1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/cputlb.h" 27 #include "exec/memory-internal.h" 28 #include "exec/ram_addr.h" 29 #include "tcg/tcg.h" 30 #include "qemu/error-report.h" 31 #include "exec/log.h" 32 #include "exec/helper-proto.h" 33 #include "qemu/atomic.h" 34 #include "qemu/atomic128.h" 35 #include "exec/translate-all.h" 36 #include "trace.h" 37 #include "tb-hash.h" 38 #include "internal.h" 39 #ifdef CONFIG_PLUGIN 40 #include "qemu/plugin-memory.h" 41 #endif 42 #include "tcg/tcg-ldst.h" 43 44 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 45 /* #define DEBUG_TLB */ 46 /* #define DEBUG_TLB_LOG */ 47 48 #ifdef DEBUG_TLB 49 # define DEBUG_TLB_GATE 1 50 # ifdef DEBUG_TLB_LOG 51 # define DEBUG_TLB_LOG_GATE 1 52 # else 53 # define DEBUG_TLB_LOG_GATE 0 54 # endif 55 #else 56 # define DEBUG_TLB_GATE 0 57 # define DEBUG_TLB_LOG_GATE 0 58 #endif 59 60 #define tlb_debug(fmt, ...) do { \ 61 if (DEBUG_TLB_LOG_GATE) { \ 62 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 63 ## __VA_ARGS__); \ 64 } else if (DEBUG_TLB_GATE) { \ 65 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 66 } \ 67 } while (0) 68 69 #define assert_cpu_is_self(cpu) do { \ 70 if (DEBUG_TLB_GATE) { \ 71 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 72 } \ 73 } while (0) 74 75 /* run_on_cpu_data.target_ptr should always be big enough for a 76 * target_ulong even on 32 bit builds */ 77 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data)); 78 79 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 80 */ 81 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 82 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 83 84 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 85 { 86 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 87 } 88 89 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 90 { 91 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 92 } 93 94 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 95 size_t max_entries) 96 { 97 desc->window_begin_ns = ns; 98 desc->window_max_entries = max_entries; 99 } 100 101 static void tb_jmp_cache_clear_page(CPUState *cpu, target_ulong page_addr) 102 { 103 CPUJumpCache *jc = cpu->tb_jmp_cache; 104 int i, i0; 105 106 if (unlikely(!jc)) { 107 return; 108 } 109 110 i0 = tb_jmp_cache_hash_page(page_addr); 111 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 112 qatomic_set(&jc->array[i0 + i].tb, NULL); 113 } 114 } 115 116 /** 117 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 118 * @desc: The CPUTLBDesc portion of the TLB 119 * @fast: The CPUTLBDescFast portion of the same TLB 120 * 121 * Called with tlb_lock_held. 122 * 123 * We have two main constraints when resizing a TLB: (1) we only resize it 124 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 125 * the array or unnecessarily flushing it), which means we do not control how 126 * frequently the resizing can occur; (2) we don't have access to the guest's 127 * future scheduling decisions, and therefore have to decide the magnitude of 128 * the resize based on past observations. 129 * 130 * In general, a memory-hungry process can benefit greatly from an appropriately 131 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 132 * we just have to make the TLB as large as possible; while an oversized TLB 133 * results in minimal TLB miss rates, it also takes longer to be flushed 134 * (flushes can be _very_ frequent), and the reduced locality can also hurt 135 * performance. 136 * 137 * To achieve near-optimal performance for all kinds of workloads, we: 138 * 139 * 1. Aggressively increase the size of the TLB when the use rate of the 140 * TLB being flushed is high, since it is likely that in the near future this 141 * memory-hungry process will execute again, and its memory hungriness will 142 * probably be similar. 143 * 144 * 2. Slowly reduce the size of the TLB as the use rate declines over a 145 * reasonably large time window. The rationale is that if in such a time window 146 * we have not observed a high TLB use rate, it is likely that we won't observe 147 * it in the near future. In that case, once a time window expires we downsize 148 * the TLB to match the maximum use rate observed in the window. 149 * 150 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 151 * since in that range performance is likely near-optimal. Recall that the TLB 152 * is direct mapped, so we want the use rate to be low (or at least not too 153 * high), since otherwise we are likely to have a significant amount of 154 * conflict misses. 155 */ 156 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 157 int64_t now) 158 { 159 size_t old_size = tlb_n_entries(fast); 160 size_t rate; 161 size_t new_size = old_size; 162 int64_t window_len_ms = 100; 163 int64_t window_len_ns = window_len_ms * 1000 * 1000; 164 bool window_expired = now > desc->window_begin_ns + window_len_ns; 165 166 if (desc->n_used_entries > desc->window_max_entries) { 167 desc->window_max_entries = desc->n_used_entries; 168 } 169 rate = desc->window_max_entries * 100 / old_size; 170 171 if (rate > 70) { 172 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 173 } else if (rate < 30 && window_expired) { 174 size_t ceil = pow2ceil(desc->window_max_entries); 175 size_t expected_rate = desc->window_max_entries * 100 / ceil; 176 177 /* 178 * Avoid undersizing when the max number of entries seen is just below 179 * a pow2. For instance, if max_entries == 1025, the expected use rate 180 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 181 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 182 * later. Thus, make sure that the expected use rate remains below 70%. 183 * (and since we double the size, that means the lowest rate we'd 184 * expect to get is 35%, which is still in the 30-70% range where 185 * we consider that the size is appropriate.) 186 */ 187 if (expected_rate > 70) { 188 ceil *= 2; 189 } 190 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 191 } 192 193 if (new_size == old_size) { 194 if (window_expired) { 195 tlb_window_reset(desc, now, desc->n_used_entries); 196 } 197 return; 198 } 199 200 g_free(fast->table); 201 g_free(desc->fulltlb); 202 203 tlb_window_reset(desc, now, 0); 204 /* desc->n_used_entries is cleared by the caller */ 205 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 206 fast->table = g_try_new(CPUTLBEntry, new_size); 207 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 208 209 /* 210 * If the allocations fail, try smaller sizes. We just freed some 211 * memory, so going back to half of new_size has a good chance of working. 212 * Increased memory pressure elsewhere in the system might cause the 213 * allocations to fail though, so we progressively reduce the allocation 214 * size, aborting if we cannot even allocate the smallest TLB we support. 215 */ 216 while (fast->table == NULL || desc->fulltlb == NULL) { 217 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 218 error_report("%s: %s", __func__, strerror(errno)); 219 abort(); 220 } 221 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 222 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 223 224 g_free(fast->table); 225 g_free(desc->fulltlb); 226 fast->table = g_try_new(CPUTLBEntry, new_size); 227 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 228 } 229 } 230 231 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 232 { 233 desc->n_used_entries = 0; 234 desc->large_page_addr = -1; 235 desc->large_page_mask = -1; 236 desc->vindex = 0; 237 memset(fast->table, -1, sizeof_tlb(fast)); 238 memset(desc->vtable, -1, sizeof(desc->vtable)); 239 } 240 241 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx, 242 int64_t now) 243 { 244 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; 245 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx]; 246 247 tlb_mmu_resize_locked(desc, fast, now); 248 tlb_mmu_flush_locked(desc, fast); 249 } 250 251 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 252 { 253 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 254 255 tlb_window_reset(desc, now, 0); 256 desc->n_used_entries = 0; 257 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 258 fast->table = g_new(CPUTLBEntry, n_entries); 259 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 260 tlb_mmu_flush_locked(desc, fast); 261 } 262 263 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 264 { 265 env_tlb(env)->d[mmu_idx].n_used_entries++; 266 } 267 268 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 269 { 270 env_tlb(env)->d[mmu_idx].n_used_entries--; 271 } 272 273 void tlb_init(CPUState *cpu) 274 { 275 CPUArchState *env = cpu->env_ptr; 276 int64_t now = get_clock_realtime(); 277 int i; 278 279 qemu_spin_init(&env_tlb(env)->c.lock); 280 281 /* All tlbs are initialized flushed. */ 282 env_tlb(env)->c.dirty = 0; 283 284 for (i = 0; i < NB_MMU_MODES; i++) { 285 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now); 286 } 287 } 288 289 void tlb_destroy(CPUState *cpu) 290 { 291 CPUArchState *env = cpu->env_ptr; 292 int i; 293 294 qemu_spin_destroy(&env_tlb(env)->c.lock); 295 for (i = 0; i < NB_MMU_MODES; i++) { 296 CPUTLBDesc *desc = &env_tlb(env)->d[i]; 297 CPUTLBDescFast *fast = &env_tlb(env)->f[i]; 298 299 g_free(fast->table); 300 g_free(desc->fulltlb); 301 } 302 } 303 304 /* flush_all_helper: run fn across all cpus 305 * 306 * If the wait flag is set then the src cpu's helper will be queued as 307 * "safe" work and the loop exited creating a synchronisation point 308 * where all queued work will be finished before execution starts 309 * again. 310 */ 311 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 312 run_on_cpu_data d) 313 { 314 CPUState *cpu; 315 316 CPU_FOREACH(cpu) { 317 if (cpu != src) { 318 async_run_on_cpu(cpu, fn, d); 319 } 320 } 321 } 322 323 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 324 { 325 CPUState *cpu; 326 size_t full = 0, part = 0, elide = 0; 327 328 CPU_FOREACH(cpu) { 329 CPUArchState *env = cpu->env_ptr; 330 331 full += qatomic_read(&env_tlb(env)->c.full_flush_count); 332 part += qatomic_read(&env_tlb(env)->c.part_flush_count); 333 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count); 334 } 335 *pfull = full; 336 *ppart = part; 337 *pelide = elide; 338 } 339 340 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 341 { 342 CPUArchState *env = cpu->env_ptr; 343 uint16_t asked = data.host_int; 344 uint16_t all_dirty, work, to_clean; 345 int64_t now = get_clock_realtime(); 346 347 assert_cpu_is_self(cpu); 348 349 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 350 351 qemu_spin_lock(&env_tlb(env)->c.lock); 352 353 all_dirty = env_tlb(env)->c.dirty; 354 to_clean = asked & all_dirty; 355 all_dirty &= ~to_clean; 356 env_tlb(env)->c.dirty = all_dirty; 357 358 for (work = to_clean; work != 0; work &= work - 1) { 359 int mmu_idx = ctz32(work); 360 tlb_flush_one_mmuidx_locked(env, mmu_idx, now); 361 } 362 363 qemu_spin_unlock(&env_tlb(env)->c.lock); 364 365 tcg_flush_jmp_cache(cpu); 366 367 if (to_clean == ALL_MMUIDX_BITS) { 368 qatomic_set(&env_tlb(env)->c.full_flush_count, 369 env_tlb(env)->c.full_flush_count + 1); 370 } else { 371 qatomic_set(&env_tlb(env)->c.part_flush_count, 372 env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); 373 if (to_clean != asked) { 374 qatomic_set(&env_tlb(env)->c.elide_flush_count, 375 env_tlb(env)->c.elide_flush_count + 376 ctpop16(asked & ~to_clean)); 377 } 378 } 379 } 380 381 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 382 { 383 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 384 385 if (cpu->created && !qemu_cpu_is_self(cpu)) { 386 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 387 RUN_ON_CPU_HOST_INT(idxmap)); 388 } else { 389 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 390 } 391 } 392 393 void tlb_flush(CPUState *cpu) 394 { 395 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 396 } 397 398 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 399 { 400 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 401 402 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 403 404 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 405 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 406 } 407 408 void tlb_flush_all_cpus(CPUState *src_cpu) 409 { 410 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 411 } 412 413 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 414 { 415 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 416 417 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 418 419 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 420 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 421 } 422 423 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 424 { 425 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 426 } 427 428 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 429 target_ulong page, target_ulong mask) 430 { 431 page &= mask; 432 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 433 434 return (page == (tlb_entry->addr_read & mask) || 435 page == (tlb_addr_write(tlb_entry) & mask) || 436 page == (tlb_entry->addr_code & mask)); 437 } 438 439 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, 440 target_ulong page) 441 { 442 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 443 } 444 445 /** 446 * tlb_entry_is_empty - return true if the entry is not in use 447 * @te: pointer to CPUTLBEntry 448 */ 449 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 450 { 451 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 452 } 453 454 /* Called with tlb_c.lock held */ 455 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 456 target_ulong page, 457 target_ulong mask) 458 { 459 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 460 memset(tlb_entry, -1, sizeof(*tlb_entry)); 461 return true; 462 } 463 return false; 464 } 465 466 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, 467 target_ulong page) 468 { 469 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 470 } 471 472 /* Called with tlb_c.lock held */ 473 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx, 474 target_ulong page, 475 target_ulong mask) 476 { 477 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; 478 int k; 479 480 assert_cpu_is_self(env_cpu(env)); 481 for (k = 0; k < CPU_VTLB_SIZE; k++) { 482 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 483 tlb_n_used_entries_dec(env, mmu_idx); 484 } 485 } 486 } 487 488 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 489 target_ulong page) 490 { 491 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1); 492 } 493 494 static void tlb_flush_page_locked(CPUArchState *env, int midx, 495 target_ulong page) 496 { 497 target_ulong lp_addr = env_tlb(env)->d[midx].large_page_addr; 498 target_ulong lp_mask = env_tlb(env)->d[midx].large_page_mask; 499 500 /* Check if we need to flush due to large pages. */ 501 if ((page & lp_mask) == lp_addr) { 502 tlb_debug("forcing full flush midx %d (" 503 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 504 midx, lp_addr, lp_mask); 505 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 506 } else { 507 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 508 tlb_n_used_entries_dec(env, midx); 509 } 510 tlb_flush_vtlb_page_locked(env, midx, page); 511 } 512 } 513 514 /** 515 * tlb_flush_page_by_mmuidx_async_0: 516 * @cpu: cpu on which to flush 517 * @addr: page of virtual address to flush 518 * @idxmap: set of mmu_idx to flush 519 * 520 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 521 * at @addr from the tlbs indicated by @idxmap from @cpu. 522 */ 523 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 524 target_ulong addr, 525 uint16_t idxmap) 526 { 527 CPUArchState *env = cpu->env_ptr; 528 int mmu_idx; 529 530 assert_cpu_is_self(cpu); 531 532 tlb_debug("page addr:" TARGET_FMT_lx " mmu_map:0x%x\n", addr, idxmap); 533 534 qemu_spin_lock(&env_tlb(env)->c.lock); 535 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 536 if ((idxmap >> mmu_idx) & 1) { 537 tlb_flush_page_locked(env, mmu_idx, addr); 538 } 539 } 540 qemu_spin_unlock(&env_tlb(env)->c.lock); 541 542 /* 543 * Discard jump cache entries for any tb which might potentially 544 * overlap the flushed page, which includes the previous. 545 */ 546 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 547 tb_jmp_cache_clear_page(cpu, addr); 548 } 549 550 /** 551 * tlb_flush_page_by_mmuidx_async_1: 552 * @cpu: cpu on which to flush 553 * @data: encoded addr + idxmap 554 * 555 * Helper for tlb_flush_page_by_mmuidx and friends, called through 556 * async_run_on_cpu. The idxmap parameter is encoded in the page 557 * offset of the target_ptr field. This limits the set of mmu_idx 558 * that can be passed via this method. 559 */ 560 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 561 run_on_cpu_data data) 562 { 563 target_ulong addr_and_idxmap = (target_ulong) data.target_ptr; 564 target_ulong addr = addr_and_idxmap & TARGET_PAGE_MASK; 565 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 566 567 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 568 } 569 570 typedef struct { 571 target_ulong addr; 572 uint16_t idxmap; 573 } TLBFlushPageByMMUIdxData; 574 575 /** 576 * tlb_flush_page_by_mmuidx_async_2: 577 * @cpu: cpu on which to flush 578 * @data: allocated addr + idxmap 579 * 580 * Helper for tlb_flush_page_by_mmuidx and friends, called through 581 * async_run_on_cpu. The addr+idxmap parameters are stored in a 582 * TLBFlushPageByMMUIdxData structure that has been allocated 583 * specifically for this helper. Free the structure when done. 584 */ 585 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 586 run_on_cpu_data data) 587 { 588 TLBFlushPageByMMUIdxData *d = data.host_ptr; 589 590 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 591 g_free(d); 592 } 593 594 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap) 595 { 596 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap); 597 598 /* This should already be page aligned */ 599 addr &= TARGET_PAGE_MASK; 600 601 if (qemu_cpu_is_self(cpu)) { 602 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 603 } else if (idxmap < TARGET_PAGE_SIZE) { 604 /* 605 * Most targets have only a few mmu_idx. In the case where 606 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 607 * allocating memory for this operation. 608 */ 609 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 610 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 611 } else { 612 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 613 614 /* Otherwise allocate a structure, freed by the worker. */ 615 d->addr = addr; 616 d->idxmap = idxmap; 617 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 618 RUN_ON_CPU_HOST_PTR(d)); 619 } 620 } 621 622 void tlb_flush_page(CPUState *cpu, target_ulong addr) 623 { 624 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 625 } 626 627 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr, 628 uint16_t idxmap) 629 { 630 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 631 632 /* This should already be page aligned */ 633 addr &= TARGET_PAGE_MASK; 634 635 /* 636 * Allocate memory to hold addr+idxmap only when needed. 637 * See tlb_flush_page_by_mmuidx for details. 638 */ 639 if (idxmap < TARGET_PAGE_SIZE) { 640 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 641 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 642 } else { 643 CPUState *dst_cpu; 644 645 /* Allocate a separate data block for each destination cpu. */ 646 CPU_FOREACH(dst_cpu) { 647 if (dst_cpu != src_cpu) { 648 TLBFlushPageByMMUIdxData *d 649 = g_new(TLBFlushPageByMMUIdxData, 1); 650 651 d->addr = addr; 652 d->idxmap = idxmap; 653 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 654 RUN_ON_CPU_HOST_PTR(d)); 655 } 656 } 657 } 658 659 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 660 } 661 662 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr) 663 { 664 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 665 } 666 667 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 668 target_ulong addr, 669 uint16_t idxmap) 670 { 671 tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap); 672 673 /* This should already be page aligned */ 674 addr &= TARGET_PAGE_MASK; 675 676 /* 677 * Allocate memory to hold addr+idxmap only when needed. 678 * See tlb_flush_page_by_mmuidx for details. 679 */ 680 if (idxmap < TARGET_PAGE_SIZE) { 681 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 682 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 683 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 684 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 685 } else { 686 CPUState *dst_cpu; 687 TLBFlushPageByMMUIdxData *d; 688 689 /* Allocate a separate data block for each destination cpu. */ 690 CPU_FOREACH(dst_cpu) { 691 if (dst_cpu != src_cpu) { 692 d = g_new(TLBFlushPageByMMUIdxData, 1); 693 d->addr = addr; 694 d->idxmap = idxmap; 695 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 696 RUN_ON_CPU_HOST_PTR(d)); 697 } 698 } 699 700 d = g_new(TLBFlushPageByMMUIdxData, 1); 701 d->addr = addr; 702 d->idxmap = idxmap; 703 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 704 RUN_ON_CPU_HOST_PTR(d)); 705 } 706 } 707 708 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr) 709 { 710 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 711 } 712 713 static void tlb_flush_range_locked(CPUArchState *env, int midx, 714 target_ulong addr, target_ulong len, 715 unsigned bits) 716 { 717 CPUTLBDesc *d = &env_tlb(env)->d[midx]; 718 CPUTLBDescFast *f = &env_tlb(env)->f[midx]; 719 target_ulong mask = MAKE_64BIT_MASK(0, bits); 720 721 /* 722 * If @bits is smaller than the tlb size, there may be multiple entries 723 * within the TLB; otherwise all addresses that match under @mask hit 724 * the same TLB entry. 725 * TODO: Perhaps allow bits to be a few bits less than the size. 726 * For now, just flush the entire TLB. 727 * 728 * If @len is larger than the tlb size, then it will take longer to 729 * test all of the entries in the TLB than it will to flush it all. 730 */ 731 if (mask < f->mask || len > f->mask) { 732 tlb_debug("forcing full flush midx %d (" 733 TARGET_FMT_lx "/" TARGET_FMT_lx "+" TARGET_FMT_lx ")\n", 734 midx, addr, mask, len); 735 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 736 return; 737 } 738 739 /* 740 * Check if we need to flush due to large pages. 741 * Because large_page_mask contains all 1's from the msb, 742 * we only need to test the end of the range. 743 */ 744 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 745 tlb_debug("forcing full flush midx %d (" 746 TARGET_FMT_lx "/" TARGET_FMT_lx ")\n", 747 midx, d->large_page_addr, d->large_page_mask); 748 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 749 return; 750 } 751 752 for (target_ulong i = 0; i < len; i += TARGET_PAGE_SIZE) { 753 target_ulong page = addr + i; 754 CPUTLBEntry *entry = tlb_entry(env, midx, page); 755 756 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 757 tlb_n_used_entries_dec(env, midx); 758 } 759 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask); 760 } 761 } 762 763 typedef struct { 764 target_ulong addr; 765 target_ulong len; 766 uint16_t idxmap; 767 uint16_t bits; 768 } TLBFlushRangeData; 769 770 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 771 TLBFlushRangeData d) 772 { 773 CPUArchState *env = cpu->env_ptr; 774 int mmu_idx; 775 776 assert_cpu_is_self(cpu); 777 778 tlb_debug("range:" TARGET_FMT_lx "/%u+" TARGET_FMT_lx " mmu_map:0x%x\n", 779 d.addr, d.bits, d.len, d.idxmap); 780 781 qemu_spin_lock(&env_tlb(env)->c.lock); 782 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 783 if ((d.idxmap >> mmu_idx) & 1) { 784 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits); 785 } 786 } 787 qemu_spin_unlock(&env_tlb(env)->c.lock); 788 789 /* 790 * If the length is larger than the jump cache size, then it will take 791 * longer to clear each entry individually than it will to clear it all. 792 */ 793 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 794 tcg_flush_jmp_cache(cpu); 795 return; 796 } 797 798 /* 799 * Discard jump cache entries for any tb which might potentially 800 * overlap the flushed pages, which includes the previous. 801 */ 802 d.addr -= TARGET_PAGE_SIZE; 803 for (target_ulong i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 804 tb_jmp_cache_clear_page(cpu, d.addr); 805 d.addr += TARGET_PAGE_SIZE; 806 } 807 } 808 809 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 810 run_on_cpu_data data) 811 { 812 TLBFlushRangeData *d = data.host_ptr; 813 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 814 g_free(d); 815 } 816 817 void tlb_flush_range_by_mmuidx(CPUState *cpu, target_ulong addr, 818 target_ulong len, uint16_t idxmap, 819 unsigned bits) 820 { 821 TLBFlushRangeData d; 822 823 /* 824 * If all bits are significant, and len is small, 825 * this devolves to tlb_flush_page. 826 */ 827 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 828 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 829 return; 830 } 831 /* If no page bits are significant, this devolves to tlb_flush. */ 832 if (bits < TARGET_PAGE_BITS) { 833 tlb_flush_by_mmuidx(cpu, idxmap); 834 return; 835 } 836 837 /* This should already be page aligned */ 838 d.addr = addr & TARGET_PAGE_MASK; 839 d.len = len; 840 d.idxmap = idxmap; 841 d.bits = bits; 842 843 if (qemu_cpu_is_self(cpu)) { 844 tlb_flush_range_by_mmuidx_async_0(cpu, d); 845 } else { 846 /* Otherwise allocate a structure, freed by the worker. */ 847 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 848 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 849 RUN_ON_CPU_HOST_PTR(p)); 850 } 851 } 852 853 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, target_ulong addr, 854 uint16_t idxmap, unsigned bits) 855 { 856 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 857 } 858 859 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 860 target_ulong addr, target_ulong len, 861 uint16_t idxmap, unsigned bits) 862 { 863 TLBFlushRangeData d; 864 CPUState *dst_cpu; 865 866 /* 867 * If all bits are significant, and len is small, 868 * this devolves to tlb_flush_page. 869 */ 870 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 871 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 872 return; 873 } 874 /* If no page bits are significant, this devolves to tlb_flush. */ 875 if (bits < TARGET_PAGE_BITS) { 876 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 877 return; 878 } 879 880 /* This should already be page aligned */ 881 d.addr = addr & TARGET_PAGE_MASK; 882 d.len = len; 883 d.idxmap = idxmap; 884 d.bits = bits; 885 886 /* Allocate a separate data block for each destination cpu. */ 887 CPU_FOREACH(dst_cpu) { 888 if (dst_cpu != src_cpu) { 889 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 890 async_run_on_cpu(dst_cpu, 891 tlb_flush_range_by_mmuidx_async_1, 892 RUN_ON_CPU_HOST_PTR(p)); 893 } 894 } 895 896 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 897 } 898 899 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 900 target_ulong addr, 901 uint16_t idxmap, unsigned bits) 902 { 903 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 904 idxmap, bits); 905 } 906 907 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 908 target_ulong addr, 909 target_ulong len, 910 uint16_t idxmap, 911 unsigned bits) 912 { 913 TLBFlushRangeData d, *p; 914 CPUState *dst_cpu; 915 916 /* 917 * If all bits are significant, and len is small, 918 * this devolves to tlb_flush_page. 919 */ 920 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 921 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 922 return; 923 } 924 /* If no page bits are significant, this devolves to tlb_flush. */ 925 if (bits < TARGET_PAGE_BITS) { 926 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 927 return; 928 } 929 930 /* This should already be page aligned */ 931 d.addr = addr & TARGET_PAGE_MASK; 932 d.len = len; 933 d.idxmap = idxmap; 934 d.bits = bits; 935 936 /* Allocate a separate data block for each destination cpu. */ 937 CPU_FOREACH(dst_cpu) { 938 if (dst_cpu != src_cpu) { 939 p = g_memdup(&d, sizeof(d)); 940 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 941 RUN_ON_CPU_HOST_PTR(p)); 942 } 943 } 944 945 p = g_memdup(&d, sizeof(d)); 946 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 947 RUN_ON_CPU_HOST_PTR(p)); 948 } 949 950 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 951 target_ulong addr, 952 uint16_t idxmap, 953 unsigned bits) 954 { 955 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 956 idxmap, bits); 957 } 958 959 /* update the TLBs so that writes to code in the virtual page 'addr' 960 can be detected */ 961 void tlb_protect_code(ram_addr_t ram_addr) 962 { 963 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 964 TARGET_PAGE_SIZE, 965 DIRTY_MEMORY_CODE); 966 } 967 968 /* update the TLB so that writes in physical page 'phys_addr' are no longer 969 tested for self modifying code */ 970 void tlb_unprotect_code(ram_addr_t ram_addr) 971 { 972 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 973 } 974 975 976 /* 977 * Dirty write flag handling 978 * 979 * When the TCG code writes to a location it looks up the address in 980 * the TLB and uses that data to compute the final address. If any of 981 * the lower bits of the address are set then the slow path is forced. 982 * There are a number of reasons to do this but for normal RAM the 983 * most usual is detecting writes to code regions which may invalidate 984 * generated code. 985 * 986 * Other vCPUs might be reading their TLBs during guest execution, so we update 987 * te->addr_write with qatomic_set. We don't need to worry about this for 988 * oversized guests as MTTCG is disabled for them. 989 * 990 * Called with tlb_c.lock held. 991 */ 992 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 993 uintptr_t start, uintptr_t length) 994 { 995 uintptr_t addr = tlb_entry->addr_write; 996 997 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 998 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 999 addr &= TARGET_PAGE_MASK; 1000 addr += tlb_entry->addend; 1001 if ((addr - start) < length) { 1002 #if TCG_OVERSIZED_GUEST 1003 tlb_entry->addr_write |= TLB_NOTDIRTY; 1004 #else 1005 qatomic_set(&tlb_entry->addr_write, 1006 tlb_entry->addr_write | TLB_NOTDIRTY); 1007 #endif 1008 } 1009 } 1010 } 1011 1012 /* 1013 * Called with tlb_c.lock held. 1014 * Called only from the vCPU context, i.e. the TLB's owner thread. 1015 */ 1016 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 1017 { 1018 *d = *s; 1019 } 1020 1021 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1022 * the target vCPU). 1023 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1024 * thing actually updated is the target TLB entry ->addr_write flags. 1025 */ 1026 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1027 { 1028 CPUArchState *env; 1029 1030 int mmu_idx; 1031 1032 env = cpu->env_ptr; 1033 qemu_spin_lock(&env_tlb(env)->c.lock); 1034 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1035 unsigned int i; 1036 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]); 1037 1038 for (i = 0; i < n; i++) { 1039 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], 1040 start1, length); 1041 } 1042 1043 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1044 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], 1045 start1, length); 1046 } 1047 } 1048 qemu_spin_unlock(&env_tlb(env)->c.lock); 1049 } 1050 1051 /* Called with tlb_c.lock held */ 1052 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1053 target_ulong vaddr) 1054 { 1055 if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) { 1056 tlb_entry->addr_write = vaddr; 1057 } 1058 } 1059 1060 /* update the TLB corresponding to virtual page vaddr 1061 so that it is no longer dirty */ 1062 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr) 1063 { 1064 CPUArchState *env = cpu->env_ptr; 1065 int mmu_idx; 1066 1067 assert_cpu_is_self(cpu); 1068 1069 vaddr &= TARGET_PAGE_MASK; 1070 qemu_spin_lock(&env_tlb(env)->c.lock); 1071 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1072 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, vaddr), vaddr); 1073 } 1074 1075 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1076 int k; 1077 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1078 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], vaddr); 1079 } 1080 } 1081 qemu_spin_unlock(&env_tlb(env)->c.lock); 1082 } 1083 1084 /* Our TLB does not support large pages, so remember the area covered by 1085 large pages and trigger a full TLB flush if these are invalidated. */ 1086 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 1087 target_ulong vaddr, target_ulong size) 1088 { 1089 target_ulong lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; 1090 target_ulong lp_mask = ~(size - 1); 1091 1092 if (lp_addr == (target_ulong)-1) { 1093 /* No previous large page. */ 1094 lp_addr = vaddr; 1095 } else { 1096 /* Extend the existing region to include the new page. 1097 This is a compromise between unnecessary flushes and 1098 the cost of maintaining a full variable size TLB. */ 1099 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; 1100 while (((lp_addr ^ vaddr) & lp_mask) != 0) { 1101 lp_mask <<= 1; 1102 } 1103 } 1104 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1105 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; 1106 } 1107 1108 /* 1109 * Add a new TLB entry. At most one entry for a given virtual address 1110 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1111 * supplied size is only used by tlb_flush_page. 1112 * 1113 * Called from TCG-generated code, which is under an RCU read-side 1114 * critical section. 1115 */ 1116 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1117 target_ulong vaddr, CPUTLBEntryFull *full) 1118 { 1119 CPUArchState *env = cpu->env_ptr; 1120 CPUTLB *tlb = env_tlb(env); 1121 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1122 MemoryRegionSection *section; 1123 unsigned int index; 1124 target_ulong address; 1125 target_ulong write_address; 1126 uintptr_t addend; 1127 CPUTLBEntry *te, tn; 1128 hwaddr iotlb, xlat, sz, paddr_page; 1129 target_ulong vaddr_page; 1130 int asidx, wp_flags, prot; 1131 bool is_ram, is_romd; 1132 1133 assert_cpu_is_self(cpu); 1134 1135 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1136 sz = TARGET_PAGE_SIZE; 1137 } else { 1138 sz = (hwaddr)1 << full->lg_page_size; 1139 tlb_add_large_page(env, mmu_idx, vaddr, sz); 1140 } 1141 vaddr_page = vaddr & TARGET_PAGE_MASK; 1142 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1143 1144 prot = full->prot; 1145 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1146 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1147 &xlat, &sz, full->attrs, &prot); 1148 assert(sz >= TARGET_PAGE_SIZE); 1149 1150 tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" HWADDR_FMT_plx 1151 " prot=%x idx=%d\n", 1152 vaddr, full->phys_addr, prot, mmu_idx); 1153 1154 address = vaddr_page; 1155 if (full->lg_page_size < TARGET_PAGE_BITS) { 1156 /* Repeat the MMU check and TLB fill on every access. */ 1157 address |= TLB_INVALID_MASK; 1158 } 1159 if (full->attrs.byte_swap) { 1160 address |= TLB_BSWAP; 1161 } 1162 1163 is_ram = memory_region_is_ram(section->mr); 1164 is_romd = memory_region_is_romd(section->mr); 1165 1166 if (is_ram || is_romd) { 1167 /* RAM and ROMD both have associated host memory. */ 1168 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1169 } else { 1170 /* I/O does not; force the host address to NULL. */ 1171 addend = 0; 1172 } 1173 1174 write_address = address; 1175 if (is_ram) { 1176 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1177 /* 1178 * Computing is_clean is expensive; avoid all that unless 1179 * the page is actually writable. 1180 */ 1181 if (prot & PAGE_WRITE) { 1182 if (section->readonly) { 1183 write_address |= TLB_DISCARD_WRITE; 1184 } else if (cpu_physical_memory_is_clean(iotlb)) { 1185 write_address |= TLB_NOTDIRTY; 1186 } 1187 } 1188 } else { 1189 /* I/O or ROMD */ 1190 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1191 /* 1192 * Writes to romd devices must go through MMIO to enable write. 1193 * Reads to romd devices go through the ram_ptr found above, 1194 * but of course reads to I/O must go through MMIO. 1195 */ 1196 write_address |= TLB_MMIO; 1197 if (!is_romd) { 1198 address = write_address; 1199 } 1200 } 1201 1202 wp_flags = cpu_watchpoint_address_matches(cpu, vaddr_page, 1203 TARGET_PAGE_SIZE); 1204 1205 index = tlb_index(env, mmu_idx, vaddr_page); 1206 te = tlb_entry(env, mmu_idx, vaddr_page); 1207 1208 /* 1209 * Hold the TLB lock for the rest of the function. We could acquire/release 1210 * the lock several times in the function, but it is faster to amortize the 1211 * acquisition cost by acquiring it just once. Note that this leads to 1212 * a longer critical section, but this is not a concern since the TLB lock 1213 * is unlikely to be contended. 1214 */ 1215 qemu_spin_lock(&tlb->c.lock); 1216 1217 /* Note that the tlb is no longer clean. */ 1218 tlb->c.dirty |= 1 << mmu_idx; 1219 1220 /* Make sure there's no cached translation for the new page. */ 1221 tlb_flush_vtlb_page_locked(env, mmu_idx, vaddr_page); 1222 1223 /* 1224 * Only evict the old entry to the victim tlb if it's for a 1225 * different page; otherwise just overwrite the stale data. 1226 */ 1227 if (!tlb_hit_page_anyprot(te, vaddr_page) && !tlb_entry_is_empty(te)) { 1228 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1229 CPUTLBEntry *tv = &desc->vtable[vidx]; 1230 1231 /* Evict the old entry into the victim tlb. */ 1232 copy_tlb_helper_locked(tv, te); 1233 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1234 tlb_n_used_entries_dec(env, mmu_idx); 1235 } 1236 1237 /* refill the tlb */ 1238 /* 1239 * At this point iotlb contains a physical section number in the lower 1240 * TARGET_PAGE_BITS, and either 1241 * + the ram_addr_t of the page base of the target RAM (RAM) 1242 * + the offset within section->mr of the page base (I/O, ROMD) 1243 * We subtract the vaddr_page (which is page aligned and thus won't 1244 * disturb the low bits) to give an offset which can be added to the 1245 * (non-page-aligned) vaddr of the eventual memory access to get 1246 * the MemoryRegion offset for the access. Note that the vaddr we 1247 * subtract here is that of the page base, and not the same as the 1248 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 1249 */ 1250 desc->fulltlb[index] = *full; 1251 desc->fulltlb[index].xlat_section = iotlb - vaddr_page; 1252 desc->fulltlb[index].phys_addr = paddr_page; 1253 1254 /* Now calculate the new entry */ 1255 tn.addend = addend - vaddr_page; 1256 if (prot & PAGE_READ) { 1257 tn.addr_read = address; 1258 if (wp_flags & BP_MEM_READ) { 1259 tn.addr_read |= TLB_WATCHPOINT; 1260 } 1261 } else { 1262 tn.addr_read = -1; 1263 } 1264 1265 if (prot & PAGE_EXEC) { 1266 tn.addr_code = address; 1267 } else { 1268 tn.addr_code = -1; 1269 } 1270 1271 tn.addr_write = -1; 1272 if (prot & PAGE_WRITE) { 1273 tn.addr_write = write_address; 1274 if (prot & PAGE_WRITE_INV) { 1275 tn.addr_write |= TLB_INVALID_MASK; 1276 } 1277 if (wp_flags & BP_MEM_WRITE) { 1278 tn.addr_write |= TLB_WATCHPOINT; 1279 } 1280 } 1281 1282 copy_tlb_helper_locked(te, &tn); 1283 tlb_n_used_entries_inc(env, mmu_idx); 1284 qemu_spin_unlock(&tlb->c.lock); 1285 } 1286 1287 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr, 1288 hwaddr paddr, MemTxAttrs attrs, int prot, 1289 int mmu_idx, target_ulong size) 1290 { 1291 CPUTLBEntryFull full = { 1292 .phys_addr = paddr, 1293 .attrs = attrs, 1294 .prot = prot, 1295 .lg_page_size = ctz64(size) 1296 }; 1297 1298 assert(is_power_of_2(size)); 1299 tlb_set_page_full(cpu, mmu_idx, vaddr, &full); 1300 } 1301 1302 void tlb_set_page(CPUState *cpu, target_ulong vaddr, 1303 hwaddr paddr, int prot, 1304 int mmu_idx, target_ulong size) 1305 { 1306 tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED, 1307 prot, mmu_idx, size); 1308 } 1309 1310 /* 1311 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1312 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1313 * be discarded and looked up again (e.g. via tlb_entry()). 1314 */ 1315 static void tlb_fill(CPUState *cpu, target_ulong addr, int size, 1316 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1317 { 1318 bool ok; 1319 1320 /* 1321 * This is not a probe, so only valid return is success; failure 1322 * should result in exception + longjmp to the cpu loop. 1323 */ 1324 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size, 1325 access_type, mmu_idx, false, retaddr); 1326 assert(ok); 1327 } 1328 1329 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1330 MMUAccessType access_type, 1331 int mmu_idx, uintptr_t retaddr) 1332 { 1333 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1334 mmu_idx, retaddr); 1335 } 1336 1337 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 1338 vaddr addr, unsigned size, 1339 MMUAccessType access_type, 1340 int mmu_idx, MemTxAttrs attrs, 1341 MemTxResult response, 1342 uintptr_t retaddr) 1343 { 1344 CPUClass *cc = CPU_GET_CLASS(cpu); 1345 1346 if (!cpu->ignore_memory_transaction_failures && 1347 cc->tcg_ops->do_transaction_failed) { 1348 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1349 access_type, mmu_idx, attrs, 1350 response, retaddr); 1351 } 1352 } 1353 1354 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full, 1355 int mmu_idx, target_ulong addr, uintptr_t retaddr, 1356 MMUAccessType access_type, MemOp op) 1357 { 1358 CPUState *cpu = env_cpu(env); 1359 hwaddr mr_offset; 1360 MemoryRegionSection *section; 1361 MemoryRegion *mr; 1362 uint64_t val; 1363 MemTxResult r; 1364 1365 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1366 mr = section->mr; 1367 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1368 cpu->mem_io_pc = retaddr; 1369 if (!cpu->can_do_io) { 1370 cpu_io_recompile(cpu, retaddr); 1371 } 1372 1373 { 1374 QEMU_IOTHREAD_LOCK_GUARD(); 1375 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs); 1376 } 1377 1378 if (r != MEMTX_OK) { 1379 hwaddr physaddr = mr_offset + 1380 section->offset_within_address_space - 1381 section->offset_within_region; 1382 1383 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, 1384 mmu_idx, full->attrs, r, retaddr); 1385 } 1386 return val; 1387 } 1388 1389 /* 1390 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin. 1391 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match 1392 * because of the side effect of io_writex changing memory layout. 1393 */ 1394 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section, 1395 hwaddr mr_offset) 1396 { 1397 #ifdef CONFIG_PLUGIN 1398 SavedIOTLB *saved = &cs->saved_iotlb; 1399 saved->section = section; 1400 saved->mr_offset = mr_offset; 1401 #endif 1402 } 1403 1404 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full, 1405 int mmu_idx, uint64_t val, target_ulong addr, 1406 uintptr_t retaddr, MemOp op) 1407 { 1408 CPUState *cpu = env_cpu(env); 1409 hwaddr mr_offset; 1410 MemoryRegionSection *section; 1411 MemoryRegion *mr; 1412 MemTxResult r; 1413 1414 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1415 mr = section->mr; 1416 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1417 if (!cpu->can_do_io) { 1418 cpu_io_recompile(cpu, retaddr); 1419 } 1420 cpu->mem_io_pc = retaddr; 1421 1422 /* 1423 * The memory_region_dispatch may trigger a flush/resize 1424 * so for plugins we save the iotlb_data just in case. 1425 */ 1426 save_iotlb_data(cpu, section, mr_offset); 1427 1428 { 1429 QEMU_IOTHREAD_LOCK_GUARD(); 1430 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs); 1431 } 1432 1433 if (r != MEMTX_OK) { 1434 hwaddr physaddr = mr_offset + 1435 section->offset_within_address_space - 1436 section->offset_within_region; 1437 1438 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), 1439 MMU_DATA_STORE, mmu_idx, full->attrs, r, 1440 retaddr); 1441 } 1442 } 1443 1444 /* Return true if ADDR is present in the victim tlb, and has been copied 1445 back to the main tlb. */ 1446 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 1447 MMUAccessType access_type, target_ulong page) 1448 { 1449 size_t vidx; 1450 1451 assert_cpu_is_self(env_cpu(env)); 1452 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1453 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; 1454 target_ulong cmp = tlb_read_idx(vtlb, access_type); 1455 1456 if (cmp == page) { 1457 /* Found entry in victim tlb, swap tlb and iotlb. */ 1458 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; 1459 1460 qemu_spin_lock(&env_tlb(env)->c.lock); 1461 copy_tlb_helper_locked(&tmptlb, tlb); 1462 copy_tlb_helper_locked(tlb, vtlb); 1463 copy_tlb_helper_locked(vtlb, &tmptlb); 1464 qemu_spin_unlock(&env_tlb(env)->c.lock); 1465 1466 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1467 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx]; 1468 CPUTLBEntryFull tmpf; 1469 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1470 return true; 1471 } 1472 } 1473 return false; 1474 } 1475 1476 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1477 CPUTLBEntryFull *full, uintptr_t retaddr) 1478 { 1479 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1480 1481 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1482 1483 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1484 tb_invalidate_phys_range_fast(ram_addr, size, retaddr); 1485 } 1486 1487 /* 1488 * Set both VGA and migration bits for simplicity and to remove 1489 * the notdirty callback faster. 1490 */ 1491 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1492 1493 /* We remove the notdirty callback only if the code has been flushed. */ 1494 if (!cpu_physical_memory_is_clean(ram_addr)) { 1495 trace_memory_notdirty_set_dirty(mem_vaddr); 1496 tlb_set_dirty(cpu, mem_vaddr); 1497 } 1498 } 1499 1500 static int probe_access_internal(CPUArchState *env, target_ulong addr, 1501 int fault_size, MMUAccessType access_type, 1502 int mmu_idx, bool nonfault, 1503 void **phost, CPUTLBEntryFull **pfull, 1504 uintptr_t retaddr) 1505 { 1506 uintptr_t index = tlb_index(env, mmu_idx, addr); 1507 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1508 target_ulong tlb_addr = tlb_read_idx(entry, access_type); 1509 target_ulong page_addr = addr & TARGET_PAGE_MASK; 1510 int flags = TLB_FLAGS_MASK; 1511 1512 if (!tlb_hit_page(tlb_addr, page_addr)) { 1513 if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) { 1514 CPUState *cs = env_cpu(env); 1515 1516 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type, 1517 mmu_idx, nonfault, retaddr)) { 1518 /* Non-faulting page table read failed. */ 1519 *phost = NULL; 1520 *pfull = NULL; 1521 return TLB_INVALID_MASK; 1522 } 1523 1524 /* TLB resize via tlb_fill may have moved the entry. */ 1525 index = tlb_index(env, mmu_idx, addr); 1526 entry = tlb_entry(env, mmu_idx, addr); 1527 1528 /* 1529 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1530 * to force the next access through tlb_fill. We've just 1531 * called tlb_fill, so we know that this entry *is* valid. 1532 */ 1533 flags &= ~TLB_INVALID_MASK; 1534 } 1535 tlb_addr = tlb_read_idx(entry, access_type); 1536 } 1537 flags &= tlb_addr; 1538 1539 *pfull = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1540 1541 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1542 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1543 *phost = NULL; 1544 return TLB_MMIO; 1545 } 1546 1547 /* Everything else is RAM. */ 1548 *phost = (void *)((uintptr_t)addr + entry->addend); 1549 return flags; 1550 } 1551 1552 int probe_access_full(CPUArchState *env, target_ulong addr, int size, 1553 MMUAccessType access_type, int mmu_idx, 1554 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1555 uintptr_t retaddr) 1556 { 1557 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1558 nonfault, phost, pfull, retaddr); 1559 1560 /* Handle clean RAM pages. */ 1561 if (unlikely(flags & TLB_NOTDIRTY)) { 1562 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr); 1563 flags &= ~TLB_NOTDIRTY; 1564 } 1565 1566 return flags; 1567 } 1568 1569 int probe_access_flags(CPUArchState *env, target_ulong addr, int size, 1570 MMUAccessType access_type, int mmu_idx, 1571 bool nonfault, void **phost, uintptr_t retaddr) 1572 { 1573 CPUTLBEntryFull *full; 1574 int flags; 1575 1576 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1577 1578 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1579 nonfault, phost, &full, retaddr); 1580 1581 /* Handle clean RAM pages. */ 1582 if (unlikely(flags & TLB_NOTDIRTY)) { 1583 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1584 flags &= ~TLB_NOTDIRTY; 1585 } 1586 1587 return flags; 1588 } 1589 1590 void *probe_access(CPUArchState *env, target_ulong addr, int size, 1591 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1592 { 1593 CPUTLBEntryFull *full; 1594 void *host; 1595 int flags; 1596 1597 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1598 1599 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1600 false, &host, &full, retaddr); 1601 1602 /* Per the interface, size == 0 merely faults the access. */ 1603 if (size == 0) { 1604 return NULL; 1605 } 1606 1607 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1608 /* Handle watchpoints. */ 1609 if (flags & TLB_WATCHPOINT) { 1610 int wp_access = (access_type == MMU_DATA_STORE 1611 ? BP_MEM_WRITE : BP_MEM_READ); 1612 cpu_check_watchpoint(env_cpu(env), addr, size, 1613 full->attrs, wp_access, retaddr); 1614 } 1615 1616 /* Handle clean RAM pages. */ 1617 if (flags & TLB_NOTDIRTY) { 1618 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1619 } 1620 } 1621 1622 return host; 1623 } 1624 1625 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1626 MMUAccessType access_type, int mmu_idx) 1627 { 1628 CPUTLBEntryFull *full; 1629 void *host; 1630 int flags; 1631 1632 flags = probe_access_internal(env, addr, 0, access_type, 1633 mmu_idx, true, &host, &full, 0); 1634 1635 /* No combination of flags are expected by the caller. */ 1636 return flags ? NULL : host; 1637 } 1638 1639 /* 1640 * Return a ram_addr_t for the virtual address for execution. 1641 * 1642 * Return -1 if we can't translate and execute from an entire page 1643 * of RAM. This will force us to execute by loading and translating 1644 * one insn at a time, without caching. 1645 * 1646 * NOTE: This function will trigger an exception if the page is 1647 * not executable. 1648 */ 1649 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr, 1650 void **hostp) 1651 { 1652 CPUTLBEntryFull *full; 1653 void *p; 1654 1655 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH, 1656 cpu_mmu_index(env, true), false, &p, &full, 0); 1657 if (p == NULL) { 1658 return -1; 1659 } 1660 1661 if (full->lg_page_size < TARGET_PAGE_BITS) { 1662 return -1; 1663 } 1664 1665 if (hostp) { 1666 *hostp = p; 1667 } 1668 return qemu_ram_addr_from_host_nofail(p); 1669 } 1670 1671 /* Load/store with atomicity primitives. */ 1672 #include "ldst_atomicity.c.inc" 1673 1674 #ifdef CONFIG_PLUGIN 1675 /* 1676 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1677 * This should be a hot path as we will have just looked this path up 1678 * in the softmmu lookup code (or helper). We don't handle re-fills or 1679 * checking the victim table. This is purely informational. 1680 * 1681 * This almost never fails as the memory access being instrumented 1682 * should have just filled the TLB. The one corner case is io_writex 1683 * which can cause TLB flushes and potential resizing of the TLBs 1684 * losing the information we need. In those cases we need to recover 1685 * data from a copy of the CPUTLBEntryFull. As long as this always occurs 1686 * from the same thread (which a mem callback will be) this is safe. 1687 */ 1688 1689 bool tlb_plugin_lookup(CPUState *cpu, target_ulong addr, int mmu_idx, 1690 bool is_store, struct qemu_plugin_hwaddr *data) 1691 { 1692 CPUArchState *env = cpu->env_ptr; 1693 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1694 uintptr_t index = tlb_index(env, mmu_idx, addr); 1695 target_ulong tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read; 1696 1697 if (likely(tlb_hit(tlb_addr, addr))) { 1698 /* We must have an iotlb entry for MMIO */ 1699 if (tlb_addr & TLB_MMIO) { 1700 CPUTLBEntryFull *full; 1701 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1702 data->is_io = true; 1703 data->v.io.section = 1704 iotlb_to_section(cpu, full->xlat_section, full->attrs); 1705 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1706 } else { 1707 data->is_io = false; 1708 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1709 } 1710 return true; 1711 } else { 1712 SavedIOTLB *saved = &cpu->saved_iotlb; 1713 data->is_io = true; 1714 data->v.io.section = saved->section; 1715 data->v.io.offset = saved->mr_offset; 1716 return true; 1717 } 1718 } 1719 1720 #endif 1721 1722 /* 1723 * Probe for a load/store operation. 1724 * Return the host address and into @flags. 1725 */ 1726 1727 typedef struct MMULookupPageData { 1728 CPUTLBEntryFull *full; 1729 void *haddr; 1730 target_ulong addr; 1731 int flags; 1732 int size; 1733 } MMULookupPageData; 1734 1735 typedef struct MMULookupLocals { 1736 MMULookupPageData page[2]; 1737 MemOp memop; 1738 int mmu_idx; 1739 } MMULookupLocals; 1740 1741 /** 1742 * mmu_lookup1: translate one page 1743 * @env: cpu context 1744 * @data: lookup parameters 1745 * @mmu_idx: virtual address context 1746 * @access_type: load/store/code 1747 * @ra: return address into tcg generated code, or 0 1748 * 1749 * Resolve the translation for the one page at @data.addr, filling in 1750 * the rest of @data with the results. If the translation fails, 1751 * tlb_fill will longjmp out. Return true if the softmmu tlb for 1752 * @mmu_idx may have resized. 1753 */ 1754 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data, 1755 int mmu_idx, MMUAccessType access_type, uintptr_t ra) 1756 { 1757 target_ulong addr = data->addr; 1758 uintptr_t index = tlb_index(env, mmu_idx, addr); 1759 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1760 target_ulong tlb_addr = tlb_read_idx(entry, access_type); 1761 bool maybe_resized = false; 1762 1763 /* If the TLB entry is for a different page, reload and try again. */ 1764 if (!tlb_hit(tlb_addr, addr)) { 1765 if (!victim_tlb_hit(env, mmu_idx, index, access_type, 1766 addr & TARGET_PAGE_MASK)) { 1767 tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra); 1768 maybe_resized = true; 1769 index = tlb_index(env, mmu_idx, addr); 1770 entry = tlb_entry(env, mmu_idx, addr); 1771 } 1772 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK; 1773 } 1774 1775 data->flags = tlb_addr & TLB_FLAGS_MASK; 1776 data->full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1777 /* Compute haddr speculatively; depending on flags it might be invalid. */ 1778 data->haddr = (void *)((uintptr_t)addr + entry->addend); 1779 1780 return maybe_resized; 1781 } 1782 1783 /** 1784 * mmu_watch_or_dirty 1785 * @env: cpu context 1786 * @data: lookup parameters 1787 * @access_type: load/store/code 1788 * @ra: return address into tcg generated code, or 0 1789 * 1790 * Trigger watchpoints for @data.addr:@data.size; 1791 * record writes to protected clean pages. 1792 */ 1793 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data, 1794 MMUAccessType access_type, uintptr_t ra) 1795 { 1796 CPUTLBEntryFull *full = data->full; 1797 target_ulong addr = data->addr; 1798 int flags = data->flags; 1799 int size = data->size; 1800 1801 /* On watchpoint hit, this will longjmp out. */ 1802 if (flags & TLB_WATCHPOINT) { 1803 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ; 1804 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra); 1805 flags &= ~TLB_WATCHPOINT; 1806 } 1807 1808 /* Note that notdirty is only set for writes. */ 1809 if (flags & TLB_NOTDIRTY) { 1810 notdirty_write(env_cpu(env), addr, size, full, ra); 1811 flags &= ~TLB_NOTDIRTY; 1812 } 1813 data->flags = flags; 1814 } 1815 1816 /** 1817 * mmu_lookup: translate page(s) 1818 * @env: cpu context 1819 * @addr: virtual address 1820 * @oi: combined mmu_idx and MemOp 1821 * @ra: return address into tcg generated code, or 0 1822 * @access_type: load/store/code 1823 * @l: output result 1824 * 1825 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size 1826 * bytes. Return true if the lookup crosses a page boundary. 1827 */ 1828 static bool mmu_lookup(CPUArchState *env, target_ulong addr, MemOpIdx oi, 1829 uintptr_t ra, MMUAccessType type, MMULookupLocals *l) 1830 { 1831 unsigned a_bits; 1832 bool crosspage; 1833 int flags; 1834 1835 l->memop = get_memop(oi); 1836 l->mmu_idx = get_mmuidx(oi); 1837 1838 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES); 1839 1840 /* Handle CPU specific unaligned behaviour */ 1841 a_bits = get_alignment_bits(l->memop); 1842 if (addr & ((1 << a_bits) - 1)) { 1843 cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra); 1844 } 1845 1846 l->page[0].addr = addr; 1847 l->page[0].size = memop_size(l->memop); 1848 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK; 1849 l->page[1].size = 0; 1850 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK; 1851 1852 if (likely(!crosspage)) { 1853 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); 1854 1855 flags = l->page[0].flags; 1856 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1857 mmu_watch_or_dirty(env, &l->page[0], type, ra); 1858 } 1859 if (unlikely(flags & TLB_BSWAP)) { 1860 l->memop ^= MO_BSWAP; 1861 } 1862 } else { 1863 /* Finish compute of page crossing. */ 1864 int size0 = l->page[1].addr - addr; 1865 l->page[1].size = l->page[0].size - size0; 1866 l->page[0].size = size0; 1867 1868 /* 1869 * Lookup both pages, recognizing exceptions from either. If the 1870 * second lookup potentially resized, refresh first CPUTLBEntryFull. 1871 */ 1872 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); 1873 if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) { 1874 uintptr_t index = tlb_index(env, l->mmu_idx, addr); 1875 l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index]; 1876 } 1877 1878 flags = l->page[0].flags | l->page[1].flags; 1879 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1880 mmu_watch_or_dirty(env, &l->page[0], type, ra); 1881 mmu_watch_or_dirty(env, &l->page[1], type, ra); 1882 } 1883 1884 /* 1885 * Since target/sparc is the only user of TLB_BSWAP, and all 1886 * Sparc accesses are aligned, any treatment across two pages 1887 * would be arbitrary. Refuse it until there's a use. 1888 */ 1889 tcg_debug_assert((flags & TLB_BSWAP) == 0); 1890 } 1891 1892 return crosspage; 1893 } 1894 1895 /* 1896 * Probe for an atomic operation. Do not allow unaligned operations, 1897 * or io operations to proceed. Return the host address. 1898 * 1899 * @prot may be PAGE_READ, PAGE_WRITE, or PAGE_READ|PAGE_WRITE. 1900 */ 1901 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr, 1902 MemOpIdx oi, int size, int prot, 1903 uintptr_t retaddr) 1904 { 1905 uintptr_t mmu_idx = get_mmuidx(oi); 1906 MemOp mop = get_memop(oi); 1907 int a_bits = get_alignment_bits(mop); 1908 uintptr_t index; 1909 CPUTLBEntry *tlbe; 1910 target_ulong tlb_addr; 1911 void *hostaddr; 1912 CPUTLBEntryFull *full; 1913 1914 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1915 1916 /* Adjust the given return address. */ 1917 retaddr -= GETPC_ADJ; 1918 1919 /* Enforce guest required alignment. */ 1920 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1921 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1922 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1923 mmu_idx, retaddr); 1924 } 1925 1926 /* Enforce qemu required alignment. */ 1927 if (unlikely(addr & (size - 1))) { 1928 /* We get here if guest alignment was not requested, 1929 or was not enforced by cpu_unaligned_access above. 1930 We might widen the access and emulate, but for now 1931 mark an exception and exit the cpu loop. */ 1932 goto stop_the_world; 1933 } 1934 1935 index = tlb_index(env, mmu_idx, addr); 1936 tlbe = tlb_entry(env, mmu_idx, addr); 1937 1938 /* Check TLB entry and enforce page permissions. */ 1939 if (prot & PAGE_WRITE) { 1940 tlb_addr = tlb_addr_write(tlbe); 1941 if (!tlb_hit(tlb_addr, addr)) { 1942 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE, 1943 addr & TARGET_PAGE_MASK)) { 1944 tlb_fill(env_cpu(env), addr, size, 1945 MMU_DATA_STORE, mmu_idx, retaddr); 1946 index = tlb_index(env, mmu_idx, addr); 1947 tlbe = tlb_entry(env, mmu_idx, addr); 1948 } 1949 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 1950 } 1951 1952 if (prot & PAGE_READ) { 1953 /* 1954 * Let the guest notice RMW on a write-only page. 1955 * We have just verified that the page is writable. 1956 * Subpage lookups may have left TLB_INVALID_MASK set, 1957 * but addr_read will only be -1 if PAGE_READ was unset. 1958 */ 1959 if (unlikely(tlbe->addr_read == -1)) { 1960 tlb_fill(env_cpu(env), addr, size, 1961 MMU_DATA_LOAD, mmu_idx, retaddr); 1962 /* 1963 * Since we don't support reads and writes to different 1964 * addresses, and we do have the proper page loaded for 1965 * write, this shouldn't ever return. But just in case, 1966 * handle via stop-the-world. 1967 */ 1968 goto stop_the_world; 1969 } 1970 /* Collect TLB_WATCHPOINT for read. */ 1971 tlb_addr |= tlbe->addr_read; 1972 } 1973 } else /* if (prot & PAGE_READ) */ { 1974 tlb_addr = tlbe->addr_read; 1975 if (!tlb_hit(tlb_addr, addr)) { 1976 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_LOAD, 1977 addr & TARGET_PAGE_MASK)) { 1978 tlb_fill(env_cpu(env), addr, size, 1979 MMU_DATA_LOAD, mmu_idx, retaddr); 1980 index = tlb_index(env, mmu_idx, addr); 1981 tlbe = tlb_entry(env, mmu_idx, addr); 1982 } 1983 tlb_addr = tlbe->addr_read & ~TLB_INVALID_MASK; 1984 } 1985 } 1986 1987 /* Notice an IO access or a needs-MMU-lookup access */ 1988 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { 1989 /* There's really nothing that can be done to 1990 support this apart from stop-the-world. */ 1991 goto stop_the_world; 1992 } 1993 1994 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1995 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1996 1997 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 1998 notdirty_write(env_cpu(env), addr, size, full, retaddr); 1999 } 2000 2001 if (unlikely(tlb_addr & TLB_WATCHPOINT)) { 2002 QEMU_BUILD_BUG_ON(PAGE_READ != BP_MEM_READ); 2003 QEMU_BUILD_BUG_ON(PAGE_WRITE != BP_MEM_WRITE); 2004 /* therefore prot == watchpoint bits */ 2005 cpu_check_watchpoint(env_cpu(env), addr, size, 2006 full->attrs, prot, retaddr); 2007 } 2008 2009 return hostaddr; 2010 2011 stop_the_world: 2012 cpu_loop_exit_atomic(env_cpu(env), retaddr); 2013 } 2014 2015 /* 2016 * Load Helpers 2017 * 2018 * We support two different access types. SOFTMMU_CODE_ACCESS is 2019 * specifically for reading instructions from system memory. It is 2020 * called by the translation loop and in some helpers where the code 2021 * is disassembled. It shouldn't be called directly by guest code. 2022 * 2023 * For the benefit of TCG generated code, we want to avoid the 2024 * complication of ABI-specific return type promotion and always 2025 * return a value extended to the register size of the host. This is 2026 * tcg_target_long, except in the case of a 32-bit host and 64-bit 2027 * data, and for that we always have uint64_t. 2028 * 2029 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 2030 */ 2031 2032 /** 2033 * do_ld_mmio_beN: 2034 * @env: cpu context 2035 * @p: translation parameters 2036 * @ret_be: accumulated data 2037 * @mmu_idx: virtual address context 2038 * @ra: return address into tcg generated code, or 0 2039 * 2040 * Load @p->size bytes from @p->addr, which is memory-mapped i/o. 2041 * The bytes are concatenated in big-endian order with @ret_be. 2042 */ 2043 static uint64_t do_ld_mmio_beN(CPUArchState *env, MMULookupPageData *p, 2044 uint64_t ret_be, int mmu_idx, 2045 MMUAccessType type, uintptr_t ra) 2046 { 2047 CPUTLBEntryFull *full = p->full; 2048 target_ulong addr = p->addr; 2049 int i, size = p->size; 2050 2051 QEMU_IOTHREAD_LOCK_GUARD(); 2052 for (i = 0; i < size; i++) { 2053 uint8_t x = io_readx(env, full, mmu_idx, addr + i, ra, type, MO_UB); 2054 ret_be = (ret_be << 8) | x; 2055 } 2056 return ret_be; 2057 } 2058 2059 /** 2060 * do_ld_bytes_beN 2061 * @p: translation parameters 2062 * @ret_be: accumulated data 2063 * 2064 * Load @p->size bytes from @p->haddr, which is RAM. 2065 * The bytes to concatenated in big-endian order with @ret_be. 2066 */ 2067 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) 2068 { 2069 uint8_t *haddr = p->haddr; 2070 int i, size = p->size; 2071 2072 for (i = 0; i < size; i++) { 2073 ret_be = (ret_be << 8) | haddr[i]; 2074 } 2075 return ret_be; 2076 } 2077 2078 /** 2079 * do_ld_parts_beN 2080 * @p: translation parameters 2081 * @ret_be: accumulated data 2082 * 2083 * As do_ld_bytes_beN, but atomically on each aligned part. 2084 */ 2085 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be) 2086 { 2087 void *haddr = p->haddr; 2088 int size = p->size; 2089 2090 do { 2091 uint64_t x; 2092 int n; 2093 2094 /* 2095 * Find minimum of alignment and size. 2096 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which 2097 * would have only checked the low bits of addr|size once at the start, 2098 * but is just as easy. 2099 */ 2100 switch (((uintptr_t)haddr | size) & 7) { 2101 case 4: 2102 x = cpu_to_be32(load_atomic4(haddr)); 2103 ret_be = (ret_be << 32) | x; 2104 n = 4; 2105 break; 2106 case 2: 2107 case 6: 2108 x = cpu_to_be16(load_atomic2(haddr)); 2109 ret_be = (ret_be << 16) | x; 2110 n = 2; 2111 break; 2112 default: 2113 x = *(uint8_t *)haddr; 2114 ret_be = (ret_be << 8) | x; 2115 n = 1; 2116 break; 2117 case 0: 2118 g_assert_not_reached(); 2119 } 2120 haddr += n; 2121 size -= n; 2122 } while (size != 0); 2123 return ret_be; 2124 } 2125 2126 /** 2127 * do_ld_parts_be4 2128 * @p: translation parameters 2129 * @ret_be: accumulated data 2130 * 2131 * As do_ld_bytes_beN, but with one atomic load. 2132 * Four aligned bytes are guaranteed to cover the load. 2133 */ 2134 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be) 2135 { 2136 int o = p->addr & 3; 2137 uint32_t x = load_atomic4(p->haddr - o); 2138 2139 x = cpu_to_be32(x); 2140 x <<= o * 8; 2141 x >>= (4 - p->size) * 8; 2142 return (ret_be << (p->size * 8)) | x; 2143 } 2144 2145 /** 2146 * do_ld_parts_be8 2147 * @p: translation parameters 2148 * @ret_be: accumulated data 2149 * 2150 * As do_ld_bytes_beN, but with one atomic load. 2151 * Eight aligned bytes are guaranteed to cover the load. 2152 */ 2153 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra, 2154 MMULookupPageData *p, uint64_t ret_be) 2155 { 2156 int o = p->addr & 7; 2157 uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o); 2158 2159 x = cpu_to_be64(x); 2160 x <<= o * 8; 2161 x >>= (8 - p->size) * 8; 2162 return (ret_be << (p->size * 8)) | x; 2163 } 2164 2165 /* 2166 * Wrapper for the above. 2167 */ 2168 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p, 2169 uint64_t ret_be, int mmu_idx, MMUAccessType type, 2170 MemOp mop, uintptr_t ra) 2171 { 2172 MemOp atom; 2173 unsigned tmp, half_size; 2174 2175 if (unlikely(p->flags & TLB_MMIO)) { 2176 return do_ld_mmio_beN(env, p, ret_be, mmu_idx, type, ra); 2177 } 2178 2179 /* 2180 * It is a given that we cross a page and therefore there is no 2181 * atomicity for the load as a whole, but subobjects may need attention. 2182 */ 2183 atom = mop & MO_ATOM_MASK; 2184 switch (atom) { 2185 case MO_ATOM_SUBALIGN: 2186 return do_ld_parts_beN(p, ret_be); 2187 2188 case MO_ATOM_IFALIGN_PAIR: 2189 case MO_ATOM_WITHIN16_PAIR: 2190 tmp = mop & MO_SIZE; 2191 tmp = tmp ? tmp - 1 : 0; 2192 half_size = 1 << tmp; 2193 if (atom == MO_ATOM_IFALIGN_PAIR 2194 ? p->size == half_size 2195 : p->size >= half_size) { 2196 if (!HAVE_al8_fast && p->size < 4) { 2197 return do_ld_whole_be4(p, ret_be); 2198 } else { 2199 return do_ld_whole_be8(env, ra, p, ret_be); 2200 } 2201 } 2202 /* fall through */ 2203 2204 case MO_ATOM_IFALIGN: 2205 case MO_ATOM_WITHIN16: 2206 case MO_ATOM_NONE: 2207 return do_ld_bytes_beN(p, ret_be); 2208 2209 default: 2210 g_assert_not_reached(); 2211 } 2212 } 2213 2214 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2215 MMUAccessType type, uintptr_t ra) 2216 { 2217 if (unlikely(p->flags & TLB_MMIO)) { 2218 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB); 2219 } else { 2220 return *(uint8_t *)p->haddr; 2221 } 2222 } 2223 2224 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2225 MMUAccessType type, MemOp memop, uintptr_t ra) 2226 { 2227 uint64_t ret; 2228 2229 if (unlikely(p->flags & TLB_MMIO)) { 2230 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop); 2231 } 2232 2233 /* Perform the load host endian, then swap if necessary. */ 2234 ret = load_atom_2(env, ra, p->haddr, memop); 2235 if (memop & MO_BSWAP) { 2236 ret = bswap16(ret); 2237 } 2238 return ret; 2239 } 2240 2241 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2242 MMUAccessType type, MemOp memop, uintptr_t ra) 2243 { 2244 uint32_t ret; 2245 2246 if (unlikely(p->flags & TLB_MMIO)) { 2247 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop); 2248 } 2249 2250 /* Perform the load host endian. */ 2251 ret = load_atom_4(env, ra, p->haddr, memop); 2252 if (memop & MO_BSWAP) { 2253 ret = bswap32(ret); 2254 } 2255 return ret; 2256 } 2257 2258 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2259 MMUAccessType type, MemOp memop, uintptr_t ra) 2260 { 2261 uint64_t ret; 2262 2263 if (unlikely(p->flags & TLB_MMIO)) { 2264 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, memop); 2265 } 2266 2267 /* Perform the load host endian. */ 2268 ret = load_atom_8(env, ra, p->haddr, memop); 2269 if (memop & MO_BSWAP) { 2270 ret = bswap64(ret); 2271 } 2272 return ret; 2273 } 2274 2275 static uint8_t do_ld1_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, 2276 uintptr_t ra, MMUAccessType access_type) 2277 { 2278 MMULookupLocals l; 2279 bool crosspage; 2280 2281 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2282 tcg_debug_assert(!crosspage); 2283 2284 return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); 2285 } 2286 2287 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, target_ulong addr, 2288 MemOpIdx oi, uintptr_t retaddr) 2289 { 2290 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8); 2291 return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2292 } 2293 2294 static uint16_t do_ld2_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, 2295 uintptr_t ra, MMUAccessType access_type) 2296 { 2297 MMULookupLocals l; 2298 bool crosspage; 2299 uint16_t ret; 2300 uint8_t a, b; 2301 2302 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2303 if (likely(!crosspage)) { 2304 return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2305 } 2306 2307 a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); 2308 b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra); 2309 2310 if ((l.memop & MO_BSWAP) == MO_LE) { 2311 ret = a | (b << 8); 2312 } else { 2313 ret = b | (a << 8); 2314 } 2315 return ret; 2316 } 2317 2318 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, target_ulong addr, 2319 MemOpIdx oi, uintptr_t retaddr) 2320 { 2321 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2322 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2323 } 2324 2325 static uint32_t do_ld4_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, 2326 uintptr_t ra, MMUAccessType access_type) 2327 { 2328 MMULookupLocals l; 2329 bool crosspage; 2330 uint32_t ret; 2331 2332 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2333 if (likely(!crosspage)) { 2334 return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2335 } 2336 2337 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2338 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2339 if ((l.memop & MO_BSWAP) == MO_LE) { 2340 ret = bswap32(ret); 2341 } 2342 return ret; 2343 } 2344 2345 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, target_ulong addr, 2346 MemOpIdx oi, uintptr_t retaddr) 2347 { 2348 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2349 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2350 } 2351 2352 static uint64_t do_ld8_mmu(CPUArchState *env, target_ulong addr, MemOpIdx oi, 2353 uintptr_t ra, MMUAccessType access_type) 2354 { 2355 MMULookupLocals l; 2356 bool crosspage; 2357 uint64_t ret; 2358 2359 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2360 if (likely(!crosspage)) { 2361 return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2362 } 2363 2364 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2365 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2366 if ((l.memop & MO_BSWAP) == MO_LE) { 2367 ret = bswap64(ret); 2368 } 2369 return ret; 2370 } 2371 2372 uint64_t helper_ldq_mmu(CPUArchState *env, target_ulong addr, 2373 MemOpIdx oi, uintptr_t retaddr) 2374 { 2375 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2376 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2377 } 2378 2379 /* 2380 * Provide signed versions of the load routines as well. We can of course 2381 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 2382 */ 2383 2384 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, target_ulong addr, 2385 MemOpIdx oi, uintptr_t retaddr) 2386 { 2387 return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr); 2388 } 2389 2390 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, target_ulong addr, 2391 MemOpIdx oi, uintptr_t retaddr) 2392 { 2393 return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr); 2394 } 2395 2396 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, target_ulong addr, 2397 MemOpIdx oi, uintptr_t retaddr) 2398 { 2399 return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr); 2400 } 2401 2402 /* 2403 * Load helpers for cpu_ldst.h. 2404 */ 2405 2406 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) 2407 { 2408 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2409 } 2410 2411 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) 2412 { 2413 uint8_t ret; 2414 2415 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB); 2416 ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2417 plugin_load_cb(env, addr, oi); 2418 return ret; 2419 } 2420 2421 uint16_t cpu_ldw_be_mmu(CPUArchState *env, abi_ptr addr, 2422 MemOpIdx oi, uintptr_t ra) 2423 { 2424 uint16_t ret; 2425 2426 tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_BEUW); 2427 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2428 plugin_load_cb(env, addr, oi); 2429 return ret; 2430 } 2431 2432 uint32_t cpu_ldl_be_mmu(CPUArchState *env, abi_ptr addr, 2433 MemOpIdx oi, uintptr_t ra) 2434 { 2435 uint32_t ret; 2436 2437 tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_BEUL); 2438 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2439 plugin_load_cb(env, addr, oi); 2440 return ret; 2441 } 2442 2443 uint64_t cpu_ldq_be_mmu(CPUArchState *env, abi_ptr addr, 2444 MemOpIdx oi, uintptr_t ra) 2445 { 2446 uint64_t ret; 2447 2448 tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_BEUQ); 2449 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2450 plugin_load_cb(env, addr, oi); 2451 return ret; 2452 } 2453 2454 uint16_t cpu_ldw_le_mmu(CPUArchState *env, abi_ptr addr, 2455 MemOpIdx oi, uintptr_t ra) 2456 { 2457 uint16_t ret; 2458 2459 tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_LEUW); 2460 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2461 plugin_load_cb(env, addr, oi); 2462 return ret; 2463 } 2464 2465 uint32_t cpu_ldl_le_mmu(CPUArchState *env, abi_ptr addr, 2466 MemOpIdx oi, uintptr_t ra) 2467 { 2468 uint32_t ret; 2469 2470 tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_LEUL); 2471 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2472 plugin_load_cb(env, addr, oi); 2473 return ret; 2474 } 2475 2476 uint64_t cpu_ldq_le_mmu(CPUArchState *env, abi_ptr addr, 2477 MemOpIdx oi, uintptr_t ra) 2478 { 2479 uint64_t ret; 2480 2481 tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_LEUQ); 2482 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2483 plugin_load_cb(env, addr, oi); 2484 return ret; 2485 } 2486 2487 Int128 cpu_ld16_be_mmu(CPUArchState *env, abi_ptr addr, 2488 MemOpIdx oi, uintptr_t ra) 2489 { 2490 MemOp mop = get_memop(oi); 2491 int mmu_idx = get_mmuidx(oi); 2492 MemOpIdx new_oi; 2493 unsigned a_bits; 2494 uint64_t h, l; 2495 2496 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_BE|MO_128)); 2497 a_bits = get_alignment_bits(mop); 2498 2499 /* Handle CPU specific unaligned behaviour */ 2500 if (addr & ((1 << a_bits) - 1)) { 2501 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_LOAD, 2502 mmu_idx, ra); 2503 } 2504 2505 /* Construct an unaligned 64-bit replacement MemOpIdx. */ 2506 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN; 2507 new_oi = make_memop_idx(mop, mmu_idx); 2508 2509 h = helper_ldq_mmu(env, addr, new_oi, ra); 2510 l = helper_ldq_mmu(env, addr + 8, new_oi, ra); 2511 2512 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2513 return int128_make128(l, h); 2514 } 2515 2516 Int128 cpu_ld16_le_mmu(CPUArchState *env, abi_ptr addr, 2517 MemOpIdx oi, uintptr_t ra) 2518 { 2519 MemOp mop = get_memop(oi); 2520 int mmu_idx = get_mmuidx(oi); 2521 MemOpIdx new_oi; 2522 unsigned a_bits; 2523 uint64_t h, l; 2524 2525 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_LE|MO_128)); 2526 a_bits = get_alignment_bits(mop); 2527 2528 /* Handle CPU specific unaligned behaviour */ 2529 if (addr & ((1 << a_bits) - 1)) { 2530 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_LOAD, 2531 mmu_idx, ra); 2532 } 2533 2534 /* Construct an unaligned 64-bit replacement MemOpIdx. */ 2535 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN; 2536 new_oi = make_memop_idx(mop, mmu_idx); 2537 2538 l = helper_ldq_mmu(env, addr, new_oi, ra); 2539 h = helper_ldq_mmu(env, addr + 8, new_oi, ra); 2540 2541 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2542 return int128_make128(l, h); 2543 } 2544 2545 /* 2546 * Store Helpers 2547 */ 2548 2549 /** 2550 * do_st_mmio_leN: 2551 * @env: cpu context 2552 * @p: translation parameters 2553 * @val_le: data to store 2554 * @mmu_idx: virtual address context 2555 * @ra: return address into tcg generated code, or 0 2556 * 2557 * Store @p->size bytes at @p->addr, which is memory-mapped i/o. 2558 * The bytes to store are extracted in little-endian order from @val_le; 2559 * return the bytes of @val_le beyond @p->size that have not been stored. 2560 */ 2561 static uint64_t do_st_mmio_leN(CPUArchState *env, MMULookupPageData *p, 2562 uint64_t val_le, int mmu_idx, uintptr_t ra) 2563 { 2564 CPUTLBEntryFull *full = p->full; 2565 target_ulong addr = p->addr; 2566 int i, size = p->size; 2567 2568 QEMU_IOTHREAD_LOCK_GUARD(); 2569 for (i = 0; i < size; i++, val_le >>= 8) { 2570 io_writex(env, full, mmu_idx, val_le, addr + i, ra, MO_UB); 2571 } 2572 return val_le; 2573 } 2574 2575 /* 2576 * Wrapper for the above. 2577 */ 2578 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p, 2579 uint64_t val_le, int mmu_idx, 2580 MemOp mop, uintptr_t ra) 2581 { 2582 MemOp atom; 2583 unsigned tmp, half_size; 2584 2585 if (unlikely(p->flags & TLB_MMIO)) { 2586 return do_st_mmio_leN(env, p, val_le, mmu_idx, ra); 2587 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2588 return val_le >> (p->size * 8); 2589 } 2590 2591 /* 2592 * It is a given that we cross a page and therefore there is no atomicity 2593 * for the store as a whole, but subobjects may need attention. 2594 */ 2595 atom = mop & MO_ATOM_MASK; 2596 switch (atom) { 2597 case MO_ATOM_SUBALIGN: 2598 return store_parts_leN(p->haddr, p->size, val_le); 2599 2600 case MO_ATOM_IFALIGN_PAIR: 2601 case MO_ATOM_WITHIN16_PAIR: 2602 tmp = mop & MO_SIZE; 2603 tmp = tmp ? tmp - 1 : 0; 2604 half_size = 1 << tmp; 2605 if (atom == MO_ATOM_IFALIGN_PAIR 2606 ? p->size == half_size 2607 : p->size >= half_size) { 2608 if (!HAVE_al8_fast && p->size <= 4) { 2609 return store_whole_le4(p->haddr, p->size, val_le); 2610 } else if (HAVE_al8) { 2611 return store_whole_le8(p->haddr, p->size, val_le); 2612 } else { 2613 cpu_loop_exit_atomic(env_cpu(env), ra); 2614 } 2615 } 2616 /* fall through */ 2617 2618 case MO_ATOM_IFALIGN: 2619 case MO_ATOM_WITHIN16: 2620 case MO_ATOM_NONE: 2621 return store_bytes_leN(p->haddr, p->size, val_le); 2622 2623 default: 2624 g_assert_not_reached(); 2625 } 2626 } 2627 2628 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val, 2629 int mmu_idx, uintptr_t ra) 2630 { 2631 if (unlikely(p->flags & TLB_MMIO)) { 2632 io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB); 2633 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2634 /* nothing */ 2635 } else { 2636 *(uint8_t *)p->haddr = val; 2637 } 2638 } 2639 2640 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val, 2641 int mmu_idx, MemOp memop, uintptr_t ra) 2642 { 2643 if (unlikely(p->flags & TLB_MMIO)) { 2644 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop); 2645 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2646 /* nothing */ 2647 } else { 2648 /* Swap to host endian if necessary, then store. */ 2649 if (memop & MO_BSWAP) { 2650 val = bswap16(val); 2651 } 2652 store_atom_2(env, ra, p->haddr, memop, val); 2653 } 2654 } 2655 2656 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val, 2657 int mmu_idx, MemOp memop, uintptr_t ra) 2658 { 2659 if (unlikely(p->flags & TLB_MMIO)) { 2660 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop); 2661 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2662 /* nothing */ 2663 } else { 2664 /* Swap to host endian if necessary, then store. */ 2665 if (memop & MO_BSWAP) { 2666 val = bswap32(val); 2667 } 2668 store_atom_4(env, ra, p->haddr, memop, val); 2669 } 2670 } 2671 2672 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val, 2673 int mmu_idx, MemOp memop, uintptr_t ra) 2674 { 2675 if (unlikely(p->flags & TLB_MMIO)) { 2676 io_writex(env, p->full, mmu_idx, val, p->addr, ra, memop); 2677 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2678 /* nothing */ 2679 } else { 2680 /* Swap to host endian if necessary, then store. */ 2681 if (memop & MO_BSWAP) { 2682 val = bswap64(val); 2683 } 2684 store_atom_8(env, ra, p->haddr, memop, val); 2685 } 2686 } 2687 2688 void helper_stb_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2689 MemOpIdx oi, uintptr_t ra) 2690 { 2691 MMULookupLocals l; 2692 bool crosspage; 2693 2694 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8); 2695 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2696 tcg_debug_assert(!crosspage); 2697 2698 do_st_1(env, &l.page[0], val, l.mmu_idx, ra); 2699 } 2700 2701 static void do_st2_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2702 MemOpIdx oi, uintptr_t ra) 2703 { 2704 MMULookupLocals l; 2705 bool crosspage; 2706 uint8_t a, b; 2707 2708 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2709 if (likely(!crosspage)) { 2710 do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2711 return; 2712 } 2713 2714 if ((l.memop & MO_BSWAP) == MO_LE) { 2715 a = val, b = val >> 8; 2716 } else { 2717 b = val, a = val >> 8; 2718 } 2719 do_st_1(env, &l.page[0], a, l.mmu_idx, ra); 2720 do_st_1(env, &l.page[1], b, l.mmu_idx, ra); 2721 } 2722 2723 void helper_stw_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2724 MemOpIdx oi, uintptr_t retaddr) 2725 { 2726 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2727 do_st2_mmu(env, addr, val, oi, retaddr); 2728 } 2729 2730 static void do_st4_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2731 MemOpIdx oi, uintptr_t ra) 2732 { 2733 MMULookupLocals l; 2734 bool crosspage; 2735 2736 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2737 if (likely(!crosspage)) { 2738 do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2739 return; 2740 } 2741 2742 /* Swap to little endian for simplicity, then store by bytes. */ 2743 if ((l.memop & MO_BSWAP) != MO_LE) { 2744 val = bswap32(val); 2745 } 2746 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2747 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 2748 } 2749 2750 void helper_stl_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2751 MemOpIdx oi, uintptr_t retaddr) 2752 { 2753 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2754 do_st4_mmu(env, addr, val, oi, retaddr); 2755 } 2756 2757 static void do_st8_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2758 MemOpIdx oi, uintptr_t ra) 2759 { 2760 MMULookupLocals l; 2761 bool crosspage; 2762 2763 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2764 if (likely(!crosspage)) { 2765 do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2766 return; 2767 } 2768 2769 /* Swap to little endian for simplicity, then store by bytes. */ 2770 if ((l.memop & MO_BSWAP) != MO_LE) { 2771 val = bswap64(val); 2772 } 2773 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2774 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 2775 } 2776 2777 void helper_stq_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2778 MemOpIdx oi, uintptr_t retaddr) 2779 { 2780 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2781 do_st8_mmu(env, addr, val, oi, retaddr); 2782 } 2783 2784 /* 2785 * Store Helpers for cpu_ldst.h 2786 */ 2787 2788 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) 2789 { 2790 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 2791 } 2792 2793 void cpu_stb_mmu(CPUArchState *env, target_ulong addr, uint8_t val, 2794 MemOpIdx oi, uintptr_t retaddr) 2795 { 2796 helper_stb_mmu(env, addr, val, oi, retaddr); 2797 plugin_store_cb(env, addr, oi); 2798 } 2799 2800 void cpu_stw_be_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2801 MemOpIdx oi, uintptr_t retaddr) 2802 { 2803 tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_BEUW); 2804 do_st2_mmu(env, addr, val, oi, retaddr); 2805 plugin_store_cb(env, addr, oi); 2806 } 2807 2808 void cpu_stl_be_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2809 MemOpIdx oi, uintptr_t retaddr) 2810 { 2811 tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_BEUL); 2812 do_st4_mmu(env, addr, val, oi, retaddr); 2813 plugin_store_cb(env, addr, oi); 2814 } 2815 2816 void cpu_stq_be_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2817 MemOpIdx oi, uintptr_t retaddr) 2818 { 2819 tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_BEUQ); 2820 do_st8_mmu(env, addr, val, oi, retaddr); 2821 plugin_store_cb(env, addr, oi); 2822 } 2823 2824 void cpu_stw_le_mmu(CPUArchState *env, target_ulong addr, uint16_t val, 2825 MemOpIdx oi, uintptr_t retaddr) 2826 { 2827 tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_LEUW); 2828 do_st2_mmu(env, addr, val, oi, retaddr); 2829 plugin_store_cb(env, addr, oi); 2830 } 2831 2832 void cpu_stl_le_mmu(CPUArchState *env, target_ulong addr, uint32_t val, 2833 MemOpIdx oi, uintptr_t retaddr) 2834 { 2835 tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_LEUL); 2836 do_st4_mmu(env, addr, val, oi, retaddr); 2837 plugin_store_cb(env, addr, oi); 2838 } 2839 2840 void cpu_stq_le_mmu(CPUArchState *env, target_ulong addr, uint64_t val, 2841 MemOpIdx oi, uintptr_t retaddr) 2842 { 2843 tcg_debug_assert((get_memop(oi) & (MO_BSWAP | MO_SIZE)) == MO_LEUQ); 2844 do_st8_mmu(env, addr, val, oi, retaddr); 2845 plugin_store_cb(env, addr, oi); 2846 } 2847 2848 void cpu_st16_be_mmu(CPUArchState *env, abi_ptr addr, Int128 val, 2849 MemOpIdx oi, uintptr_t ra) 2850 { 2851 MemOp mop = get_memop(oi); 2852 int mmu_idx = get_mmuidx(oi); 2853 MemOpIdx new_oi; 2854 unsigned a_bits; 2855 2856 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_BE|MO_128)); 2857 a_bits = get_alignment_bits(mop); 2858 2859 /* Handle CPU specific unaligned behaviour */ 2860 if (addr & ((1 << a_bits) - 1)) { 2861 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 2862 mmu_idx, ra); 2863 } 2864 2865 /* Construct an unaligned 64-bit replacement MemOpIdx. */ 2866 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN; 2867 new_oi = make_memop_idx(mop, mmu_idx); 2868 2869 helper_stq_mmu(env, addr, int128_gethi(val), new_oi, ra); 2870 helper_stq_mmu(env, addr + 8, int128_getlo(val), new_oi, ra); 2871 2872 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 2873 } 2874 2875 void cpu_st16_le_mmu(CPUArchState *env, abi_ptr addr, Int128 val, 2876 MemOpIdx oi, uintptr_t ra) 2877 { 2878 MemOp mop = get_memop(oi); 2879 int mmu_idx = get_mmuidx(oi); 2880 MemOpIdx new_oi; 2881 unsigned a_bits; 2882 2883 tcg_debug_assert((mop & (MO_BSWAP|MO_SSIZE)) == (MO_LE|MO_128)); 2884 a_bits = get_alignment_bits(mop); 2885 2886 /* Handle CPU specific unaligned behaviour */ 2887 if (addr & ((1 << a_bits) - 1)) { 2888 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 2889 mmu_idx, ra); 2890 } 2891 2892 /* Construct an unaligned 64-bit replacement MemOpIdx. */ 2893 mop = (mop & ~(MO_SIZE | MO_AMASK)) | MO_64 | MO_UNALN; 2894 new_oi = make_memop_idx(mop, mmu_idx); 2895 2896 helper_stq_mmu(env, addr, int128_getlo(val), new_oi, ra); 2897 helper_stq_mmu(env, addr + 8, int128_gethi(val), new_oi, ra); 2898 2899 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 2900 } 2901 2902 #include "ldst_common.c.inc" 2903 2904 /* 2905 * First set of functions passes in OI and RETADDR. 2906 * This makes them callable from other helpers. 2907 */ 2908 2909 #define ATOMIC_NAME(X) \ 2910 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 2911 2912 #define ATOMIC_MMU_CLEANUP 2913 2914 #include "atomic_common.c.inc" 2915 2916 #define DATA_SIZE 1 2917 #include "atomic_template.h" 2918 2919 #define DATA_SIZE 2 2920 #include "atomic_template.h" 2921 2922 #define DATA_SIZE 4 2923 #include "atomic_template.h" 2924 2925 #ifdef CONFIG_ATOMIC64 2926 #define DATA_SIZE 8 2927 #include "atomic_template.h" 2928 #endif 2929 2930 #if HAVE_CMPXCHG128 || HAVE_ATOMIC128 2931 #define DATA_SIZE 16 2932 #include "atomic_template.h" 2933 #endif 2934 2935 /* Code access functions. */ 2936 2937 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 2938 { 2939 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); 2940 return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH); 2941 } 2942 2943 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 2944 { 2945 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); 2946 return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH); 2947 } 2948 2949 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 2950 { 2951 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); 2952 return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH); 2953 } 2954 2955 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 2956 { 2957 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true)); 2958 return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH); 2959 } 2960 2961 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, 2962 MemOpIdx oi, uintptr_t retaddr) 2963 { 2964 return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 2965 } 2966 2967 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, 2968 MemOpIdx oi, uintptr_t retaddr) 2969 { 2970 return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 2971 } 2972 2973 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, 2974 MemOpIdx oi, uintptr_t retaddr) 2975 { 2976 return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 2977 } 2978 2979 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, 2980 MemOpIdx oi, uintptr_t retaddr) 2981 { 2982 return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 2983 } 2984