xref: /openbmc/qemu/accel/tcg/cputlb.c (revision 0cadc1eda1a3120c37c713ab6d6b7a02da0d2e6f)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "hw/core/tcg-cpu-ops.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/cpu_ldst.h"
26 #include "exec/cputlb.h"
27 #include "exec/memory-internal.h"
28 #include "exec/ram_addr.h"
29 #include "tcg/tcg.h"
30 #include "qemu/error-report.h"
31 #include "exec/log.h"
32 #include "exec/helper-proto.h"
33 #include "qemu/atomic.h"
34 #include "qemu/atomic128.h"
35 #include "exec/translate-all.h"
36 #include "trace.h"
37 #include "tb-hash.h"
38 #include "internal.h"
39 #ifdef CONFIG_PLUGIN
40 #include "qemu/plugin-memory.h"
41 #endif
42 #include "tcg/tcg-ldst.h"
43 
44 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
45 /* #define DEBUG_TLB */
46 /* #define DEBUG_TLB_LOG */
47 
48 #ifdef DEBUG_TLB
49 # define DEBUG_TLB_GATE 1
50 # ifdef DEBUG_TLB_LOG
51 #  define DEBUG_TLB_LOG_GATE 1
52 # else
53 #  define DEBUG_TLB_LOG_GATE 0
54 # endif
55 #else
56 # define DEBUG_TLB_GATE 0
57 # define DEBUG_TLB_LOG_GATE 0
58 #endif
59 
60 #define tlb_debug(fmt, ...) do { \
61     if (DEBUG_TLB_LOG_GATE) { \
62         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
63                       ## __VA_ARGS__); \
64     } else if (DEBUG_TLB_GATE) { \
65         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
66     } \
67 } while (0)
68 
69 #define assert_cpu_is_self(cpu) do {                              \
70         if (DEBUG_TLB_GATE) {                                     \
71             g_assert(!(cpu)->created || qemu_cpu_is_self(cpu));   \
72         }                                                         \
73     } while (0)
74 
75 /* run_on_cpu_data.target_ptr should always be big enough for a
76  * target_ulong even on 32 bit builds */
77 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
78 
79 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
80  */
81 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
82 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
83 
84 static inline size_t tlb_n_entries(CPUTLBDescFast *fast)
85 {
86     return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1;
87 }
88 
89 static inline size_t sizeof_tlb(CPUTLBDescFast *fast)
90 {
91     return fast->mask + (1 << CPU_TLB_ENTRY_BITS);
92 }
93 
94 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns,
95                              size_t max_entries)
96 {
97     desc->window_begin_ns = ns;
98     desc->window_max_entries = max_entries;
99 }
100 
101 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr)
102 {
103     CPUJumpCache *jc = cpu->tb_jmp_cache;
104     int i, i0;
105 
106     if (unlikely(!jc)) {
107         return;
108     }
109 
110     i0 = tb_jmp_cache_hash_page(page_addr);
111     for (i = 0; i < TB_JMP_PAGE_SIZE; i++) {
112         qatomic_set(&jc->array[i0 + i].tb, NULL);
113     }
114 }
115 
116 /**
117  * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary
118  * @desc: The CPUTLBDesc portion of the TLB
119  * @fast: The CPUTLBDescFast portion of the same TLB
120  *
121  * Called with tlb_lock_held.
122  *
123  * We have two main constraints when resizing a TLB: (1) we only resize it
124  * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing
125  * the array or unnecessarily flushing it), which means we do not control how
126  * frequently the resizing can occur; (2) we don't have access to the guest's
127  * future scheduling decisions, and therefore have to decide the magnitude of
128  * the resize based on past observations.
129  *
130  * In general, a memory-hungry process can benefit greatly from an appropriately
131  * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that
132  * we just have to make the TLB as large as possible; while an oversized TLB
133  * results in minimal TLB miss rates, it also takes longer to be flushed
134  * (flushes can be _very_ frequent), and the reduced locality can also hurt
135  * performance.
136  *
137  * To achieve near-optimal performance for all kinds of workloads, we:
138  *
139  * 1. Aggressively increase the size of the TLB when the use rate of the
140  * TLB being flushed is high, since it is likely that in the near future this
141  * memory-hungry process will execute again, and its memory hungriness will
142  * probably be similar.
143  *
144  * 2. Slowly reduce the size of the TLB as the use rate declines over a
145  * reasonably large time window. The rationale is that if in such a time window
146  * we have not observed a high TLB use rate, it is likely that we won't observe
147  * it in the near future. In that case, once a time window expires we downsize
148  * the TLB to match the maximum use rate observed in the window.
149  *
150  * 3. Try to keep the maximum use rate in a time window in the 30-70% range,
151  * since in that range performance is likely near-optimal. Recall that the TLB
152  * is direct mapped, so we want the use rate to be low (or at least not too
153  * high), since otherwise we are likely to have a significant amount of
154  * conflict misses.
155  */
156 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast,
157                                   int64_t now)
158 {
159     size_t old_size = tlb_n_entries(fast);
160     size_t rate;
161     size_t new_size = old_size;
162     int64_t window_len_ms = 100;
163     int64_t window_len_ns = window_len_ms * 1000 * 1000;
164     bool window_expired = now > desc->window_begin_ns + window_len_ns;
165 
166     if (desc->n_used_entries > desc->window_max_entries) {
167         desc->window_max_entries = desc->n_used_entries;
168     }
169     rate = desc->window_max_entries * 100 / old_size;
170 
171     if (rate > 70) {
172         new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS);
173     } else if (rate < 30 && window_expired) {
174         size_t ceil = pow2ceil(desc->window_max_entries);
175         size_t expected_rate = desc->window_max_entries * 100 / ceil;
176 
177         /*
178          * Avoid undersizing when the max number of entries seen is just below
179          * a pow2. For instance, if max_entries == 1025, the expected use rate
180          * would be 1025/2048==50%. However, if max_entries == 1023, we'd get
181          * 1023/1024==99.9% use rate, so we'd likely end up doubling the size
182          * later. Thus, make sure that the expected use rate remains below 70%.
183          * (and since we double the size, that means the lowest rate we'd
184          * expect to get is 35%, which is still in the 30-70% range where
185          * we consider that the size is appropriate.)
186          */
187         if (expected_rate > 70) {
188             ceil *= 2;
189         }
190         new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS);
191     }
192 
193     if (new_size == old_size) {
194         if (window_expired) {
195             tlb_window_reset(desc, now, desc->n_used_entries);
196         }
197         return;
198     }
199 
200     g_free(fast->table);
201     g_free(desc->fulltlb);
202 
203     tlb_window_reset(desc, now, 0);
204     /* desc->n_used_entries is cleared by the caller */
205     fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
206     fast->table = g_try_new(CPUTLBEntry, new_size);
207     desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
208 
209     /*
210      * If the allocations fail, try smaller sizes. We just freed some
211      * memory, so going back to half of new_size has a good chance of working.
212      * Increased memory pressure elsewhere in the system might cause the
213      * allocations to fail though, so we progressively reduce the allocation
214      * size, aborting if we cannot even allocate the smallest TLB we support.
215      */
216     while (fast->table == NULL || desc->fulltlb == NULL) {
217         if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) {
218             error_report("%s: %s", __func__, strerror(errno));
219             abort();
220         }
221         new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS);
222         fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS;
223 
224         g_free(fast->table);
225         g_free(desc->fulltlb);
226         fast->table = g_try_new(CPUTLBEntry, new_size);
227         desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size);
228     }
229 }
230 
231 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast)
232 {
233     desc->n_used_entries = 0;
234     desc->large_page_addr = -1;
235     desc->large_page_mask = -1;
236     desc->vindex = 0;
237     memset(fast->table, -1, sizeof_tlb(fast));
238     memset(desc->vtable, -1, sizeof(desc->vtable));
239 }
240 
241 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx,
242                                         int64_t now)
243 {
244     CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx];
245     CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx];
246 
247     tlb_mmu_resize_locked(desc, fast, now);
248     tlb_mmu_flush_locked(desc, fast);
249 }
250 
251 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now)
252 {
253     size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS;
254 
255     tlb_window_reset(desc, now, 0);
256     desc->n_used_entries = 0;
257     fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS;
258     fast->table = g_new(CPUTLBEntry, n_entries);
259     desc->fulltlb = g_new(CPUTLBEntryFull, n_entries);
260     tlb_mmu_flush_locked(desc, fast);
261 }
262 
263 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx)
264 {
265     env_tlb(env)->d[mmu_idx].n_used_entries++;
266 }
267 
268 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx)
269 {
270     env_tlb(env)->d[mmu_idx].n_used_entries--;
271 }
272 
273 void tlb_init(CPUState *cpu)
274 {
275     CPUArchState *env = cpu->env_ptr;
276     int64_t now = get_clock_realtime();
277     int i;
278 
279     qemu_spin_init(&env_tlb(env)->c.lock);
280 
281     /* All tlbs are initialized flushed. */
282     env_tlb(env)->c.dirty = 0;
283 
284     for (i = 0; i < NB_MMU_MODES; i++) {
285         tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now);
286     }
287 }
288 
289 void tlb_destroy(CPUState *cpu)
290 {
291     CPUArchState *env = cpu->env_ptr;
292     int i;
293 
294     qemu_spin_destroy(&env_tlb(env)->c.lock);
295     for (i = 0; i < NB_MMU_MODES; i++) {
296         CPUTLBDesc *desc = &env_tlb(env)->d[i];
297         CPUTLBDescFast *fast = &env_tlb(env)->f[i];
298 
299         g_free(fast->table);
300         g_free(desc->fulltlb);
301     }
302 }
303 
304 /* flush_all_helper: run fn across all cpus
305  *
306  * If the wait flag is set then the src cpu's helper will be queued as
307  * "safe" work and the loop exited creating a synchronisation point
308  * where all queued work will be finished before execution starts
309  * again.
310  */
311 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
312                              run_on_cpu_data d)
313 {
314     CPUState *cpu;
315 
316     CPU_FOREACH(cpu) {
317         if (cpu != src) {
318             async_run_on_cpu(cpu, fn, d);
319         }
320     }
321 }
322 
323 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide)
324 {
325     CPUState *cpu;
326     size_t full = 0, part = 0, elide = 0;
327 
328     CPU_FOREACH(cpu) {
329         CPUArchState *env = cpu->env_ptr;
330 
331         full += qatomic_read(&env_tlb(env)->c.full_flush_count);
332         part += qatomic_read(&env_tlb(env)->c.part_flush_count);
333         elide += qatomic_read(&env_tlb(env)->c.elide_flush_count);
334     }
335     *pfull = full;
336     *ppart = part;
337     *pelide = elide;
338 }
339 
340 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
341 {
342     CPUArchState *env = cpu->env_ptr;
343     uint16_t asked = data.host_int;
344     uint16_t all_dirty, work, to_clean;
345     int64_t now = get_clock_realtime();
346 
347     assert_cpu_is_self(cpu);
348 
349     tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked);
350 
351     qemu_spin_lock(&env_tlb(env)->c.lock);
352 
353     all_dirty = env_tlb(env)->c.dirty;
354     to_clean = asked & all_dirty;
355     all_dirty &= ~to_clean;
356     env_tlb(env)->c.dirty = all_dirty;
357 
358     for (work = to_clean; work != 0; work &= work - 1) {
359         int mmu_idx = ctz32(work);
360         tlb_flush_one_mmuidx_locked(env, mmu_idx, now);
361     }
362 
363     qemu_spin_unlock(&env_tlb(env)->c.lock);
364 
365     tcg_flush_jmp_cache(cpu);
366 
367     if (to_clean == ALL_MMUIDX_BITS) {
368         qatomic_set(&env_tlb(env)->c.full_flush_count,
369                    env_tlb(env)->c.full_flush_count + 1);
370     } else {
371         qatomic_set(&env_tlb(env)->c.part_flush_count,
372                    env_tlb(env)->c.part_flush_count + ctpop16(to_clean));
373         if (to_clean != asked) {
374             qatomic_set(&env_tlb(env)->c.elide_flush_count,
375                        env_tlb(env)->c.elide_flush_count +
376                        ctpop16(asked & ~to_clean));
377         }
378     }
379 }
380 
381 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
382 {
383     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
384 
385     if (cpu->created && !qemu_cpu_is_self(cpu)) {
386         async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
387                          RUN_ON_CPU_HOST_INT(idxmap));
388     } else {
389         tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap));
390     }
391 }
392 
393 void tlb_flush(CPUState *cpu)
394 {
395     tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS);
396 }
397 
398 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
399 {
400     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
401 
402     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
403 
404     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
405     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
406 }
407 
408 void tlb_flush_all_cpus(CPUState *src_cpu)
409 {
410     tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS);
411 }
412 
413 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap)
414 {
415     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
416 
417     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
418 
419     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
420     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
421 }
422 
423 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
424 {
425     tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS);
426 }
427 
428 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry,
429                                       target_ulong page, target_ulong mask)
430 {
431     page &= mask;
432     mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK;
433 
434     return (page == (tlb_entry->addr_read & mask) ||
435             page == (tlb_addr_write(tlb_entry) & mask) ||
436             page == (tlb_entry->addr_code & mask));
437 }
438 
439 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry,
440                                         target_ulong page)
441 {
442     return tlb_hit_page_mask_anyprot(tlb_entry, page, -1);
443 }
444 
445 /**
446  * tlb_entry_is_empty - return true if the entry is not in use
447  * @te: pointer to CPUTLBEntry
448  */
449 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te)
450 {
451     return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1;
452 }
453 
454 /* Called with tlb_c.lock held */
455 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry,
456                                         target_ulong page,
457                                         target_ulong mask)
458 {
459     if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) {
460         memset(tlb_entry, -1, sizeof(*tlb_entry));
461         return true;
462     }
463     return false;
464 }
465 
466 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry,
467                                           target_ulong page)
468 {
469     return tlb_flush_entry_mask_locked(tlb_entry, page, -1);
470 }
471 
472 /* Called with tlb_c.lock held */
473 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx,
474                                             target_ulong page,
475                                             target_ulong mask)
476 {
477     CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx];
478     int k;
479 
480     assert_cpu_is_self(env_cpu(env));
481     for (k = 0; k < CPU_VTLB_SIZE; k++) {
482         if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) {
483             tlb_n_used_entries_dec(env, mmu_idx);
484         }
485     }
486 }
487 
488 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx,
489                                               target_ulong page)
490 {
491     tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1);
492 }
493 
494 static void tlb_flush_page_locked(CPUArchState *env, int midx,
495                                   target_ulong page)
496 {
497     target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr;
498     target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask;
499 
500     /* Check if we need to flush due to large pages.  */
501     if ((page & lp_mask) == lp_addr) {
502         tlb_debug("forcing full flush midx %d ("
503                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
504                   midx, lp_addr, lp_mask);
505         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
506     } else {
507         if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) {
508             tlb_n_used_entries_dec(env, midx);
509         }
510         tlb_flush_vtlb_page_locked(env, midx, page);
511     }
512 }
513 
514 /**
515  * tlb_flush_page_by_mmuidx_async_0:
516  * @cpu: cpu on which to flush
517  * @addr: page of virtual address to flush
518  * @idxmap: set of mmu_idx to flush
519  *
520  * Helper for tlb_flush_page_by_mmuidx and friends, flush one page
521  * at @addr from the tlbs indicated by @idxmap from @cpu.
522  */
523 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu,
524                                              target_ulong addr,
525                                              uint16_t idxmap)
526 {
527     CPUArchState *env = cpu->env_ptr;
528     int mmu_idx;
529 
530     assert_cpu_is_self(cpu);
531 
532     tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap);
533 
534     qemu_spin_lock(&env_tlb(env)->c.lock);
535     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
536         if ((idxmap >> mmu_idx) & 1) {
537             tlb_flush_page_locked(env, mmu_idx, addr);
538         }
539     }
540     qemu_spin_unlock(&env_tlb(env)->c.lock);
541 
542     /*
543      * Discard jump cache entries for any tb which might potentially
544      * overlap the flushed page, which includes the previous.
545      */
546     tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE);
547     tb_jmp_cache_clear_page(cpu, addr);
548 }
549 
550 /**
551  * tlb_flush_page_by_mmuidx_async_1:
552  * @cpu: cpu on which to flush
553  * @data: encoded addr + idxmap
554  *
555  * Helper for tlb_flush_page_by_mmuidx and friends, called through
556  * async_run_on_cpu.  The idxmap parameter is encoded in the page
557  * offset of the target_ptr field.  This limits the set of mmu_idx
558  * that can be passed via this method.
559  */
560 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu,
561                                              run_on_cpu_data data)
562 {
563     target_ulong addr_and_idxmap = (target_ulong) data.target_ptr;
564     target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK;
565     uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK;
566 
567     tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
568 }
569 
570 typedef struct {
571     target_ulong addr;
572     uint16_t idxmap;
573 } TLBFlushPageByMMUIdxData;
574 
575 /**
576  * tlb_flush_page_by_mmuidx_async_2:
577  * @cpu: cpu on which to flush
578  * @data: allocated addr + idxmap
579  *
580  * Helper for tlb_flush_page_by_mmuidx and friends, called through
581  * async_run_on_cpu.  The addr+idxmap parameters are stored in a
582  * TLBFlushPageByMMUIdxData structure that has been allocated
583  * specifically for this helper.  Free the structure when done.
584  */
585 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu,
586                                              run_on_cpu_data data)
587 {
588     TLBFlushPageByMMUIdxData *d = data.host_ptr;
589 
590     tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap);
591     g_free(d);
592 }
593 
594 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
595 {
596     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
597 
598     /* This should already be page aligned */
599     addr &= TARGET_PAGE_MASK;
600 
601     if (qemu_cpu_is_self(cpu)) {
602         tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap);
603     } else if (idxmap < TARGET_PAGE_SIZE) {
604         /*
605          * Most targets have only a few mmu_idx.  In the case where
606          * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid
607          * allocating memory for this operation.
608          */
609         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1,
610                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
611     } else {
612         TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1);
613 
614         /* Otherwise allocate a structure, freed by the worker.  */
615         d->addr = addr;
616         d->idxmap = idxmap;
617         async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2,
618                          RUN_ON_CPU_HOST_PTR(d));
619     }
620 }
621 
622 void tlb_flush_page(CPUState *cpu, target_ulong addr)
623 {
624     tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS);
625 }
626 
627 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
628                                        uint16_t idxmap)
629 {
630     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
631 
632     /* This should already be page aligned */
633     addr &= TARGET_PAGE_MASK;
634 
635     /*
636      * Allocate memory to hold addr+idxmap only when needed.
637      * See tlb_flush_page_by_mmuidx for details.
638      */
639     if (idxmap < TARGET_PAGE_SIZE) {
640         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
641                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
642     } else {
643         CPUState *dst_cpu;
644 
645         /* Allocate a separate data block for each destination cpu.  */
646         CPU_FOREACH(dst_cpu) {
647             if (dst_cpu != src_cpu) {
648                 TLBFlushPageByMMUIdxData *d
649                     = g_new(TLBFlushPageByMMUIdxData, 1);
650 
651                 d->addr = addr;
652                 d->idxmap = idxmap;
653                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
654                                  RUN_ON_CPU_HOST_PTR(d));
655             }
656         }
657     }
658 
659     tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap);
660 }
661 
662 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
663 {
664     tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS);
665 }
666 
667 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
668                                               target_ulong addr,
669                                               uint16_t idxmap)
670 {
671     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
672 
673     /* This should already be page aligned */
674     addr &= TARGET_PAGE_MASK;
675 
676     /*
677      * Allocate memory to hold addr+idxmap only when needed.
678      * See tlb_flush_page_by_mmuidx for details.
679      */
680     if (idxmap < TARGET_PAGE_SIZE) {
681         flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1,
682                          RUN_ON_CPU_TARGET_PTR(addr | idxmap));
683         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1,
684                               RUN_ON_CPU_TARGET_PTR(addr | idxmap));
685     } else {
686         CPUState *dst_cpu;
687         TLBFlushPageByMMUIdxData *d;
688 
689         /* Allocate a separate data block for each destination cpu.  */
690         CPU_FOREACH(dst_cpu) {
691             if (dst_cpu != src_cpu) {
692                 d = g_new(TLBFlushPageByMMUIdxData, 1);
693                 d->addr = addr;
694                 d->idxmap = idxmap;
695                 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2,
696                                  RUN_ON_CPU_HOST_PTR(d));
697             }
698         }
699 
700         d = g_new(TLBFlushPageByMMUIdxData, 1);
701         d->addr = addr;
702         d->idxmap = idxmap;
703         async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2,
704                               RUN_ON_CPU_HOST_PTR(d));
705     }
706 }
707 
708 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr)
709 {
710     tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS);
711 }
712 
713 static void tlb_flush_range_locked(CPUArchState *env, int midx,
714                                    target_ulong addr, target_ulong len,
715                                    unsigned bits)
716 {
717     CPUTLBDesc *d = &env_tlb(env)->d[midx];
718     CPUTLBDescFast *f = &env_tlb(env)->f[midx];
719     target_ulong mask = MAKE_64BIT_MASK(0, bits);
720 
721     /*
722      * If @bits is smaller than the tlb size, there may be multiple entries
723      * within the TLB; otherwise all addresses that match under @mask hit
724      * the same TLB entry.
725      * TODO: Perhaps allow bits to be a few bits less than the size.
726      * For now, just flush the entire TLB.
727      *
728      * If @len is larger than the tlb size, then it will take longer to
729      * test all of the entries in the TLB than it will to flush it all.
730      */
731     if (mask < f->mask || len > f->mask) {
732         tlb_debug("forcing full flush midx %d ("
733                   TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n",
734                   midx, addr, mask, len);
735         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
736         return;
737     }
738 
739     /*
740      * Check if we need to flush due to large pages.
741      * Because large_page_mask contains all 1's from the msb,
742      * we only need to test the end of the range.
743      */
744     if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) {
745         tlb_debug("forcing full flush midx %d ("
746                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
747                   midx, d->large_page_addr, d->large_page_mask);
748         tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime());
749         return;
750     }
751 
752     for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) {
753         target_ulong page = addr + i;
754         CPUTLBEntry *entry = tlb_entry(env, midx, page);
755 
756         if (tlb_flush_entry_mask_locked(entry, page, mask)) {
757             tlb_n_used_entries_dec(env, midx);
758         }
759         tlb_flush_vtlb_page_mask_locked(env, midx, page, mask);
760     }
761 }
762 
763 typedef struct {
764     target_ulong addr;
765     target_ulong len;
766     uint16_t idxmap;
767     uint16_t bits;
768 } TLBFlushRangeData;
769 
770 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu,
771                                               TLBFlushRangeData d)
772 {
773     CPUArchState *env = cpu->env_ptr;
774     int mmu_idx;
775 
776     assert_cpu_is_self(cpu);
777 
778     tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n",
779               d.addr, d.bits, d.len, d.idxmap);
780 
781     qemu_spin_lock(&env_tlb(env)->c.lock);
782     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
783         if ((d.idxmap >> mmu_idx) & 1) {
784             tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits);
785         }
786     }
787     qemu_spin_unlock(&env_tlb(env)->c.lock);
788 
789     /*
790      * If the length is larger than the jump cache size, then it will take
791      * longer to clear each entry individually than it will to clear it all.
792      */
793     if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) {
794         tcg_flush_jmp_cache(cpu);
795         return;
796     }
797 
798     /*
799      * Discard jump cache entries for any tb which might potentially
800      * overlap the flushed pages, which includes the previous.
801      */
802     d.addr -= TARGET_PAGE_SIZE;
803     for (target_ulong i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) {
804         tb_jmp_cache_clear_page(cpu, d.addr);
805         d.addr += TARGET_PAGE_SIZE;
806     }
807 }
808 
809 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu,
810                                               run_on_cpu_data data)
811 {
812     TLBFlushRangeData *d = data.host_ptr;
813     tlb_flush_range_by_mmuidx_async_0(cpu, *d);
814     g_free(d);
815 }
816 
817 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr,
818                                target_ulong len, uint16_t idxmap,
819                                unsigned bits)
820 {
821     TLBFlushRangeData d;
822 
823     /*
824      * If all bits are significant, and len is small,
825      * this devolves to tlb_flush_page.
826      */
827     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
828         tlb_flush_page_by_mmuidx(cpu, addr, idxmap);
829         return;
830     }
831     /* If no page bits are significant, this devolves to tlb_flush. */
832     if (bits < TARGET_PAGE_BITS) {
833         tlb_flush_by_mmuidx(cpu, idxmap);
834         return;
835     }
836 
837     /* This should already be page aligned */
838     d.addr = addr & TARGET_PAGE_MASK;
839     d.len = len;
840     d.idxmap = idxmap;
841     d.bits = bits;
842 
843     if (qemu_cpu_is_self(cpu)) {
844         tlb_flush_range_by_mmuidx_async_0(cpu, d);
845     } else {
846         /* Otherwise allocate a structure, freed by the worker.  */
847         TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
848         async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1,
849                          RUN_ON_CPU_HOST_PTR(p));
850     }
851 }
852 
853 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr,
854                                    uint16_t idxmap, unsigned bits)
855 {
856     tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits);
857 }
858 
859 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu,
860                                         target_ulong addr, target_ulong len,
861                                         uint16_t idxmap, unsigned bits)
862 {
863     TLBFlushRangeData d;
864     CPUState *dst_cpu;
865 
866     /*
867      * If all bits are significant, and len is small,
868      * this devolves to tlb_flush_page.
869      */
870     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
871         tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap);
872         return;
873     }
874     /* If no page bits are significant, this devolves to tlb_flush. */
875     if (bits < TARGET_PAGE_BITS) {
876         tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap);
877         return;
878     }
879 
880     /* This should already be page aligned */
881     d.addr = addr & TARGET_PAGE_MASK;
882     d.len = len;
883     d.idxmap = idxmap;
884     d.bits = bits;
885 
886     /* Allocate a separate data block for each destination cpu.  */
887     CPU_FOREACH(dst_cpu) {
888         if (dst_cpu != src_cpu) {
889             TLBFlushRangeData *p = g_memdup(&d, sizeof(d));
890             async_run_on_cpu(dst_cpu,
891                              tlb_flush_range_by_mmuidx_async_1,
892                              RUN_ON_CPU_HOST_PTR(p));
893         }
894     }
895 
896     tlb_flush_range_by_mmuidx_async_0(src_cpu, d);
897 }
898 
899 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu,
900                                             target_ulong addr,
901                                             uint16_t idxmap, unsigned bits)
902 {
903     tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE,
904                                        idxmap, bits);
905 }
906 
907 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
908                                                target_ulong addr,
909                                                target_ulong len,
910                                                uint16_t idxmap,
911                                                unsigned bits)
912 {
913     TLBFlushRangeData d, *p;
914     CPUState *dst_cpu;
915 
916     /*
917      * If all bits are significant, and len is small,
918      * this devolves to tlb_flush_page.
919      */
920     if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) {
921         tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap);
922         return;
923     }
924     /* If no page bits are significant, this devolves to tlb_flush. */
925     if (bits < TARGET_PAGE_BITS) {
926         tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap);
927         return;
928     }
929 
930     /* This should already be page aligned */
931     d.addr = addr & TARGET_PAGE_MASK;
932     d.len = len;
933     d.idxmap = idxmap;
934     d.bits = bits;
935 
936     /* Allocate a separate data block for each destination cpu.  */
937     CPU_FOREACH(dst_cpu) {
938         if (dst_cpu != src_cpu) {
939             p = g_memdup(&d, sizeof(d));
940             async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1,
941                              RUN_ON_CPU_HOST_PTR(p));
942         }
943     }
944 
945     p = g_memdup(&d, sizeof(d));
946     async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1,
947                           RUN_ON_CPU_HOST_PTR(p));
948 }
949 
950 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
951                                                    target_ulong addr,
952                                                    uint16_t idxmap,
953                                                    unsigned bits)
954 {
955     tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE,
956                                               idxmap, bits);
957 }
958 
959 /* update the TLBs so that writes to code in the virtual page 'addr'
960    can be detected */
961 void tlb_protect_code(ram_addr_t ram_addr)
962 {
963     cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK,
964                                              TARGET_PAGE_SIZE,
965                                              DIRTY_MEMORY_CODE);
966 }
967 
968 /* update the TLB so that writes in physical page 'phys_addr' are no longer
969    tested for self modifying code */
970 void tlb_unprotect_code(ram_addr_t ram_addr)
971 {
972     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
973 }
974 
975 
976 /*
977  * Dirty write flag handling
978  *
979  * When the TCG code writes to a location it looks up the address in
980  * the TLB and uses that data to compute the final address. If any of
981  * the lower bits of the address are set then the slow path is forced.
982  * There are a number of reasons to do this but for normal RAM the
983  * most usual is detecting writes to code regions which may invalidate
984  * generated code.
985  *
986  * Other vCPUs might be reading their TLBs during guest execution, so we update
987  * te->addr_write with qatomic_set. We don't need to worry about this for
988  * oversized guests as MTTCG is disabled for them.
989  *
990  * Called with tlb_c.lock held.
991  */
992 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry,
993                                          uintptr_t start, uintptr_t length)
994 {
995     uintptr_t addr = tlb_entry->addr_write;
996 
997     if ((addr & (TLB_INVALID_MASK | TLB_MMIO |
998                  TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) {
999         addr &= TARGET_PAGE_MASK;
1000         addr += tlb_entry->addend;
1001         if ((addr - start) < length) {
1002 #if TCG_OVERSIZED_GUEST
1003             tlb_entry->addr_write |= TLB_NOTDIRTY;
1004 #else
1005             qatomic_set(&tlb_entry->addr_write,
1006                        tlb_entry->addr_write | TLB_NOTDIRTY);
1007 #endif
1008         }
1009     }
1010 }
1011 
1012 /*
1013  * Called with tlb_c.lock held.
1014  * Called only from the vCPU context, i.e. the TLB's owner thread.
1015  */
1016 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s)
1017 {
1018     *d = *s;
1019 }
1020 
1021 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
1022  * the target vCPU).
1023  * We must take tlb_c.lock to avoid racing with another vCPU update. The only
1024  * thing actually updated is the target TLB entry ->addr_write flags.
1025  */
1026 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
1027 {
1028     CPUArchState *env;
1029 
1030     int mmu_idx;
1031 
1032     env = cpu->env_ptr;
1033     qemu_spin_lock(&env_tlb(env)->c.lock);
1034     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1035         unsigned int i;
1036         unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]);
1037 
1038         for (i = 0; i < n; i++) {
1039             tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i],
1040                                          start1, length);
1041         }
1042 
1043         for (i = 0; i < CPU_VTLB_SIZE; i++) {
1044             tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i],
1045                                          start1, length);
1046         }
1047     }
1048     qemu_spin_unlock(&env_tlb(env)->c.lock);
1049 }
1050 
1051 /* Called with tlb_c.lock held */
1052 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry,
1053                                          target_ulong vaddr)
1054 {
1055     if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
1056         tlb_entry->addr_write = vaddr;
1057     }
1058 }
1059 
1060 /* update the TLB corresponding to virtual page vaddr
1061    so that it is no longer dirty */
1062 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
1063 {
1064     CPUArchState *env = cpu->env_ptr;
1065     int mmu_idx;
1066 
1067     assert_cpu_is_self(cpu);
1068 
1069     vaddr &= TARGET_PAGE_MASK;
1070     qemu_spin_lock(&env_tlb(env)->c.lock);
1071     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1072         tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr);
1073     }
1074 
1075     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
1076         int k;
1077         for (k = 0; k < CPU_VTLB_SIZE; k++) {
1078             tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr);
1079         }
1080     }
1081     qemu_spin_unlock(&env_tlb(env)->c.lock);
1082 }
1083 
1084 /* Our TLB does not support large pages, so remember the area covered by
1085    large pages and trigger a full TLB flush if these are invalidated.  */
1086 static void tlb_add_large_page(CPUArchState *env, int mmu_idx,
1087                                target_ulong vaddr, target_ulong size)
1088 {
1089     target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr;
1090     target_ulong lp_mask = ~(size - 1);
1091 
1092     if (lp_addr == (target_ulong)-1) {
1093         /* No previous large page.  */
1094         lp_addr = vaddr;
1095     } else {
1096         /* Extend the existing region to include the new page.
1097            This is a compromise between unnecessary flushes and
1098            the cost of maintaining a full variable size TLB.  */
1099         lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask;
1100         while (((lp_addr ^ vaddr) & lp_mask) != 0) {
1101             lp_mask <<= 1;
1102         }
1103     }
1104     env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask;
1105     env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask;
1106 }
1107 
1108 /*
1109  * Add a new TLB entry. At most one entry for a given virtual address
1110  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
1111  * supplied size is only used by tlb_flush_page.
1112  *
1113  * Called from TCG-generated code, which is under an RCU read-side
1114  * critical section.
1115  */
1116 void tlb_set_page_full(CPUState *cpu, int mmu_idx,
1117                        target_ulong vaddr, CPUTLBEntryFull *full)
1118 {
1119     CPUArchState *env = cpu->env_ptr;
1120     CPUTLB *tlb = env_tlb(env);
1121     CPUTLBDesc *desc = &tlb->d[mmu_idx];
1122     MemoryRegionSection *section;
1123     unsigned int index;
1124     target_ulong address;
1125     target_ulong write_address;
1126     uintptr_t addend;
1127     CPUTLBEntry *te, tn;
1128     hwaddr iotlb, xlat, sz, paddr_page;
1129     target_ulong vaddr_page;
1130     int asidx, wp_flags, prot;
1131     bool is_ram, is_romd;
1132 
1133     assert_cpu_is_self(cpu);
1134 
1135     if (full->lg_page_size <= TARGET_PAGE_BITS) {
1136         sz = TARGET_PAGE_SIZE;
1137     } else {
1138         sz = (hwaddr)1 << full->lg_page_size;
1139         tlb_add_large_page(env, mmu_idx, vaddr, sz);
1140     }
1141     vaddr_page = vaddr & TARGET_PAGE_MASK;
1142     paddr_page = full->phys_addr & TARGET_PAGE_MASK;
1143 
1144     prot = full->prot;
1145     asidx = cpu_asidx_from_attrs(cpu, full->attrs);
1146     section = address_space_translate_for_iotlb(cpu, asidx, paddr_page,
1147                                                 &xlat, &sz, full->attrs, &prot);
1148     assert(sz >= TARGET_PAGE_SIZE);
1149 
1150     tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" HWADDR_FMT_plx
1151               " prot=%x idx=%d\n",
1152               vaddr, full->phys_addr, prot, mmu_idx);
1153 
1154     address = vaddr_page;
1155     if (full->lg_page_size < TARGET_PAGE_BITS) {
1156         /* Repeat the MMU check and TLB fill on every access.  */
1157         address |= TLB_INVALID_MASK;
1158     }
1159     if (full->attrs.byte_swap) {
1160         address |= TLB_BSWAP;
1161     }
1162 
1163     is_ram = memory_region_is_ram(section->mr);
1164     is_romd = memory_region_is_romd(section->mr);
1165 
1166     if (is_ram || is_romd) {
1167         /* RAM and ROMD both have associated host memory. */
1168         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
1169     } else {
1170         /* I/O does not; force the host address to NULL. */
1171         addend = 0;
1172     }
1173 
1174     write_address = address;
1175     if (is_ram) {
1176         iotlb = memory_region_get_ram_addr(section->mr) + xlat;
1177         /*
1178          * Computing is_clean is expensive; avoid all that unless
1179          * the page is actually writable.
1180          */
1181         if (prot & PAGE_WRITE) {
1182             if (section->readonly) {
1183                 write_address |= TLB_DISCARD_WRITE;
1184             } else if (cpu_physical_memory_is_clean(iotlb)) {
1185                 write_address |= TLB_NOTDIRTY;
1186             }
1187         }
1188     } else {
1189         /* I/O or ROMD */
1190         iotlb = memory_region_section_get_iotlb(cpu, section) + xlat;
1191         /*
1192          * Writes to romd devices must go through MMIO to enable write.
1193          * Reads to romd devices go through the ram_ptr found above,
1194          * but of course reads to I/O must go through MMIO.
1195          */
1196         write_address |= TLB_MMIO;
1197         if (!is_romd) {
1198             address = write_address;
1199         }
1200     }
1201 
1202     wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page,
1203                                               TARGET_PAGE_SIZE);
1204 
1205     index = tlb_index(env, mmu_idx, vaddr_page);
1206     te = tlb_entry(env, mmu_idx, vaddr_page);
1207 
1208     /*
1209      * Hold the TLB lock for the rest of the function. We could acquire/release
1210      * the lock several times in the function, but it is faster to amortize the
1211      * acquisition cost by acquiring it just once. Note that this leads to
1212      * a longer critical section, but this is not a concern since the TLB lock
1213      * is unlikely to be contended.
1214      */
1215     qemu_spin_lock(&tlb->c.lock);
1216 
1217     /* Note that the tlb is no longer clean.  */
1218     tlb->c.dirty |= 1 << mmu_idx;
1219 
1220     /* Make sure there's no cached translation for the new page.  */
1221     tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page);
1222 
1223     /*
1224      * Only evict the old entry to the victim tlb if it's for a
1225      * different page; otherwise just overwrite the stale data.
1226      */
1227     if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) {
1228         unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE;
1229         CPUTLBEntry *tv = &desc->vtable[vidx];
1230 
1231         /* Evict the old entry into the victim tlb.  */
1232         copy_tlb_helper_locked(tv, te);
1233         desc->vfulltlb[vidx] = desc->fulltlb[index];
1234         tlb_n_used_entries_dec(env, mmu_idx);
1235     }
1236 
1237     /* refill the tlb */
1238     /*
1239      * At this point iotlb contains a physical section number in the lower
1240      * TARGET_PAGE_BITS, and either
1241      *  + the ram_addr_t of the page base of the target RAM (RAM)
1242      *  + the offset within section->mr of the page base (I/O, ROMD)
1243      * We subtract the vaddr_page (which is page aligned and thus won't
1244      * disturb the low bits) to give an offset which can be added to the
1245      * (non-page-aligned) vaddr of the eventual memory access to get
1246      * the MemoryRegion offset for the access. Note that the vaddr we
1247      * subtract here is that of the page base, and not the same as the
1248      * vaddr we add back in io_readx()/io_writex()/get_page_addr_code().
1249      */
1250     desc->fulltlb[index] = *full;
1251     desc->fulltlb[index].xlat_section = iotlb - vaddr_page;
1252     desc->fulltlb[index].phys_addr = paddr_page;
1253 
1254     /* Now calculate the new entry */
1255     tn.addend = addend - vaddr_page;
1256     if (prot & PAGE_READ) {
1257         tn.addr_read = address;
1258         if (wp_flags & BP_MEM_READ) {
1259             tn.addr_read |= TLB_WATCHPOINT;
1260         }
1261     } else {
1262         tn.addr_read = -1;
1263     }
1264 
1265     if (prot & PAGE_EXEC) {
1266         tn.addr_code = address;
1267     } else {
1268         tn.addr_code = -1;
1269     }
1270 
1271     tn.addr_write = -1;
1272     if (prot & PAGE_WRITE) {
1273         tn.addr_write = write_address;
1274         if (prot & PAGE_WRITE_INV) {
1275             tn.addr_write |= TLB_INVALID_MASK;
1276         }
1277         if (wp_flags & BP_MEM_WRITE) {
1278             tn.addr_write |= TLB_WATCHPOINT;
1279         }
1280     }
1281 
1282     copy_tlb_helper_locked(te, &tn);
1283     tlb_n_used_entries_inc(env, mmu_idx);
1284     qemu_spin_unlock(&tlb->c.lock);
1285 }
1286 
1287 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
1288                              hwaddr paddr, MemTxAttrs attrs, int prot,
1289                              int mmu_idx, target_ulong size)
1290 {
1291     CPUTLBEntryFull full = {
1292         .phys_addr = paddr,
1293         .attrs = attrs,
1294         .prot = prot,
1295         .lg_page_size = ctz64(size)
1296     };
1297 
1298     assert(is_power_of_2(size));
1299     tlb_set_page_full(cpu, mmu_idx, vaddr, &full);
1300 }
1301 
1302 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
1303                   hwaddr paddr, int prot,
1304                   int mmu_idx, target_ulong size)
1305 {
1306     tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
1307                             prot, mmu_idx, size);
1308 }
1309 
1310 /*
1311  * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the
1312  * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must
1313  * be discarded and looked up again (e.g. via tlb_entry()).
1314  */
1315 static void tlb_fill(CPUState *cpu, target_ulong addr, int size,
1316                      MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1317 {
1318     bool ok;
1319 
1320     /*
1321      * This is not a probe, so only valid return is success; failure
1322      * should result in exception + longjmp to the cpu loop.
1323      */
1324     ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size,
1325                                     access_type, mmu_idx, false, retaddr);
1326     assert(ok);
1327 }
1328 
1329 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
1330                                         MMUAccessType access_type,
1331                                         int mmu_idx, uintptr_t retaddr)
1332 {
1333     cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type,
1334                                           mmu_idx, retaddr);
1335 }
1336 
1337 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
1338                                           vaddr addr, unsigned size,
1339                                           MMUAccessType access_type,
1340                                           int mmu_idx, MemTxAttrs attrs,
1341                                           MemTxResult response,
1342                                           uintptr_t retaddr)
1343 {
1344     CPUClass *cc = CPU_GET_CLASS(cpu);
1345 
1346     if (!cpu->ignore_memory_transaction_failures &&
1347         cc->tcg_ops->do_transaction_failed) {
1348         cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size,
1349                                            access_type, mmu_idx, attrs,
1350                                            response, retaddr);
1351     }
1352 }
1353 
1354 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full,
1355                          int mmu_idx, target_ulong addr, uintptr_t retaddr,
1356                          MMUAccessType access_type, MemOp op)
1357 {
1358     CPUState *cpu = env_cpu(env);
1359     hwaddr mr_offset;
1360     MemoryRegionSection *section;
1361     MemoryRegion *mr;
1362     uint64_t val;
1363     MemTxResult r;
1364 
1365     section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1366     mr = section->mr;
1367     mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1368     cpu->mem_io_pc = retaddr;
1369     if (!cpu->can_do_io) {
1370         cpu_io_recompile(cpu, retaddr);
1371     }
1372 
1373     {
1374         QEMU_IOTHREAD_LOCK_GUARD();
1375         r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs);
1376     }
1377 
1378     if (r != MEMTX_OK) {
1379         hwaddr physaddr = mr_offset +
1380             section->offset_within_address_space -
1381             section->offset_within_region;
1382 
1383         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type,
1384                                mmu_idx, full->attrs, r, retaddr);
1385     }
1386     return val;
1387 }
1388 
1389 /*
1390  * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin.
1391  * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match
1392  * because of the side effect of io_writex changing memory layout.
1393  */
1394 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section,
1395                             hwaddr mr_offset)
1396 {
1397 #ifdef CONFIG_PLUGIN
1398     SavedIOTLB *saved = &cs->saved_iotlb;
1399     saved->section = section;
1400     saved->mr_offset = mr_offset;
1401 #endif
1402 }
1403 
1404 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full,
1405                       int mmu_idx, uint64_t val, target_ulong addr,
1406                       uintptr_t retaddr, MemOp op)
1407 {
1408     CPUState *cpu = env_cpu(env);
1409     hwaddr mr_offset;
1410     MemoryRegionSection *section;
1411     MemoryRegion *mr;
1412     MemTxResult r;
1413 
1414     section = iotlb_to_section(cpu, full->xlat_section, full->attrs);
1415     mr = section->mr;
1416     mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1417     if (!cpu->can_do_io) {
1418         cpu_io_recompile(cpu, retaddr);
1419     }
1420     cpu->mem_io_pc = retaddr;
1421 
1422     /*
1423      * The memory_region_dispatch may trigger a flush/resize
1424      * so for plugins we save the iotlb_data just in case.
1425      */
1426     save_iotlb_data(cpu, section, mr_offset);
1427 
1428     {
1429         QEMU_IOTHREAD_LOCK_GUARD();
1430         r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs);
1431     }
1432 
1433     if (r != MEMTX_OK) {
1434         hwaddr physaddr = mr_offset +
1435             section->offset_within_address_space -
1436             section->offset_within_region;
1437 
1438         cpu_transaction_failed(cpu, physaddr, addr, memop_size(op),
1439                                MMU_DATA_STORE, mmu_idx, full->attrs, r,
1440                                retaddr);
1441     }
1442 }
1443 
1444 /* Return true if ADDR is present in the victim tlb, and has been copied
1445    back to the main tlb.  */
1446 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
1447                            MMUAccessType access_type, target_ulong page)
1448 {
1449     size_t vidx;
1450 
1451     assert_cpu_is_self(env_cpu(env));
1452     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
1453         CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx];
1454         target_ulong cmp = tlb_read_idx(vtlb, access_type);
1455 
1456         if (cmp == page) {
1457             /* Found entry in victim tlb, swap tlb and iotlb.  */
1458             CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index];
1459 
1460             qemu_spin_lock(&env_tlb(env)->c.lock);
1461             copy_tlb_helper_locked(&tmptlb, tlb);
1462             copy_tlb_helper_locked(tlb, vtlb);
1463             copy_tlb_helper_locked(vtlb, &tmptlb);
1464             qemu_spin_unlock(&env_tlb(env)->c.lock);
1465 
1466             CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1467             CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx];
1468             CPUTLBEntryFull tmpf;
1469             tmpf = *f1; *f1 = *f2; *f2 = tmpf;
1470             return true;
1471         }
1472     }
1473     return false;
1474 }
1475 
1476 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size,
1477                            CPUTLBEntryFull *full, uintptr_t retaddr)
1478 {
1479     ram_addr_t ram_addr = mem_vaddr + full->xlat_section;
1480 
1481     trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size);
1482 
1483     if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) {
1484         tb_invalidate_phys_range_fast(ram_addr, size, retaddr);
1485     }
1486 
1487     /*
1488      * Set both VGA and migration bits for simplicity and to remove
1489      * the notdirty callback faster.
1490      */
1491     cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE);
1492 
1493     /* We remove the notdirty callback only if the code has been flushed. */
1494     if (!cpu_physical_memory_is_clean(ram_addr)) {
1495         trace_memory_notdirty_set_dirty(mem_vaddr);
1496         tlb_set_dirty(cpu, mem_vaddr);
1497     }
1498 }
1499 
1500 static int probe_access_internal(CPUArchState *env, target_ulong addr,
1501                                  int fault_size, MMUAccessType access_type,
1502                                  int mmu_idx, bool nonfault,
1503                                  void **phost, CPUTLBEntryFull **pfull,
1504                                  uintptr_t retaddr)
1505 {
1506     uintptr_t index = tlb_index(env, mmu_idx, addr);
1507     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1508     target_ulong tlb_addr = tlb_read_idx(entry, access_type);
1509     target_ulong page_addr = addr & TARGET_PAGE_MASK;
1510     int flags = TLB_FLAGS_MASK;
1511 
1512     if (!tlb_hit_page(tlb_addr, page_addr)) {
1513         if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) {
1514             CPUState *cs = env_cpu(env);
1515 
1516             if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type,
1517                                            mmu_idx, nonfault, retaddr)) {
1518                 /* Non-faulting page table read failed.  */
1519                 *phost = NULL;
1520                 *pfull = NULL;
1521                 return TLB_INVALID_MASK;
1522             }
1523 
1524             /* TLB resize via tlb_fill may have moved the entry.  */
1525             index = tlb_index(env, mmu_idx, addr);
1526             entry = tlb_entry(env, mmu_idx, addr);
1527 
1528             /*
1529              * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately,
1530              * to force the next access through tlb_fill.  We've just
1531              * called tlb_fill, so we know that this entry *is* valid.
1532              */
1533             flags &= ~TLB_INVALID_MASK;
1534         }
1535         tlb_addr = tlb_read_idx(entry, access_type);
1536     }
1537     flags &= tlb_addr;
1538 
1539     *pfull = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1540 
1541     /* Fold all "mmio-like" bits into TLB_MMIO.  This is not RAM.  */
1542     if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1543         *phost = NULL;
1544         return TLB_MMIO;
1545     }
1546 
1547     /* Everything else is RAM. */
1548     *phost = (void *)((uintptr_t)addr + entry->addend);
1549     return flags;
1550 }
1551 
1552 int probe_access_full(CPUArchState *env, target_ulong addr, int size,
1553                       MMUAccessType access_type, int mmu_idx,
1554                       bool nonfault, void **phost, CPUTLBEntryFull **pfull,
1555                       uintptr_t retaddr)
1556 {
1557     int flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1558                                       nonfault, phost, pfull, retaddr);
1559 
1560     /* Handle clean RAM pages.  */
1561     if (unlikely(flags & TLB_NOTDIRTY)) {
1562         notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr);
1563         flags &= ~TLB_NOTDIRTY;
1564     }
1565 
1566     return flags;
1567 }
1568 
1569 int probe_access_flags(CPUArchState *env, target_ulong addr, int size,
1570                        MMUAccessType access_type, int mmu_idx,
1571                        bool nonfault, void **phost, uintptr_t retaddr)
1572 {
1573     CPUTLBEntryFull *full;
1574     int flags;
1575 
1576     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1577 
1578     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1579                                   nonfault, phost, &full, retaddr);
1580 
1581     /* Handle clean RAM pages. */
1582     if (unlikely(flags & TLB_NOTDIRTY)) {
1583         notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1584         flags &= ~TLB_NOTDIRTY;
1585     }
1586 
1587     return flags;
1588 }
1589 
1590 void *probe_access(CPUArchState *env, target_ulong addr, int size,
1591                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr)
1592 {
1593     CPUTLBEntryFull *full;
1594     void *host;
1595     int flags;
1596 
1597     g_assert(-(addr | TARGET_PAGE_MASK) >= size);
1598 
1599     flags = probe_access_internal(env, addr, size, access_type, mmu_idx,
1600                                   false, &host, &full, retaddr);
1601 
1602     /* Per the interface, size == 0 merely faults the access. */
1603     if (size == 0) {
1604         return NULL;
1605     }
1606 
1607     if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) {
1608         /* Handle watchpoints.  */
1609         if (flags & TLB_WATCHPOINT) {
1610             int wp_access = (access_type == MMU_DATA_STORE
1611                              ? BP_MEM_WRITE : BP_MEM_READ);
1612             cpu_check_watchpoint(env_cpu(env), addr, size,
1613                                  full->attrs, wp_access, retaddr);
1614         }
1615 
1616         /* Handle clean RAM pages.  */
1617         if (flags & TLB_NOTDIRTY) {
1618             notdirty_write(env_cpu(env), addr, 1, full, retaddr);
1619         }
1620     }
1621 
1622     return host;
1623 }
1624 
1625 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr,
1626                         MMUAccessType access_type, int mmu_idx)
1627 {
1628     CPUTLBEntryFull *full;
1629     void *host;
1630     int flags;
1631 
1632     flags = probe_access_internal(env, addr, 0, access_type,
1633                                   mmu_idx, true, &host, &full, 0);
1634 
1635     /* No combination of flags are expected by the caller. */
1636     return flags ? NULL : host;
1637 }
1638 
1639 /*
1640  * Return a ram_addr_t for the virtual address for execution.
1641  *
1642  * Return -1 if we can't translate and execute from an entire page
1643  * of RAM.  This will force us to execute by loading and translating
1644  * one insn at a time, without caching.
1645  *
1646  * NOTE: This function will trigger an exception if the page is
1647  * not executable.
1648  */
1649 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
1650                                         void **hostp)
1651 {
1652     CPUTLBEntryFull *full;
1653     void *p;
1654 
1655     (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH,
1656                                 cpu_mmu_index(env, true), false, &p, &full, 0);
1657     if (p == NULL) {
1658         return -1;
1659     }
1660 
1661     if (full->lg_page_size < TARGET_PAGE_BITS) {
1662         return -1;
1663     }
1664 
1665     if (hostp) {
1666         *hostp = p;
1667     }
1668     return qemu_ram_addr_from_host_nofail(p);
1669 }
1670 
1671 /* Load/store with atomicity primitives. */
1672 #include "ldst_atomicity.c.inc"
1673 
1674 #ifdef CONFIG_PLUGIN
1675 /*
1676  * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure.
1677  * This should be a hot path as we will have just looked this path up
1678  * in the softmmu lookup code (or helper). We don't handle re-fills or
1679  * checking the victim table. This is purely informational.
1680  *
1681  * This almost never fails as the memory access being instrumented
1682  * should have just filled the TLB. The one corner case is io_writex
1683  * which can cause TLB flushes and potential resizing of the TLBs
1684  * losing the information we need. In those cases we need to recover
1685  * data from a copy of the CPUTLBEntryFull. As long as this always occurs
1686  * from the same thread (which a mem callback will be) this is safe.
1687  */
1688 
1689 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx,
1690                        bool is_store, struct qemu_plugin_hwaddr *data)
1691 {
1692     CPUArchState *env = cpu->env_ptr;
1693     CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr);
1694     uintptr_t index = tlb_index(env, mmu_idx, addr);
1695     target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read;
1696 
1697     if (likely(tlb_hit(tlb_addr, addr))) {
1698         /* We must have an iotlb entry for MMIO */
1699         if (tlb_addr & TLB_MMIO) {
1700             CPUTLBEntryFull *full;
1701             full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1702             data->is_io = true;
1703             data->v.io.section =
1704                 iotlb_to_section(cpu, full->xlat_section, full->attrs);
1705             data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr;
1706         } else {
1707             data->is_io = false;
1708             data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1709         }
1710         return true;
1711     } else {
1712         SavedIOTLB *saved = &cpu->saved_iotlb;
1713         data->is_io = true;
1714         data->v.io.section = saved->section;
1715         data->v.io.offset = saved->mr_offset;
1716         return true;
1717     }
1718 }
1719 
1720 #endif
1721 
1722 /*
1723  * Probe for a load/store operation.
1724  * Return the host address and into @flags.
1725  */
1726 
1727 typedef struct MMULookupPageData {
1728     CPUTLBEntryFull *full;
1729     void *haddr;
1730     target_ulong addr;
1731     int flags;
1732     int size;
1733 } MMULookupPageData;
1734 
1735 typedef struct MMULookupLocals {
1736     MMULookupPageData page[2];
1737     MemOp memop;
1738     int mmu_idx;
1739 } MMULookupLocals;
1740 
1741 /**
1742  * mmu_lookup1: translate one page
1743  * @env: cpu context
1744  * @data: lookup parameters
1745  * @mmu_idx: virtual address context
1746  * @access_type: load/store/code
1747  * @ra: return address into tcg generated code, or 0
1748  *
1749  * Resolve the translation for the one page at @data.addr, filling in
1750  * the rest of @data with the results.  If the translation fails,
1751  * tlb_fill will longjmp out.  Return true if the softmmu tlb for
1752  * @mmu_idx may have resized.
1753  */
1754 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data,
1755                         int mmu_idx, MMUAccessType access_type, uintptr_t ra)
1756 {
1757     target_ulong addr = data->addr;
1758     uintptr_t index = tlb_index(env, mmu_idx, addr);
1759     CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr);
1760     target_ulong tlb_addr = tlb_read_idx(entry, access_type);
1761     bool maybe_resized = false;
1762 
1763     /* If the TLB entry is for a different page, reload and try again.  */
1764     if (!tlb_hit(tlb_addr, addr)) {
1765         if (!victim_tlb_hit(env, mmu_idx, index, access_type,
1766                             addr & TARGET_PAGE_MASK)) {
1767             tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra);
1768             maybe_resized = true;
1769             index = tlb_index(env, mmu_idx, addr);
1770             entry = tlb_entry(env, mmu_idx, addr);
1771         }
1772         tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK;
1773     }
1774 
1775     data->flags = tlb_addr & TLB_FLAGS_MASK;
1776     data->full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1777     /* Compute haddr speculatively; depending on flags it might be invalid. */
1778     data->haddr = (void *)((uintptr_t)addr + entry->addend);
1779 
1780     return maybe_resized;
1781 }
1782 
1783 /**
1784  * mmu_watch_or_dirty
1785  * @env: cpu context
1786  * @data: lookup parameters
1787  * @access_type: load/store/code
1788  * @ra: return address into tcg generated code, or 0
1789  *
1790  * Trigger watchpoints for @data.addr:@data.size;
1791  * record writes to protected clean pages.
1792  */
1793 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data,
1794                                MMUAccessType access_type, uintptr_t ra)
1795 {
1796     CPUTLBEntryFull *full = data->full;
1797     target_ulong addr = data->addr;
1798     int flags = data->flags;
1799     int size = data->size;
1800 
1801     /* On watchpoint hit, this will longjmp out.  */
1802     if (flags & TLB_WATCHPOINT) {
1803         int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ;
1804         cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra);
1805         flags &= ~TLB_WATCHPOINT;
1806     }
1807 
1808     /* Note that notdirty is only set for writes. */
1809     if (flags & TLB_NOTDIRTY) {
1810         notdirty_write(env_cpu(env), addr, size, full, ra);
1811         flags &= ~TLB_NOTDIRTY;
1812     }
1813     data->flags = flags;
1814 }
1815 
1816 /**
1817  * mmu_lookup: translate page(s)
1818  * @env: cpu context
1819  * @addr: virtual address
1820  * @oi: combined mmu_idx and MemOp
1821  * @ra: return address into tcg generated code, or 0
1822  * @access_type: load/store/code
1823  * @l: output result
1824  *
1825  * Resolve the translation for the page(s) beginning at @addr, for MemOp.size
1826  * bytes.  Return true if the lookup crosses a page boundary.
1827  */
1828 static bool mmu_lookup(CPUArchState *env, target_ulong addr, MemOpIdx oi,
1829                        uintptr_t ra, MMUAccessType type, MMULookupLocals *l)
1830 {
1831     unsigned a_bits;
1832     bool crosspage;
1833     int flags;
1834 
1835     l->memop = get_memop(oi);
1836     l->mmu_idx = get_mmuidx(oi);
1837 
1838     tcg_debug_assert(l->mmu_idx < NB_MMU_MODES);
1839 
1840     /* Handle CPU specific unaligned behaviour */
1841     a_bits = get_alignment_bits(l->memop);
1842     if (addr & ((1 << a_bits) - 1)) {
1843         cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra);
1844     }
1845 
1846     l->page[0].addr = addr;
1847     l->page[0].size = memop_size(l->memop);
1848     l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK;
1849     l->page[1].size = 0;
1850     crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK;
1851 
1852     if (likely(!crosspage)) {
1853         mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1854 
1855         flags = l->page[0].flags;
1856         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1857             mmu_watch_or_dirty(env, &l->page[0], type, ra);
1858         }
1859         if (unlikely(flags & TLB_BSWAP)) {
1860             l->memop ^= MO_BSWAP;
1861         }
1862     } else {
1863         /* Finish compute of page crossing. */
1864         int size0 = l->page[1].addr - addr;
1865         l->page[1].size = l->page[0].size - size0;
1866         l->page[0].size = size0;
1867 
1868         /*
1869          * Lookup both pages, recognizing exceptions from either.  If the
1870          * second lookup potentially resized, refresh first CPUTLBEntryFull.
1871          */
1872         mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra);
1873         if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) {
1874             uintptr_t index = tlb_index(env, l->mmu_idx, addr);
1875             l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index];
1876         }
1877 
1878         flags = l->page[0].flags | l->page[1].flags;
1879         if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) {
1880             mmu_watch_or_dirty(env, &l->page[0], type, ra);
1881             mmu_watch_or_dirty(env, &l->page[1], type, ra);
1882         }
1883 
1884         /*
1885          * Since target/sparc is the only user of TLB_BSWAP, and all
1886          * Sparc accesses are aligned, any treatment across two pages
1887          * would be arbitrary.  Refuse it until there's a use.
1888          */
1889         tcg_debug_assert((flags & TLB_BSWAP) == 0);
1890     }
1891 
1892     return crosspage;
1893 }
1894 
1895 /*
1896  * Probe for an atomic operation.  Do not allow unaligned operations,
1897  * or io operations to proceed.  Return the host address.
1898  *
1899  * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE.
1900  */
1901 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
1902                                MemOpIdx oi, int size, int prot,
1903                                uintptr_t retaddr)
1904 {
1905     uintptr_t mmu_idx = get_mmuidx(oi);
1906     MemOp mop = get_memop(oi);
1907     int a_bits = get_alignment_bits(mop);
1908     uintptr_t index;
1909     CPUTLBEntry *tlbe;
1910     target_ulong tlb_addr;
1911     void *hostaddr;
1912     CPUTLBEntryFull *full;
1913 
1914     tcg_debug_assert(mmu_idx < NB_MMU_MODES);
1915 
1916     /* Adjust the given return address.  */
1917     retaddr -= GETPC_ADJ;
1918 
1919     /* Enforce guest required alignment.  */
1920     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
1921         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
1922         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
1923                              mmu_idx, retaddr);
1924     }
1925 
1926     /* Enforce qemu required alignment.  */
1927     if (unlikely(addr & (size - 1))) {
1928         /* We get here if guest alignment was not requested,
1929            or was not enforced by cpu_unaligned_access above.
1930            We might widen the access and emulate, but for now
1931            mark an exception and exit the cpu loop.  */
1932         goto stop_the_world;
1933     }
1934 
1935     index = tlb_index(env, mmu_idx, addr);
1936     tlbe = tlb_entry(env, mmu_idx, addr);
1937 
1938     /* Check TLB entry and enforce page permissions.  */
1939     if (prot & PAGE_WRITE) {
1940         tlb_addr = tlb_addr_write(tlbe);
1941         if (!tlb_hit(tlb_addr, addr)) {
1942             if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE,
1943                                 addr & TARGET_PAGE_MASK)) {
1944                 tlb_fill(env_cpu(env), addr, size,
1945                          MMU_DATA_STORE, mmu_idx, retaddr);
1946                 index = tlb_index(env, mmu_idx, addr);
1947                 tlbe = tlb_entry(env, mmu_idx, addr);
1948             }
1949             tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK;
1950         }
1951 
1952         if (prot & PAGE_READ) {
1953             /*
1954              * Let the guest notice RMW on a write-only page.
1955              * We have just verified that the page is writable.
1956              * Subpage lookups may have left TLB_INVALID_MASK set,
1957              * but addr_read will only be -1 if PAGE_READ was unset.
1958              */
1959             if (unlikely(tlbe->addr_read == -1)) {
1960                 tlb_fill(env_cpu(env), addr, size,
1961                          MMU_DATA_LOAD, mmu_idx, retaddr);
1962                 /*
1963                  * Since we don't support reads and writes to different
1964                  * addresses, and we do have the proper page loaded for
1965                  * write, this shouldn't ever return.  But just in case,
1966                  * handle via stop-the-world.
1967                  */
1968                 goto stop_the_world;
1969             }
1970             /* Collect TLB_WATCHPOINT for read. */
1971             tlb_addr |= tlbe->addr_read;
1972         }
1973     } else /* if (prot & PAGE_READ) */ {
1974         tlb_addr = tlbe->addr_read;
1975         if (!tlb_hit(tlb_addr, addr)) {
1976             if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_LOAD,
1977                                 addr & TARGET_PAGE_MASK)) {
1978                 tlb_fill(env_cpu(env), addr, size,
1979                          MMU_DATA_LOAD, mmu_idx, retaddr);
1980                 index = tlb_index(env, mmu_idx, addr);
1981                 tlbe = tlb_entry(env, mmu_idx, addr);
1982             }
1983             tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK;
1984         }
1985     }
1986 
1987     /* Notice an IO access or a needs-MMU-lookup access */
1988     if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) {
1989         /* There's really nothing that can be done to
1990            support this apart from stop-the-world.  */
1991         goto stop_the_world;
1992     }
1993 
1994     hostaddr = (void *)((uintptr_t)addr + tlbe->addend);
1995     full = &env_tlb(env)->d[mmu_idx].fulltlb[index];
1996 
1997     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
1998         notdirty_write(env_cpu(env), addr, size, full, retaddr);
1999     }
2000 
2001     if (unlikely(tlb_addr & TLB_WATCHPOINT)) {
2002         QEMU_BUILD_BUG_ON(PAGE_READ != BP_MEM_READ);
2003         QEMU_BUILD_BUG_ON(PAGE_WRITE != BP_MEM_WRITE);
2004         /* therefore prot == watchpoint bits */
2005         cpu_check_watchpoint(env_cpu(env), addr, size,
2006                              full->attrs, prot, retaddr);
2007     }
2008 
2009     return hostaddr;
2010 
2011  stop_the_world:
2012     cpu_loop_exit_atomic(env_cpu(env), retaddr);
2013 }
2014 
2015 /*
2016  * Load Helpers
2017  *
2018  * We support two different access types. SOFTMMU_CODE_ACCESS is
2019  * specifically for reading instructions from system memory. It is
2020  * called by the translation loop and in some helpers where the code
2021  * is disassembled. It shouldn't be called directly by guest code.
2022  *
2023  * For the benefit of TCG generated code, we want to avoid the
2024  * complication of ABI-specific return type promotion and always
2025  * return a value extended to the register size of the host. This is
2026  * tcg_target_long, except in the case of a 32-bit host and 64-bit
2027  * data, and for that we always have uint64_t.
2028  *
2029  * We don't bother with this widened value for SOFTMMU_CODE_ACCESS.
2030  */
2031 
2032 /**
2033  * do_ld_mmio_beN:
2034  * @env: cpu context
2035  * @p: translation parameters
2036  * @ret_be: accumulated data
2037  * @mmu_idx: virtual address context
2038  * @ra: return address into tcg generated code, or 0
2039  *
2040  * Load @p->size bytes from @p->addr, which is memory-mapped i/o.
2041  * The bytes are concatenated in big-endian order with @ret_be.
2042  */
2043 static uint64_t do_ld_mmio_beN(CPUArchState *env, MMULookupPageData *p,
2044                                uint64_t ret_be, int mmu_idx,
2045                                MMUAccessType type, uintptr_t ra)
2046 {
2047     CPUTLBEntryFull *full = p->full;
2048     target_ulong addr = p->addr;
2049     int i, size = p->size;
2050 
2051     QEMU_IOTHREAD_LOCK_GUARD();
2052     for (i = 0; i < size; i++) {
2053         uint8_t x = io_readx(env, full, mmu_idx, addr + i, ra, type, MO_UB);
2054         ret_be = (ret_be << 8) | x;
2055     }
2056     return ret_be;
2057 }
2058 
2059 /**
2060  * do_ld_bytes_beN
2061  * @p: translation parameters
2062  * @ret_be: accumulated data
2063  *
2064  * Load @p->size bytes from @p->haddr, which is RAM.
2065  * The bytes to concatenated in big-endian order with @ret_be.
2066  */
2067 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be)
2068 {
2069     uint8_t *haddr = p->haddr;
2070     int i, size = p->size;
2071 
2072     for (i = 0; i < size; i++) {
2073         ret_be = (ret_be << 8) | haddr[i];
2074     }
2075     return ret_be;
2076 }
2077 
2078 /**
2079  * do_ld_parts_beN
2080  * @p: translation parameters
2081  * @ret_be: accumulated data
2082  *
2083  * As do_ld_bytes_beN, but atomically on each aligned part.
2084  */
2085 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be)
2086 {
2087     void *haddr = p->haddr;
2088     int size = p->size;
2089 
2090     do {
2091         uint64_t x;
2092         int n;
2093 
2094         /*
2095          * Find minimum of alignment and size.
2096          * This is slightly stronger than required by MO_ATOM_SUBALIGN, which
2097          * would have only checked the low bits of addr|size once at the start,
2098          * but is just as easy.
2099          */
2100         switch (((uintptr_t)haddr | size) & 7) {
2101         case 4:
2102             x = cpu_to_be32(load_atomic4(haddr));
2103             ret_be = (ret_be << 32) | x;
2104             n = 4;
2105             break;
2106         case 2:
2107         case 6:
2108             x = cpu_to_be16(load_atomic2(haddr));
2109             ret_be = (ret_be << 16) | x;
2110             n = 2;
2111             break;
2112         default:
2113             x = *(uint8_t *)haddr;
2114             ret_be = (ret_be << 8) | x;
2115             n = 1;
2116             break;
2117         case 0:
2118             g_assert_not_reached();
2119         }
2120         haddr += n;
2121         size -= n;
2122     } while (size != 0);
2123     return ret_be;
2124 }
2125 
2126 /**
2127  * do_ld_parts_be4
2128  * @p: translation parameters
2129  * @ret_be: accumulated data
2130  *
2131  * As do_ld_bytes_beN, but with one atomic load.
2132  * Four aligned bytes are guaranteed to cover the load.
2133  */
2134 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be)
2135 {
2136     int o = p->addr & 3;
2137     uint32_t x = load_atomic4(p->haddr - o);
2138 
2139     x = cpu_to_be32(x);
2140     x <<= o * 8;
2141     x >>= (4 - p->size) * 8;
2142     return (ret_be << (p->size * 8)) | x;
2143 }
2144 
2145 /**
2146  * do_ld_parts_be8
2147  * @p: translation parameters
2148  * @ret_be: accumulated data
2149  *
2150  * As do_ld_bytes_beN, but with one atomic load.
2151  * Eight aligned bytes are guaranteed to cover the load.
2152  */
2153 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra,
2154                                 MMULookupPageData *p, uint64_t ret_be)
2155 {
2156     int o = p->addr & 7;
2157     uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o);
2158 
2159     x = cpu_to_be64(x);
2160     x <<= o * 8;
2161     x >>= (8 - p->size) * 8;
2162     return (ret_be << (p->size * 8)) | x;
2163 }
2164 
2165 /*
2166  * Wrapper for the above.
2167  */
2168 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p,
2169                           uint64_t ret_be, int mmu_idx, MMUAccessType type,
2170                           MemOp mop, uintptr_t ra)
2171 {
2172     MemOp atom;
2173     unsigned tmp, half_size;
2174 
2175     if (unlikely(p->flags & TLB_MMIO)) {
2176         return do_ld_mmio_beN(env, p, ret_be, mmu_idx, type, ra);
2177     }
2178 
2179     /*
2180      * It is a given that we cross a page and therefore there is no
2181      * atomicity for the load as a whole, but subobjects may need attention.
2182      */
2183     atom = mop & MO_ATOM_MASK;
2184     switch (atom) {
2185     case MO_ATOM_SUBALIGN:
2186         return do_ld_parts_beN(p, ret_be);
2187 
2188     case MO_ATOM_IFALIGN_PAIR:
2189     case MO_ATOM_WITHIN16_PAIR:
2190         tmp = mop & MO_SIZE;
2191         tmp = tmp ? tmp - 1 : 0;
2192         half_size = 1 << tmp;
2193         if (atom == MO_ATOM_IFALIGN_PAIR
2194             ? p->size == half_size
2195             : p->size >= half_size) {
2196             if (!HAVE_al8_fast && p->size < 4) {
2197                 return do_ld_whole_be4(p, ret_be);
2198             } else {
2199                 return do_ld_whole_be8(env, ra, p, ret_be);
2200             }
2201         }
2202         /* fall through */
2203 
2204     case MO_ATOM_IFALIGN:
2205     case MO_ATOM_WITHIN16:
2206     case MO_ATOM_NONE:
2207         return do_ld_bytes_beN(p, ret_be);
2208 
2209     default:
2210         g_assert_not_reached();
2211     }
2212 }
2213 
2214 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2215                        MMUAccessType type, uintptr_t ra)
2216 {
2217     if (unlikely(p->flags & TLB_MMIO)) {
2218         return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB);
2219     } else {
2220         return *(uint8_t *)p->haddr;
2221     }
2222 }
2223 
2224 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2225                         MMUAccessType type, MemOp memop, uintptr_t ra)
2226 {
2227     uint64_t ret;
2228 
2229     if (unlikely(p->flags & TLB_MMIO)) {
2230         return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2231     }
2232 
2233     /* Perform the load host endian, then swap if necessary. */
2234     ret = load_atom_2(env, ra, p->haddr, memop);
2235     if (memop & MO_BSWAP) {
2236         ret = bswap16(ret);
2237     }
2238     return ret;
2239 }
2240 
2241 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2242                         MMUAccessType type, MemOp memop, uintptr_t ra)
2243 {
2244     uint32_t ret;
2245 
2246     if (unlikely(p->flags & TLB_MMIO)) {
2247         return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2248     }
2249 
2250     /* Perform the load host endian. */
2251     ret = load_atom_4(env, ra, p->haddr, memop);
2252     if (memop & MO_BSWAP) {
2253         ret = bswap32(ret);
2254     }
2255     return ret;
2256 }
2257 
2258 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx,
2259                         MMUAccessType type, MemOp memop, uintptr_t ra)
2260 {
2261     uint64_t ret;
2262 
2263     if (unlikely(p->flags & TLB_MMIO)) {
2264         return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop);
2265     }
2266 
2267     /* Perform the load host endian. */
2268     ret = load_atom_8(env, ra, p->haddr, memop);
2269     if (memop & MO_BSWAP) {
2270         ret = bswap64(ret);
2271     }
2272     return ret;
2273 }
2274 
2275 static uint8_t do_ld1_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
2276                           uintptr_t ra, MMUAccessType access_type)
2277 {
2278     MMULookupLocals l;
2279     bool crosspage;
2280 
2281     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2282     tcg_debug_assert(!crosspage);
2283 
2284     return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2285 }
2286 
2287 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, target_ulong addr,
2288                                  MemOpIdx oi, uintptr_t retaddr)
2289 {
2290     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2291     return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2292 }
2293 
2294 static uint16_t do_ld2_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
2295                            uintptr_t ra, MMUAccessType access_type)
2296 {
2297     MMULookupLocals l;
2298     bool crosspage;
2299     uint16_t ret;
2300     uint8_t a, b;
2301 
2302     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2303     if (likely(!crosspage)) {
2304         return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2305     }
2306 
2307     a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra);
2308     b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra);
2309 
2310     if ((l.memop & MO_BSWAP) == MO_LE) {
2311         ret = a | (b << 8);
2312     } else {
2313         ret = b | (a << 8);
2314     }
2315     return ret;
2316 }
2317 
2318 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, target_ulong addr,
2319                                  MemOpIdx oi, uintptr_t retaddr)
2320 {
2321     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2322     return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2323 }
2324 
2325 static uint32_t do_ld4_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
2326                            uintptr_t ra, MMUAccessType access_type)
2327 {
2328     MMULookupLocals l;
2329     bool crosspage;
2330     uint32_t ret;
2331 
2332     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2333     if (likely(!crosspage)) {
2334         return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2335     }
2336 
2337     ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2338     ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2339     if ((l.memop & MO_BSWAP) == MO_LE) {
2340         ret = bswap32(ret);
2341     }
2342     return ret;
2343 }
2344 
2345 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, target_ulong addr,
2346                                  MemOpIdx oi, uintptr_t retaddr)
2347 {
2348     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2349     return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2350 }
2351 
2352 static uint64_t do_ld8_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi,
2353                            uintptr_t ra, MMUAccessType access_type)
2354 {
2355     MMULookupLocals l;
2356     bool crosspage;
2357     uint64_t ret;
2358 
2359     crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l);
2360     if (likely(!crosspage)) {
2361         return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra);
2362     }
2363 
2364     ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra);
2365     ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra);
2366     if ((l.memop & MO_BSWAP) == MO_LE) {
2367         ret = bswap64(ret);
2368     }
2369     return ret;
2370 }
2371 
2372 uint64_t helper_ldq_mmu(CPUArchState *env, target_ulong addr,
2373                         MemOpIdx oi, uintptr_t retaddr)
2374 {
2375     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2376     return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD);
2377 }
2378 
2379 /*
2380  * Provide signed versions of the load routines as well.  We can of course
2381  * avoid this for 64-bit data, or for 32-bit data on 32-bit host.
2382  */
2383 
2384 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, target_ulong addr,
2385                                  MemOpIdx oi, uintptr_t retaddr)
2386 {
2387     return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr);
2388 }
2389 
2390 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, target_ulong addr,
2391                                  MemOpIdx oi, uintptr_t retaddr)
2392 {
2393     return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr);
2394 }
2395 
2396 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, target_ulong addr,
2397                                  MemOpIdx oi, uintptr_t retaddr)
2398 {
2399     return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr);
2400 }
2401 
2402 /*
2403  * Load helpers for cpu_ldst.h.
2404  */
2405 
2406 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2407 {
2408     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2409 }
2410 
2411 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra)
2412 {
2413     uint8_t ret;
2414 
2415     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB);
2416     ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2417     plugin_load_cb(env, addr, oi);
2418     return ret;
2419 }
2420 
2421 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr,
2422                         MemOpIdx oi, uintptr_t ra)
2423 {
2424     uint16_t ret;
2425 
2426     tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_BEUW);
2427     ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2428     plugin_load_cb(env, addr, oi);
2429     return ret;
2430 }
2431 
2432 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr,
2433                         MemOpIdx oi, uintptr_t ra)
2434 {
2435     uint32_t ret;
2436 
2437     tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_BEUL);
2438     ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2439     plugin_load_cb(env, addr, oi);
2440     return ret;
2441 }
2442 
2443 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr,
2444                         MemOpIdx oi, uintptr_t ra)
2445 {
2446     uint64_t ret;
2447 
2448     tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_BEUQ);
2449     ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2450     plugin_load_cb(env, addr, oi);
2451     return ret;
2452 }
2453 
2454 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr,
2455                         MemOpIdx oi, uintptr_t ra)
2456 {
2457     uint16_t ret;
2458 
2459     tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_LEUW);
2460     ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2461     plugin_load_cb(env, addr, oi);
2462     return ret;
2463 }
2464 
2465 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr,
2466                         MemOpIdx oi, uintptr_t ra)
2467 {
2468     uint32_t ret;
2469 
2470     tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_LEUL);
2471     ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2472     plugin_load_cb(env, addr, oi);
2473     return ret;
2474 }
2475 
2476 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr,
2477                         MemOpIdx oi, uintptr_t ra)
2478 {
2479     uint64_t ret;
2480 
2481     tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_LEUQ);
2482     ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD);
2483     plugin_load_cb(env, addr, oi);
2484     return ret;
2485 }
2486 
2487 Int128 cpu_ld16_be_mmu(CPUArchState *env, abi_ptr addr,
2488                        MemOpIdx oi, uintptr_t ra)
2489 {
2490     MemOp mop = get_memop(oi);
2491     int mmu_idx = get_mmuidx(oi);
2492     MemOpIdx new_oi;
2493     unsigned a_bits;
2494     uint64_t h, l;
2495 
2496     tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_BE|MO_128));
2497     a_bits = get_alignment_bits(mop);
2498 
2499     /* Handle CPU specific unaligned behaviour */
2500     if (addr & ((1 << a_bits) - 1)) {
2501         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_LOAD,
2502                              mmu_idx, ra);
2503     }
2504 
2505     /* Construct an unaligned 64-bit replacement MemOpIdx. */
2506     mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN;
2507     new_oi = make_memop_idx(mop, mmu_idx);
2508 
2509     h = helper_ldq_mmu(env, addr, new_oi, ra);
2510     l = helper_ldq_mmu(env, addr + 8, new_oi, ra);
2511 
2512     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2513     return int128_make128(l, h);
2514 }
2515 
2516 Int128 cpu_ld16_le_mmu(CPUArchState *env, abi_ptr addr,
2517                        MemOpIdx oi, uintptr_t ra)
2518 {
2519     MemOp mop = get_memop(oi);
2520     int mmu_idx = get_mmuidx(oi);
2521     MemOpIdx new_oi;
2522     unsigned a_bits;
2523     uint64_t h, l;
2524 
2525     tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_LE|MO_128));
2526     a_bits = get_alignment_bits(mop);
2527 
2528     /* Handle CPU specific unaligned behaviour */
2529     if (addr & ((1 << a_bits) - 1)) {
2530         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_LOAD,
2531                              mmu_idx, ra);
2532     }
2533 
2534     /* Construct an unaligned 64-bit replacement MemOpIdx. */
2535     mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN;
2536     new_oi = make_memop_idx(mop, mmu_idx);
2537 
2538     l = helper_ldq_mmu(env, addr, new_oi, ra);
2539     h = helper_ldq_mmu(env, addr + 8, new_oi, ra);
2540 
2541     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R);
2542     return int128_make128(l, h);
2543 }
2544 
2545 /*
2546  * Store Helpers
2547  */
2548 
2549 /**
2550  * do_st_mmio_leN:
2551  * @env: cpu context
2552  * @p: translation parameters
2553  * @val_le: data to store
2554  * @mmu_idx: virtual address context
2555  * @ra: return address into tcg generated code, or 0
2556  *
2557  * Store @p->size bytes at @p->addr, which is memory-mapped i/o.
2558  * The bytes to store are extracted in little-endian order from @val_le;
2559  * return the bytes of @val_le beyond @p->size that have not been stored.
2560  */
2561 static uint64_t do_st_mmio_leN(CPUArchState *env, MMULookupPageData *p,
2562                                uint64_t val_le, int mmu_idx, uintptr_t ra)
2563 {
2564     CPUTLBEntryFull *full = p->full;
2565     target_ulong addr = p->addr;
2566     int i, size = p->size;
2567 
2568     QEMU_IOTHREAD_LOCK_GUARD();
2569     for (i = 0; i < size; i++, val_le >>= 8) {
2570         io_writex(env, full, mmu_idx, val_le, addr + i, ra, MO_UB);
2571     }
2572     return val_le;
2573 }
2574 
2575 /*
2576  * Wrapper for the above.
2577  */
2578 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p,
2579                           uint64_t val_le, int mmu_idx,
2580                           MemOp mop, uintptr_t ra)
2581 {
2582     MemOp atom;
2583     unsigned tmp, half_size;
2584 
2585     if (unlikely(p->flags & TLB_MMIO)) {
2586         return do_st_mmio_leN(env, p, val_le, mmu_idx, ra);
2587     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2588         return val_le >> (p->size * 8);
2589     }
2590 
2591     /*
2592      * It is a given that we cross a page and therefore there is no atomicity
2593      * for the store as a whole, but subobjects may need attention.
2594      */
2595     atom = mop & MO_ATOM_MASK;
2596     switch (atom) {
2597     case MO_ATOM_SUBALIGN:
2598         return store_parts_leN(p->haddr, p->size, val_le);
2599 
2600     case MO_ATOM_IFALIGN_PAIR:
2601     case MO_ATOM_WITHIN16_PAIR:
2602         tmp = mop & MO_SIZE;
2603         tmp = tmp ? tmp - 1 : 0;
2604         half_size = 1 << tmp;
2605         if (atom == MO_ATOM_IFALIGN_PAIR
2606             ? p->size == half_size
2607             : p->size >= half_size) {
2608             if (!HAVE_al8_fast && p->size <= 4) {
2609                 return store_whole_le4(p->haddr, p->size, val_le);
2610             } else if (HAVE_al8) {
2611                 return store_whole_le8(p->haddr, p->size, val_le);
2612             } else {
2613                 cpu_loop_exit_atomic(env_cpu(env), ra);
2614             }
2615         }
2616         /* fall through */
2617 
2618     case MO_ATOM_IFALIGN:
2619     case MO_ATOM_WITHIN16:
2620     case MO_ATOM_NONE:
2621         return store_bytes_leN(p->haddr, p->size, val_le);
2622 
2623     default:
2624         g_assert_not_reached();
2625     }
2626 }
2627 
2628 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val,
2629                     int mmu_idx, uintptr_t ra)
2630 {
2631     if (unlikely(p->flags & TLB_MMIO)) {
2632         io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB);
2633     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2634         /* nothing */
2635     } else {
2636         *(uint8_t *)p->haddr = val;
2637     }
2638 }
2639 
2640 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val,
2641                     int mmu_idx, MemOp memop, uintptr_t ra)
2642 {
2643     if (unlikely(p->flags & TLB_MMIO)) {
2644         io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2645     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2646         /* nothing */
2647     } else {
2648         /* Swap to host endian if necessary, then store. */
2649         if (memop & MO_BSWAP) {
2650             val = bswap16(val);
2651         }
2652         store_atom_2(env, ra, p->haddr, memop, val);
2653     }
2654 }
2655 
2656 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val,
2657                     int mmu_idx, MemOp memop, uintptr_t ra)
2658 {
2659     if (unlikely(p->flags & TLB_MMIO)) {
2660         io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2661     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2662         /* nothing */
2663     } else {
2664         /* Swap to host endian if necessary, then store. */
2665         if (memop & MO_BSWAP) {
2666             val = bswap32(val);
2667         }
2668         store_atom_4(env, ra, p->haddr, memop, val);
2669     }
2670 }
2671 
2672 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val,
2673                     int mmu_idx, MemOp memop, uintptr_t ra)
2674 {
2675     if (unlikely(p->flags & TLB_MMIO)) {
2676         io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop);
2677     } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) {
2678         /* nothing */
2679     } else {
2680         /* Swap to host endian if necessary, then store. */
2681         if (memop & MO_BSWAP) {
2682             val = bswap64(val);
2683         }
2684         store_atom_8(env, ra, p->haddr, memop, val);
2685     }
2686 }
2687 
2688 void helper_stb_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2689                     MemOpIdx oi, uintptr_t ra)
2690 {
2691     MMULookupLocals l;
2692     bool crosspage;
2693 
2694     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8);
2695     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2696     tcg_debug_assert(!crosspage);
2697 
2698     do_st_1(env, &l.page[0], val, l.mmu_idx, ra);
2699 }
2700 
2701 static void do_st2_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2702                        MemOpIdx oi, uintptr_t ra)
2703 {
2704     MMULookupLocals l;
2705     bool crosspage;
2706     uint8_t a, b;
2707 
2708     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2709     if (likely(!crosspage)) {
2710         do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2711         return;
2712     }
2713 
2714     if ((l.memop & MO_BSWAP) == MO_LE) {
2715         a = val, b = val >> 8;
2716     } else {
2717         b = val, a = val >> 8;
2718     }
2719     do_st_1(env, &l.page[0], a, l.mmu_idx, ra);
2720     do_st_1(env, &l.page[1], b, l.mmu_idx, ra);
2721 }
2722 
2723 void helper_stw_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2724                     MemOpIdx oi, uintptr_t retaddr)
2725 {
2726     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16);
2727     do_st2_mmu(env, addr, val, oi, retaddr);
2728 }
2729 
2730 static void do_st4_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2731                        MemOpIdx oi, uintptr_t ra)
2732 {
2733     MMULookupLocals l;
2734     bool crosspage;
2735 
2736     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2737     if (likely(!crosspage)) {
2738         do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2739         return;
2740     }
2741 
2742     /* Swap to little endian for simplicity, then store by bytes. */
2743     if ((l.memop & MO_BSWAP) != MO_LE) {
2744         val = bswap32(val);
2745     }
2746     val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2747     (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2748 }
2749 
2750 void helper_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2751                     MemOpIdx oi, uintptr_t retaddr)
2752 {
2753     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32);
2754     do_st4_mmu(env, addr, val, oi, retaddr);
2755 }
2756 
2757 static void do_st8_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2758                        MemOpIdx oi, uintptr_t ra)
2759 {
2760     MMULookupLocals l;
2761     bool crosspage;
2762 
2763     crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l);
2764     if (likely(!crosspage)) {
2765         do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2766         return;
2767     }
2768 
2769     /* Swap to little endian for simplicity, then store by bytes. */
2770     if ((l.memop & MO_BSWAP) != MO_LE) {
2771         val = bswap64(val);
2772     }
2773     val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra);
2774     (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra);
2775 }
2776 
2777 void helper_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2778                     MemOpIdx oi, uintptr_t retaddr)
2779 {
2780     tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64);
2781     do_st8_mmu(env, addr, val, oi, retaddr);
2782 }
2783 
2784 /*
2785  * Store Helpers for cpu_ldst.h
2786  */
2787 
2788 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi)
2789 {
2790     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2791 }
2792 
2793 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val,
2794                  MemOpIdx oi, uintptr_t retaddr)
2795 {
2796     helper_stb_mmu(env, addr, val, oi, retaddr);
2797     plugin_store_cb(env, addr, oi);
2798 }
2799 
2800 void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2801                     MemOpIdx oi, uintptr_t retaddr)
2802 {
2803     tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_BEUW);
2804     do_st2_mmu(env, addr, val, oi, retaddr);
2805     plugin_store_cb(env, addr, oi);
2806 }
2807 
2808 void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2809                     MemOpIdx oi, uintptr_t retaddr)
2810 {
2811     tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_BEUL);
2812     do_st4_mmu(env, addr, val, oi, retaddr);
2813     plugin_store_cb(env, addr, oi);
2814 }
2815 
2816 void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2817                     MemOpIdx oi, uintptr_t retaddr)
2818 {
2819     tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_BEUQ);
2820     do_st8_mmu(env, addr, val, oi, retaddr);
2821     plugin_store_cb(env, addr, oi);
2822 }
2823 
2824 void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val,
2825                     MemOpIdx oi, uintptr_t retaddr)
2826 {
2827     tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_LEUW);
2828     do_st2_mmu(env, addr, val, oi, retaddr);
2829     plugin_store_cb(env, addr, oi);
2830 }
2831 
2832 void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val,
2833                     MemOpIdx oi, uintptr_t retaddr)
2834 {
2835     tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_LEUL);
2836     do_st4_mmu(env, addr, val, oi, retaddr);
2837     plugin_store_cb(env, addr, oi);
2838 }
2839 
2840 void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val,
2841                     MemOpIdx oi, uintptr_t retaddr)
2842 {
2843     tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_LEUQ);
2844     do_st8_mmu(env, addr, val, oi, retaddr);
2845     plugin_store_cb(env, addr, oi);
2846 }
2847 
2848 void cpu_st16_be_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
2849                      MemOpIdx oi, uintptr_t ra)
2850 {
2851     MemOp mop = get_memop(oi);
2852     int mmu_idx = get_mmuidx(oi);
2853     MemOpIdx new_oi;
2854     unsigned a_bits;
2855 
2856     tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_BE|MO_128));
2857     a_bits = get_alignment_bits(mop);
2858 
2859     /* Handle CPU specific unaligned behaviour */
2860     if (addr & ((1 << a_bits) - 1)) {
2861         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
2862                              mmu_idx, ra);
2863     }
2864 
2865     /* Construct an unaligned 64-bit replacement MemOpIdx. */
2866     mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN;
2867     new_oi = make_memop_idx(mop, mmu_idx);
2868 
2869     helper_stq_mmu(env, addr, int128_gethi(val), new_oi, ra);
2870     helper_stq_mmu(env, addr + 8, int128_getlo(val), new_oi, ra);
2871 
2872     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2873 }
2874 
2875 void cpu_st16_le_mmu(CPUArchState *env, abi_ptr addr, Int128 val,
2876                      MemOpIdx oi, uintptr_t ra)
2877 {
2878     MemOp mop = get_memop(oi);
2879     int mmu_idx = get_mmuidx(oi);
2880     MemOpIdx new_oi;
2881     unsigned a_bits;
2882 
2883     tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_LE|MO_128));
2884     a_bits = get_alignment_bits(mop);
2885 
2886     /* Handle CPU specific unaligned behaviour */
2887     if (addr & ((1 << a_bits) - 1)) {
2888         cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE,
2889                              mmu_idx, ra);
2890     }
2891 
2892     /* Construct an unaligned 64-bit replacement MemOpIdx. */
2893     mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN;
2894     new_oi = make_memop_idx(mop, mmu_idx);
2895 
2896     helper_stq_mmu(env, addr, int128_getlo(val), new_oi, ra);
2897     helper_stq_mmu(env, addr + 8, int128_gethi(val), new_oi, ra);
2898 
2899     qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W);
2900 }
2901 
2902 #include "ldst_common.c.inc"
2903 
2904 /*
2905  * First set of functions passes in OI and RETADDR.
2906  * This makes them callable from other helpers.
2907  */
2908 
2909 #define ATOMIC_NAME(X) \
2910     glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu)
2911 
2912 #define ATOMIC_MMU_CLEANUP
2913 
2914 #include "atomic_common.c.inc"
2915 
2916 #define DATA_SIZE 1
2917 #include "atomic_template.h"
2918 
2919 #define DATA_SIZE 2
2920 #include "atomic_template.h"
2921 
2922 #define DATA_SIZE 4
2923 #include "atomic_template.h"
2924 
2925 #ifdef CONFIG_ATOMIC64
2926 #define DATA_SIZE 8
2927 #include "atomic_template.h"
2928 #endif
2929 
2930 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128
2931 #define DATA_SIZE 16
2932 #include "atomic_template.h"
2933 #endif
2934 
2935 /* Code access functions.  */
2936 
2937 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr)
2938 {
2939     MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true));
2940     return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH);
2941 }
2942 
2943 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr)
2944 {
2945     MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true));
2946     return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH);
2947 }
2948 
2949 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr)
2950 {
2951     MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true));
2952     return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH);
2953 }
2954 
2955 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr)
2956 {
2957     MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true));
2958     return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH);
2959 }
2960 
2961 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr,
2962                          MemOpIdx oi, uintptr_t retaddr)
2963 {
2964     return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
2965 }
2966 
2967 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr,
2968                           MemOpIdx oi, uintptr_t retaddr)
2969 {
2970     return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
2971 }
2972 
2973 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr,
2974                           MemOpIdx oi, uintptr_t retaddr)
2975 {
2976     return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
2977 }
2978 
2979 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr,
2980                           MemOpIdx oi, uintptr_t retaddr)
2981 {
2982     return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH);
2983 }
2984