tcg_target_ulong helper_be_lduw_mmu(CPUArchState *env, target_ulong addr,
1415                                     TCGMemOpIdx oi, uintptr_t retaddr)
1416 {
1417     return full_be_lduw_mmu(env, addr, oi, retaddr);
1418 }
1419 
1420 static uint64_t full_le_ldul_mmu(CPUArchState *env, target_ulong addr,
1421                                  TCGMemOpIdx oi, uintptr_t retaddr)
1422 {
1423     return load_helper(env, addr, oi, retaddr, 4, false, false,
1424                        full_le_ldul_mmu);
1425 }
1426 
1427 tcg_target_ulong helper_le_ldul_mmu(CPUArchState *env, target_ulong addr,
1428                                     TCGMemOpIdx oi, uintptr_t retaddr)
1429 {
1430     return full_le_ldul_mmu(env, addr, oi, retaddr);
1431 }
1432 
1433 static uint64_t full_be_ldul_mmu(CPUArchState *env, target_ulong addr,
1434                                  TCGMemOpIdx oi, uintptr_t retaddr)
1435 {
1436     return load_helper(env, addr, oi, retaddr, 4, true, false,
1437                        full_be_ldul_mmu);
1438 }
1439 
1440 tcg_target_ulong helper_be_ldul_mmu(CPUArchState *env, target_ulong addr,
1441                                     TCGMemOpIdx oi, uintptr_t retaddr)
1442 {
1443     return full_be_ldul_mmu(env, addr, oi, retaddr);
1444 }
1445 
1446 uint64_t helper_le_ldq_mmu(CPUArchState *env, target_ulong addr,
1447                            TCGMemOpIdx oi, uintptr_t retaddr)
1448 {
1449     return load_helper(env, addr, oi, retaddr, 8, false, false,
1450                        helper_le_ldq_mmu);
1451 }
1452 
1453 uint64_t helper_be_ldq_mmu(CPUArchState *env, target_ulong addr,
1454                            TCGMemOpIdx oi, uintptr_t retaddr)
1455 {
1456     return load_helper(env, addr, oi, retaddr, 8, true, false,
1457                        helper_be_ldq_mmu);
1458 }
1459 
1460 /*
1461  * Provide signed versions of the load routines as well.  We can of course
1462  * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
1463  */
1464 
1465 
1466 tcg_target_ulong helper_ret_ldsb_mmu(CPUArchState *env, target_ulong addr,
1467                                      TCGMemOpIdx oi, uintptr_t retaddr)
1468 {
1469     return (int8_t)helper_ret_ldub_mmu(env, addr, oi, retaddr);
1470 }
1471 
1472 tcg_target_ulong helper_le_ldsw_mmu(CPUArchState *env, target_ulong addr,
1473                                     TCGMemOpIdx oi, uintptr_t retaddr)
1474 {
1475     return (int16_t)helper_le_lduw_mmu(env, addr, oi, retaddr);
1476 }
1477 
1478 tcg_target_ulong helper_be_ldsw_mmu(CPUArchState *env, target_ulong addr,
1479                                     TCGMemOpIdx oi, uintptr_t retaddr)
1480 {
1481     return (int16_t)helper_be_lduw_mmu(env, addr, oi, retaddr);
1482 }
1483 
1484 tcg_target_ulong helper_le_ldsl_mmu(CPUArchState *env, target_ulong addr,
1485                                     TCGMemOpIdx oi, uintptr_t retaddr)
1486 {
1487     return (int32_t)helper_le_ldul_mmu(env, addr, oi, retaddr);
1488 }
1489 
1490 tcg_target_ulong helper_be_ldsl_mmu(CPUArchState *env, target_ulong addr,
1491                                     TCGMemOpIdx oi, uintptr_t retaddr)
1492 {
1493     return (int32_t)helper_be_ldul_mmu(env, addr, oi, retaddr);
1494 }
1495 
1496 /*
1497  * Store Helpers
1498  */
1499 
1500 static inline void __attribute__((always_inline))
1501 store_helper(CPUArchState *env, target_ulong addr, uint64_t val,
1502              TCGMemOpIdx oi, uintptr_t retaddr, size_t size, bool big_endian)
1503 {
1504     uintptr_t mmu_idx = get_mmuidx(oi);
1505     uintptr_t index = tlb_index(env, mmu_idx, addr);
1506     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1507     target_ulong tlb_addr = tlb_addr_write(entry);
1508     const size_t tlb_off = offsetof(CPUTLBEntry, addr_write);
1509     unsigned a_bits = get_alignment_bits(get_memop(oi));
1510     void *haddr;
1511 
1512     /* Handle CPU specific unaligned behaviour */
1513     if (addr & ((1 << a_bits) - 1)) {
1514         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1515                              mmu_idx, retaddr);
1516     }
1517 
1518     /* If the TLB entry is for a different page, reload and try again.  */
1519     if (!tlb_hit(tlb_addr, addr)) {
1520         if (!victim_tlb_hit(env, mmu_idx, index, tlb_off,
1521             addr & TARGET_PAGE_MASK)) {
1522             tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
1523                      mmu_idx, retaddr);
1524             index = tlb_index(env, mmu_idx, addr);
1525             entry = tlb_entry(env, mmu_idx, addr);
1526         }
1527         tlb_addr = tlb_addr_write(entry) & ~TLB_INVALID_MASK;
1528     }
1529 
1530     /* Handle an IO access.  */
1531     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
1532         if ((addr & (size - 1)) != 0) {
1533             goto do_unaligned_access;
1534         }
1535 
1536         if (tlb_addr & TLB_RECHECK) {
1537             /*
1538              * This is a TLB_RECHECK access, where the MMU protection
1539              * covers a smaller range than a target page, and we must
1540              * repeat the MMU check here. This tlb_fill() call might
1541              * longjump out if this access should cause a guest exception.
1542              */
1543             tlb_fill(env_cpu(env), addr, size, MMU_DATA_STORE,
1544                      mmu_idx, retaddr);
1545             index = tlb_index(env, mmu_idx, addr);
1546             entry = tlb_entry(env, mmu_idx, addr);
1547 
1548             tlb_addr = tlb_addr_write(entry);
1549             tlb_addr &= ~TLB_RECHECK;
1550             if (!(tlb_addr & ~TARGET_PAGE_MASK)) {
1551                 /* RAM access */
1552                 goto do_aligned_access;
1553             }
1554         }
1555 
1556         io_writex(env, &env_tlb(env)->d[mmu_idx].iotlb[index], mmu_idx,
1557                   handle_bswap(val, size, big_endian),
1558                   addr, retaddr, size);
1559         return;
1560     }
1561 
1562     /* Handle slow unaligned access (it spans two pages or IO).  */
1563     if (size > 1
1564         && unlikely((addr & ~TARGET_PAGE_MASK) + size - 1
1565                      >= TARGET_PAGE_SIZE)) {
1566         int i;
1567         uintptr_t index2;
1568         CPUTLBEntry *entry2;
1569         target_ulong page2, tlb_addr2;
1570     do_unaligned_access:
1571         /*
1572          * Ensure the second page is in the TLB.  Note that the first page
1573          * is already guaranteed to be filled, and that the second page
1574          * cannot evict the first.
1575          */
1576         page2 = (addr + size) & TARGET_PAGE_MASK;
1577         index2 = tlb_index(env, mmu_idx, page2);
1578         entry2 = tlb_entry(env, mmu_idx, page2);
1579         tlb_addr2 = tlb_addr_write(entry2);
1580         if (!tlb_hit_page(tlb_addr2, page2)
1581             && !victim_tlb_hit(env, mmu_idx, index2, tlb_off,
1582                                page2 & TARGET_PAGE_MASK)) {
1583             tlb_fill(env_cpu(env), page2, size, MMU_DATA_STORE,
1584                      mmu_idx, retaddr);
1585         }
1586 
1587         /*
1588          * XXX: not efficient, but simple.
1589          * This loop must go in the forward direction to avoid issues
1590          * with self-modifying code in Windows 64-bit.
1591          */
1592         for (i = 0; i < size; ++i) {
1593             uint8_t val8;
1594             if (big_endian) {
1595                 /* Big-endian extract.  */
1596                 val8 = val >> (((size - 1) * 8) - (i * 8));
1597             } else {
1598                 /* Little-endian extract.  */
1599                 val8 = val >> (i * 8);
1600             }
1601             helper_ret_stb_mmu(env, addr + i, val8, oi, retaddr);
1602         }
1603         return;
1604     }
1605 
1606  do_aligned_access:
1607     haddr = (void *)((uintptr_t)addr + entry->addend);
1608     switch (size) {
1609     case 1:
1610         stb_p(haddr, val);
1611         break;
1612     case 2:
1613         if (big_endian) {
1614             stw_be_p(haddr, val);
1615         } else {
1616             stw_le_p(haddr, val);
1617         }
1618         break;
1619     case 4:
1620         if (big_endian) {
1621             stl_be_p(haddr, val);
1622         } else {
1623             stl_le_p(haddr, val);
1624         }
1625         break;
1626     case 8:
1627         if (big_endian) {
1628             stq_be_p(haddr, val);
1629         } else {
1630             stq_le_p(haddr, val);
1631         }
1632         break;
1633     default:
1634         g_assert_not_reached();
1635         break;
1636     }
1637 }
1638 
1639 void helper_ret_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
1640                         TCGMemOpIdx oi, uintptr_t retaddr)
1641 {
1642     store_helper(env, addr, val, oi, retaddr, 1, false);
1643 }
1644 
1645 void helper_le_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
1646                        TCGMemOpIdx oi, uintptr_t retaddr)
1647 {
1648     store_helper(env, addr, val, oi, retaddr, 2, false);
1649 }
1650 
1651 void helper_be_stw_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
1652                        TCGMemOpIdx oi, uintptr_t retaddr)
1653 {
1654     store_helper(env, addr, val, oi, retaddr, 2, true);
1655 }
1656 
1657 void helper_le_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
1658                        TCGMemOpIdx oi, uintptr_t retaddr)
1659 {
1660     store_helper(env, addr, val, oi, retaddr, 4, false);
1661 }
1662 
1663 void helper_be_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
1664                        TCGMemOpIdx oi, uintptr_t retaddr)
1665 {
1666     store_helper(env, addr, val, oi, retaddr, 4, true);
1667 }
1668 
1669 void helper_le_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
1670                        TCGMemOpIdx oi, uintptr_t retaddr)
1671 {
1672     store_helper(env, addr, val, oi, retaddr, 8, false);
1673 }
1674 
1675 void helper_be_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
1676                        TCGMemOpIdx oi, uintptr_t retaddr)
1677 {
1678     store_helper(env, addr, val, oi, retaddr, 8, true);
1679 }
1680 
1681 /* First set of helpers allows passing in of OI and RETADDR.  This makes
1682    them callable from other helpers.  */
1683 
1684 #define EXTRA_ARGS     , TCGMemOpIdx oi, uintptr_t retaddr
1685 #define ATOMIC_NAME(X) \
1686     HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
1687 #define ATOMIC_MMU_DECLS NotDirtyInfo ndi
1688 #define ATOMIC_MMU_LOOKUP atomic_mmu_lookup(env, addr, oi, retaddr, &ndi)
1689 #define ATOMIC_MMU_CLEANUP                              \
1690     do {                                                \
1691         if (unlikely(ndi.active)) {                     \
1692             memory_notdirty_write_complete(&ndi);       \
1693         }                                               \
1694     } while (0)
1695 
1696 #define DATA_SIZE 1
1697 #include "atomic_template.h"
1698 
1699 #define DATA_SIZE 2
1700 #include "atomic_template.h"
1701 
1702 #define DATA_SIZE 4
1703 #include "atomic_template.h"
1704 
1705 #ifdef CONFIG_ATOMIC64
1706 #define DATA_SIZE 8
1707 #include "atomic_template.h"
1708 #endif
1709 
1710 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
1711 #define DATA_SIZE 16
1712 #include "atomic_template.h"
1713 #endif
1714 
1715 /* Second set of helpers are directly callable from TCG as helpers.  */
1716 
1717 #undef EXTRA_ARGS
1718 #undef ATOMIC_NAME
1719 #undef ATOMIC_MMU_LOOKUP
1720 #define EXTRA_ARGS         , TCGMemOpIdx oi
1721 #define ATOMIC_NAME(X)     HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
1722 #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, oi, GETPC(), &ndi)
1723 
1724 #define DATA_SIZE 1
1725 #include "atomic_template.h"
1726 
1727 #define DATA_SIZE 2
1728 #include "atomic_template.h"
1729 
1730 #define DATA_SIZE 4
1731 #include "atomic_template.h"
1732 
1733 #ifdef CONFIG_ATOMIC64
1734 #define DATA_SIZE 8
1735 #include "atomic_template.h"
1736 #endif
1737 
1738 /* Code access functions.  */
1739 
1740 static uint64_t full_ldub_cmmu(CPUArchState *env, target_ulong addr,
1741                                TCGMemOpIdx oi, uintptr_t retaddr)
1742 {
1743     return load_helper(env, addr, oi, retaddr, 1, false, true,
1744                        full_ldub_cmmu);
1745 }
1746 
1747 uint8_t helper_ret_ldb_cmmu(CPUArchState *env, target_ulong addr,
1748                             TCGMemOpIdx oi, uintptr_t retaddr)
1749 {
1750     return full_ldub_cmmu(env, addr, oi, retaddr);
1751 }
1752 
1753 static uint64_t full_le_lduw_cmmu(CPUArchState *env, target_ulong addr,
1754                                   TCGMemOpIdx oi, uintptr_t retaddr)
1755 {
1756     return load_helper(env, addr, oi, retaddr, 2, false, true,
1757                        full_le_lduw_cmmu);
1758 }
1759 
1760 uint16_t helper_le_ldw_cmmu(CPUArchState *env, target_ulong addr,
1761                             TCGMemOpIdx oi, uintptr_t retaddr)
1762 {
1763     return full_le_lduw_cmmu(env, addr, oi, retaddr);
1764 }
1765 
1766 static uint64_t full_be_lduw_cmmu(CPUArchState *env, target_ulong addr,
1767                                   TCGMemOpIdx oi, uintptr_t retaddr)
1768 {
1769     return load_helper(env, addr, oi, retaddr, 2, true, true,
1770                        full_be_lduw_cmmu);
1771 }
1772 
1773 uint16_t helper_be_ldw_cmmu(CPUArchState *env, target_ulong addr,
1774                             TCGMemOpIdx oi, uintptr_t retaddr)
1775 {
1776     return full_be_lduw_cmmu(env, addr, oi, retaddr);
1777 }
1778 
1779 static uint64_t full_le_ldul_cmmu(CPUArchState *env, target_ulong addr,
1780                                   TCGMemOpIdx oi, uintptr_t retaddr)
1781 {
1782     return load_helper(env, addr, oi, retaddr, 4, false, true,
1783                        full_le_ldul_cmmu);
1784 }
1785 
1786 uint32_t helper_le_ldl_cmmu(CPUArchState *env, target_ulong addr,
1787                             TCGMemOpIdx oi, uintptr_t retaddr)
1788 {
1789     return full_le_ldul_cmmu(env, addr, oi, retaddr);
1790 }
1791 
1792 static uint64_t full_be_ldul_cmmu(CPUArchState *env, target_ulong addr,
1793                                   TCGMemOpIdx oi, uintptr_t retaddr)
1794 {
1795     return load_helper(env, addr, oi, retaddr, 4, true, true,
1796                        full_be_ldul_cmmu);
1797 }
1798 
1799 uint32_t helper_be_ldl_cmmu(CPUArchState *env, target_ulong addr,
1800                             TCGMemOpIdx oi, uintptr_t retaddr)
1801 {
1802     return full_be_ldul_cmmu(env, addr, oi, retaddr);
1803 }
1804 
1805 uint64_t helper_le_ldq_cmmu(CPUArchState *env, target_ulong addr,
1806                             TCGMemOpIdx oi, uintptr_t retaddr)
1807 {
1808     return load_helper(env, addr, oi, retaddr, 8, false, true,
1809                        helper_le_ldq_cmmu);
1810 }
1811 
1812 uint64_t helper_be_ldq_cmmu(CPUArchState *env, target_ulong addr,
1813                             TCGMemOpIdx oi, uintptr_t retaddr)
1814 {
1815     return load_helper(env, addr, oi, retaddr, 8, true, true,
1816                        helper_be_ldq_cmmu);
1817 }
1818