xref: /openbmc/qemu/accel/tcg/cputlb.c (revision 0b1183e3)
1 /*
2  *  Common CPU TLB handling
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/main-loop.h"
22 #include "cpu.h"
23 #include "exec/exec-all.h"
24 #include "exec/memory.h"
25 #include "exec/address-spaces.h"
26 #include "exec/cpu_ldst.h"
27 #include "exec/cputlb.h"
28 #include "exec/memory-internal.h"
29 #include "exec/ram_addr.h"
30 #include "tcg/tcg.h"
31 #include "qemu/error-report.h"
32 #include "exec/log.h"
33 #include "exec/helper-proto.h"
34 #include "qemu/atomic.h"
35 
36 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */
37 /* #define DEBUG_TLB */
38 /* #define DEBUG_TLB_LOG */
39 
40 #ifdef DEBUG_TLB
41 # define DEBUG_TLB_GATE 1
42 # ifdef DEBUG_TLB_LOG
43 #  define DEBUG_TLB_LOG_GATE 1
44 # else
45 #  define DEBUG_TLB_LOG_GATE 0
46 # endif
47 #else
48 # define DEBUG_TLB_GATE 0
49 # define DEBUG_TLB_LOG_GATE 0
50 #endif
51 
52 #define tlb_debug(fmt, ...) do { \
53     if (DEBUG_TLB_LOG_GATE) { \
54         qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \
55                       ## __VA_ARGS__); \
56     } else if (DEBUG_TLB_GATE) { \
57         fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \
58     } \
59 } while (0)
60 
61 #define assert_cpu_is_self(this_cpu) do {                         \
62         if (DEBUG_TLB_GATE) {                                     \
63             g_assert(!cpu->created || qemu_cpu_is_self(cpu));     \
64         }                                                         \
65     } while (0)
66 
67 /* run_on_cpu_data.target_ptr should always be big enough for a
68  * target_ulong even on 32 bit builds */
69 QEMU_BUILD_BUG_ON(sizeof(target_ulong) > sizeof(run_on_cpu_data));
70 
71 /* We currently can't handle more than 16 bits in the MMUIDX bitmask.
72  */
73 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16);
74 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1)
75 
76 /* flush_all_helper: run fn across all cpus
77  *
78  * If the wait flag is set then the src cpu's helper will be queued as
79  * "safe" work and the loop exited creating a synchronisation point
80  * where all queued work will be finished before execution starts
81  * again.
82  */
83 static void flush_all_helper(CPUState *src, run_on_cpu_func fn,
84                              run_on_cpu_data d)
85 {
86     CPUState *cpu;
87 
88     CPU_FOREACH(cpu) {
89         if (cpu != src) {
90             async_run_on_cpu(cpu, fn, d);
91         }
92     }
93 }
94 
95 /* statistics */
96 int tlb_flush_count;
97 
98 /* This is OK because CPU architectures generally permit an
99  * implementation to drop entries from the TLB at any time, so
100  * flushing more entries than required is only an efficiency issue,
101  * not a correctness issue.
102  */
103 static void tlb_flush_nocheck(CPUState *cpu)
104 {
105     CPUArchState *env = cpu->env_ptr;
106 
107     /* The QOM tests will trigger tlb_flushes without setting up TCG
108      * so we bug out here in that case.
109      */
110     if (!tcg_enabled()) {
111         return;
112     }
113 
114     assert_cpu_is_self(cpu);
115     tlb_debug("(count: %d)\n", tlb_flush_count++);
116 
117     tb_lock();
118 
119     memset(env->tlb_table, -1, sizeof(env->tlb_table));
120     memset(env->tlb_v_table, -1, sizeof(env->tlb_v_table));
121     cpu_tb_jmp_cache_clear(cpu);
122 
123     env->vtlb_index = 0;
124     env->tlb_flush_addr = -1;
125     env->tlb_flush_mask = 0;
126 
127     tb_unlock();
128 
129     atomic_mb_set(&cpu->pending_tlb_flush, 0);
130 }
131 
132 static void tlb_flush_global_async_work(CPUState *cpu, run_on_cpu_data data)
133 {
134     tlb_flush_nocheck(cpu);
135 }
136 
137 void tlb_flush(CPUState *cpu)
138 {
139     if (cpu->created && !qemu_cpu_is_self(cpu)) {
140         if (atomic_mb_read(&cpu->pending_tlb_flush) != ALL_MMUIDX_BITS) {
141             atomic_mb_set(&cpu->pending_tlb_flush, ALL_MMUIDX_BITS);
142             async_run_on_cpu(cpu, tlb_flush_global_async_work,
143                              RUN_ON_CPU_NULL);
144         }
145     } else {
146         tlb_flush_nocheck(cpu);
147     }
148 }
149 
150 void tlb_flush_all_cpus(CPUState *src_cpu)
151 {
152     const run_on_cpu_func fn = tlb_flush_global_async_work;
153     flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL);
154     fn(src_cpu, RUN_ON_CPU_NULL);
155 }
156 
157 void tlb_flush_all_cpus_synced(CPUState *src_cpu)
158 {
159     const run_on_cpu_func fn = tlb_flush_global_async_work;
160     flush_all_helper(src_cpu, fn, RUN_ON_CPU_NULL);
161     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_NULL);
162 }
163 
164 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data)
165 {
166     CPUArchState *env = cpu->env_ptr;
167     unsigned long mmu_idx_bitmask = data.host_int;
168     int mmu_idx;
169 
170     assert_cpu_is_self(cpu);
171 
172     tb_lock();
173 
174     tlb_debug("start: mmu_idx:0x%04lx\n", mmu_idx_bitmask);
175 
176     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
177 
178         if (test_bit(mmu_idx, &mmu_idx_bitmask)) {
179             tlb_debug("%d\n", mmu_idx);
180 
181             memset(env->tlb_table[mmu_idx], -1, sizeof(env->tlb_table[0]));
182             memset(env->tlb_v_table[mmu_idx], -1, sizeof(env->tlb_v_table[0]));
183         }
184     }
185 
186     cpu_tb_jmp_cache_clear(cpu);
187 
188     tlb_debug("done\n");
189 
190     tb_unlock();
191 }
192 
193 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
194 {
195     tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap);
196 
197     if (!qemu_cpu_is_self(cpu)) {
198         uint16_t pending_flushes = idxmap;
199         pending_flushes &= ~atomic_mb_read(&cpu->pending_tlb_flush);
200 
201         if (pending_flushes) {
202             tlb_debug("reduced mmu_idx: 0x%" PRIx16 "\n", pending_flushes);
203 
204             atomic_or(&cpu->pending_tlb_flush, pending_flushes);
205             async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work,
206                              RUN_ON_CPU_HOST_INT(pending_flushes));
207         }
208     } else {
209         tlb_flush_by_mmuidx_async_work(cpu,
210                                        RUN_ON_CPU_HOST_INT(idxmap));
211     }
212 }
213 
214 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap)
215 {
216     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
217 
218     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
219 
220     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
221     fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap));
222 }
223 
224 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
225                                                        uint16_t idxmap)
226 {
227     const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work;
228 
229     tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap);
230 
231     flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
232     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap));
233 }
234 
235 
236 
237 static inline void tlb_flush_entry(CPUTLBEntry *tlb_entry, target_ulong addr)
238 {
239     if (addr == (tlb_entry->addr_read &
240                  (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
241         addr == (tlb_entry->addr_write &
242                  (TARGET_PAGE_MASK | TLB_INVALID_MASK)) ||
243         addr == (tlb_entry->addr_code &
244                  (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
245         memset(tlb_entry, -1, sizeof(*tlb_entry));
246     }
247 }
248 
249 static void tlb_flush_page_async_work(CPUState *cpu, run_on_cpu_data data)
250 {
251     CPUArchState *env = cpu->env_ptr;
252     target_ulong addr = (target_ulong) data.target_ptr;
253     int i;
254     int mmu_idx;
255 
256     assert_cpu_is_self(cpu);
257 
258     tlb_debug("page :" TARGET_FMT_lx "\n", addr);
259 
260     /* Check if we need to flush due to large pages.  */
261     if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
262         tlb_debug("forcing full flush ("
263                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
264                   env->tlb_flush_addr, env->tlb_flush_mask);
265 
266         tlb_flush(cpu);
267         return;
268     }
269 
270     addr &= TARGET_PAGE_MASK;
271     i = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
272     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
273         tlb_flush_entry(&env->tlb_table[mmu_idx][i], addr);
274     }
275 
276     /* check whether there are entries that need to be flushed in the vtlb */
277     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
278         int k;
279         for (k = 0; k < CPU_VTLB_SIZE; k++) {
280             tlb_flush_entry(&env->tlb_v_table[mmu_idx][k], addr);
281         }
282     }
283 
284     tb_flush_jmp_cache(cpu, addr);
285 }
286 
287 void tlb_flush_page(CPUState *cpu, target_ulong addr)
288 {
289     tlb_debug("page :" TARGET_FMT_lx "\n", addr);
290 
291     if (!qemu_cpu_is_self(cpu)) {
292         async_run_on_cpu(cpu, tlb_flush_page_async_work,
293                          RUN_ON_CPU_TARGET_PTR(addr));
294     } else {
295         tlb_flush_page_async_work(cpu, RUN_ON_CPU_TARGET_PTR(addr));
296     }
297 }
298 
299 /* As we are going to hijack the bottom bits of the page address for a
300  * mmuidx bit mask we need to fail to build if we can't do that
301  */
302 QEMU_BUILD_BUG_ON(NB_MMU_MODES > TARGET_PAGE_BITS_MIN);
303 
304 static void tlb_flush_page_by_mmuidx_async_work(CPUState *cpu,
305                                                 run_on_cpu_data data)
306 {
307     CPUArchState *env = cpu->env_ptr;
308     target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
309     target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
310     unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
311     int page = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
312     int mmu_idx;
313     int i;
314 
315     assert_cpu_is_self(cpu);
316 
317     tlb_debug("page:%d addr:"TARGET_FMT_lx" mmu_idx:0x%lx\n",
318               page, addr, mmu_idx_bitmap);
319 
320     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
321         if (test_bit(mmu_idx, &mmu_idx_bitmap)) {
322             tlb_flush_entry(&env->tlb_table[mmu_idx][page], addr);
323 
324             /* check whether there are vltb entries that need to be flushed */
325             for (i = 0; i < CPU_VTLB_SIZE; i++) {
326                 tlb_flush_entry(&env->tlb_v_table[mmu_idx][i], addr);
327             }
328         }
329     }
330 
331     tb_flush_jmp_cache(cpu, addr);
332 }
333 
334 static void tlb_check_page_and_flush_by_mmuidx_async_work(CPUState *cpu,
335                                                           run_on_cpu_data data)
336 {
337     CPUArchState *env = cpu->env_ptr;
338     target_ulong addr_and_mmuidx = (target_ulong) data.target_ptr;
339     target_ulong addr = addr_and_mmuidx & TARGET_PAGE_MASK;
340     unsigned long mmu_idx_bitmap = addr_and_mmuidx & ALL_MMUIDX_BITS;
341 
342     tlb_debug("addr:"TARGET_FMT_lx" mmu_idx: %04lx\n", addr, mmu_idx_bitmap);
343 
344     /* Check if we need to flush due to large pages.  */
345     if ((addr & env->tlb_flush_mask) == env->tlb_flush_addr) {
346         tlb_debug("forced full flush ("
347                   TARGET_FMT_lx "/" TARGET_FMT_lx ")\n",
348                   env->tlb_flush_addr, env->tlb_flush_mask);
349 
350         tlb_flush_by_mmuidx_async_work(cpu,
351                                        RUN_ON_CPU_HOST_INT(mmu_idx_bitmap));
352     } else {
353         tlb_flush_page_by_mmuidx_async_work(cpu, data);
354     }
355 }
356 
357 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, uint16_t idxmap)
358 {
359     target_ulong addr_and_mmu_idx;
360 
361     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%" PRIx16 "\n", addr, idxmap);
362 
363     /* This should already be page aligned */
364     addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
365     addr_and_mmu_idx |= idxmap;
366 
367     if (!qemu_cpu_is_self(cpu)) {
368         async_run_on_cpu(cpu, tlb_check_page_and_flush_by_mmuidx_async_work,
369                          RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
370     } else {
371         tlb_check_page_and_flush_by_mmuidx_async_work(
372             cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
373     }
374 }
375 
376 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, target_ulong addr,
377                                        uint16_t idxmap)
378 {
379     const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work;
380     target_ulong addr_and_mmu_idx;
381 
382     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
383 
384     /* This should already be page aligned */
385     addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
386     addr_and_mmu_idx |= idxmap;
387 
388     flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
389     fn(src_cpu, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
390 }
391 
392 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu,
393                                                             target_ulong addr,
394                                                             uint16_t idxmap)
395 {
396     const run_on_cpu_func fn = tlb_check_page_and_flush_by_mmuidx_async_work;
397     target_ulong addr_and_mmu_idx;
398 
399     tlb_debug("addr: "TARGET_FMT_lx" mmu_idx:%"PRIx16"\n", addr, idxmap);
400 
401     /* This should already be page aligned */
402     addr_and_mmu_idx = addr & TARGET_PAGE_MASK;
403     addr_and_mmu_idx |= idxmap;
404 
405     flush_all_helper(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
406     async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_TARGET_PTR(addr_and_mmu_idx));
407 }
408 
409 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
410 {
411     const run_on_cpu_func fn = tlb_flush_page_async_work;
412 
413     flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
414     fn(src, RUN_ON_CPU_TARGET_PTR(addr));
415 }
416 
417 void tlb_flush_page_all_cpus_synced(CPUState *src,
418                                                   target_ulong addr)
419 {
420     const run_on_cpu_func fn = tlb_flush_page_async_work;
421 
422     flush_all_helper(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
423     async_safe_run_on_cpu(src, fn, RUN_ON_CPU_TARGET_PTR(addr));
424 }
425 
426 /* update the TLBs so that writes to code in the virtual page 'addr'
427    can be detected */
428 void tlb_protect_code(ram_addr_t ram_addr)
429 {
430     cpu_physical_memory_test_and_clear_dirty(ram_addr, TARGET_PAGE_SIZE,
431                                              DIRTY_MEMORY_CODE);
432 }
433 
434 /* update the TLB so that writes in physical page 'phys_addr' are no longer
435    tested for self modifying code */
436 void tlb_unprotect_code(ram_addr_t ram_addr)
437 {
438     cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE);
439 }
440 
441 
442 /*
443  * Dirty write flag handling
444  *
445  * When the TCG code writes to a location it looks up the address in
446  * the TLB and uses that data to compute the final address. If any of
447  * the lower bits of the address are set then the slow path is forced.
448  * There are a number of reasons to do this but for normal RAM the
449  * most usual is detecting writes to code regions which may invalidate
450  * generated code.
451  *
452  * Because we want other vCPUs to respond to changes straight away we
453  * update the te->addr_write field atomically. If the TLB entry has
454  * been changed by the vCPU in the mean time we skip the update.
455  *
456  * As this function uses atomic accesses we also need to ensure
457  * updates to tlb_entries follow the same access rules. We don't need
458  * to worry about this for oversized guests as MTTCG is disabled for
459  * them.
460  */
461 
462 static void tlb_reset_dirty_range(CPUTLBEntry *tlb_entry, uintptr_t start,
463                            uintptr_t length)
464 {
465 #if TCG_OVERSIZED_GUEST
466     uintptr_t addr = tlb_entry->addr_write;
467 
468     if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
469         addr &= TARGET_PAGE_MASK;
470         addr += tlb_entry->addend;
471         if ((addr - start) < length) {
472             tlb_entry->addr_write |= TLB_NOTDIRTY;
473         }
474     }
475 #else
476     /* paired with atomic_mb_set in tlb_set_page_with_attrs */
477     uintptr_t orig_addr = atomic_mb_read(&tlb_entry->addr_write);
478     uintptr_t addr = orig_addr;
479 
480     if ((addr & (TLB_INVALID_MASK | TLB_MMIO | TLB_NOTDIRTY)) == 0) {
481         addr &= TARGET_PAGE_MASK;
482         addr += atomic_read(&tlb_entry->addend);
483         if ((addr - start) < length) {
484             uintptr_t notdirty_addr = orig_addr | TLB_NOTDIRTY;
485             atomic_cmpxchg(&tlb_entry->addr_write, orig_addr, notdirty_addr);
486         }
487     }
488 #endif
489 }
490 
491 /* For atomic correctness when running MTTCG we need to use the right
492  * primitives when copying entries */
493 static inline void copy_tlb_helper(CPUTLBEntry *d, CPUTLBEntry *s,
494                                    bool atomic_set)
495 {
496 #if TCG_OVERSIZED_GUEST
497     *d = *s;
498 #else
499     if (atomic_set) {
500         d->addr_read = s->addr_read;
501         d->addr_code = s->addr_code;
502         atomic_set(&d->addend, atomic_read(&s->addend));
503         /* Pairs with flag setting in tlb_reset_dirty_range */
504         atomic_mb_set(&d->addr_write, atomic_read(&s->addr_write));
505     } else {
506         d->addr_read = s->addr_read;
507         d->addr_write = atomic_read(&s->addr_write);
508         d->addr_code = s->addr_code;
509         d->addend = atomic_read(&s->addend);
510     }
511 #endif
512 }
513 
514 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of
515  * the target vCPU). As such care needs to be taken that we don't
516  * dangerously race with another vCPU update. The only thing actually
517  * updated is the target TLB entry ->addr_write flags.
518  */
519 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length)
520 {
521     CPUArchState *env;
522 
523     int mmu_idx;
524 
525     env = cpu->env_ptr;
526     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
527         unsigned int i;
528 
529         for (i = 0; i < CPU_TLB_SIZE; i++) {
530             tlb_reset_dirty_range(&env->tlb_table[mmu_idx][i],
531                                   start1, length);
532         }
533 
534         for (i = 0; i < CPU_VTLB_SIZE; i++) {
535             tlb_reset_dirty_range(&env->tlb_v_table[mmu_idx][i],
536                                   start1, length);
537         }
538     }
539 }
540 
541 static inline void tlb_set_dirty1(CPUTLBEntry *tlb_entry, target_ulong vaddr)
542 {
543     if (tlb_entry->addr_write == (vaddr | TLB_NOTDIRTY)) {
544         tlb_entry->addr_write = vaddr;
545     }
546 }
547 
548 /* update the TLB corresponding to virtual page vaddr
549    so that it is no longer dirty */
550 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr)
551 {
552     CPUArchState *env = cpu->env_ptr;
553     int i;
554     int mmu_idx;
555 
556     assert_cpu_is_self(cpu);
557 
558     vaddr &= TARGET_PAGE_MASK;
559     i = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
560     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
561         tlb_set_dirty1(&env->tlb_table[mmu_idx][i], vaddr);
562     }
563 
564     for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) {
565         int k;
566         for (k = 0; k < CPU_VTLB_SIZE; k++) {
567             tlb_set_dirty1(&env->tlb_v_table[mmu_idx][k], vaddr);
568         }
569     }
570 }
571 
572 /* Our TLB does not support large pages, so remember the area covered by
573    large pages and trigger a full TLB flush if these are invalidated.  */
574 static void tlb_add_large_page(CPUArchState *env, target_ulong vaddr,
575                                target_ulong size)
576 {
577     target_ulong mask = ~(size - 1);
578 
579     if (env->tlb_flush_addr == (target_ulong)-1) {
580         env->tlb_flush_addr = vaddr & mask;
581         env->tlb_flush_mask = mask;
582         return;
583     }
584     /* Extend the existing region to include the new page.
585        This is a compromise between unnecessary flushes and the cost
586        of maintaining a full variable size TLB.  */
587     mask &= env->tlb_flush_mask;
588     while (((env->tlb_flush_addr ^ vaddr) & mask) != 0) {
589         mask <<= 1;
590     }
591     env->tlb_flush_addr &= mask;
592     env->tlb_flush_mask = mask;
593 }
594 
595 /* Add a new TLB entry. At most one entry for a given virtual address
596  * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the
597  * supplied size is only used by tlb_flush_page.
598  *
599  * Called from TCG-generated code, which is under an RCU read-side
600  * critical section.
601  */
602 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
603                              hwaddr paddr, MemTxAttrs attrs, int prot,
604                              int mmu_idx, target_ulong size)
605 {
606     CPUArchState *env = cpu->env_ptr;
607     MemoryRegionSection *section;
608     unsigned int index;
609     target_ulong address;
610     target_ulong code_address;
611     uintptr_t addend;
612     CPUTLBEntry *te, *tv, tn;
613     hwaddr iotlb, xlat, sz;
614     unsigned vidx = env->vtlb_index++ % CPU_VTLB_SIZE;
615     int asidx = cpu_asidx_from_attrs(cpu, attrs);
616 
617     assert_cpu_is_self(cpu);
618     assert(size >= TARGET_PAGE_SIZE);
619     if (size != TARGET_PAGE_SIZE) {
620         tlb_add_large_page(env, vaddr, size);
621     }
622 
623     sz = size;
624     section = address_space_translate_for_iotlb(cpu, asidx, paddr, &xlat, &sz);
625     assert(sz >= TARGET_PAGE_SIZE);
626 
627     tlb_debug("vaddr=" TARGET_FMT_lx " paddr=0x" TARGET_FMT_plx
628               " prot=%x idx=%d\n",
629               vaddr, paddr, prot, mmu_idx);
630 
631     address = vaddr;
632     if (!memory_region_is_ram(section->mr) && !memory_region_is_romd(section->mr)) {
633         /* IO memory case */
634         address |= TLB_MMIO;
635         addend = 0;
636     } else {
637         /* TLB_MMIO for rom/romd handled below */
638         addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat;
639     }
640 
641     code_address = address;
642     iotlb = memory_region_section_get_iotlb(cpu, section, vaddr, paddr, xlat,
643                                             prot, &address);
644 
645     index = (vaddr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
646     te = &env->tlb_table[mmu_idx][index];
647     /* do not discard the translation in te, evict it into a victim tlb */
648     tv = &env->tlb_v_table[mmu_idx][vidx];
649 
650     /* addr_write can race with tlb_reset_dirty_range */
651     copy_tlb_helper(tv, te, true);
652 
653     env->iotlb_v[mmu_idx][vidx] = env->iotlb[mmu_idx][index];
654 
655     /* refill the tlb */
656     env->iotlb[mmu_idx][index].addr = iotlb - vaddr;
657     env->iotlb[mmu_idx][index].attrs = attrs;
658 
659     /* Now calculate the new entry */
660     tn.addend = addend - vaddr;
661     if (prot & PAGE_READ) {
662         tn.addr_read = address;
663     } else {
664         tn.addr_read = -1;
665     }
666 
667     if (prot & PAGE_EXEC) {
668         tn.addr_code = code_address;
669     } else {
670         tn.addr_code = -1;
671     }
672 
673     tn.addr_write = -1;
674     if (prot & PAGE_WRITE) {
675         if ((memory_region_is_ram(section->mr) && section->readonly)
676             || memory_region_is_romd(section->mr)) {
677             /* Write access calls the I/O callback.  */
678             tn.addr_write = address | TLB_MMIO;
679         } else if (memory_region_is_ram(section->mr)
680                    && cpu_physical_memory_is_clean(
681                         memory_region_get_ram_addr(section->mr) + xlat)) {
682             tn.addr_write = address | TLB_NOTDIRTY;
683         } else {
684             tn.addr_write = address;
685         }
686     }
687 
688     /* Pairs with flag setting in tlb_reset_dirty_range */
689     copy_tlb_helper(te, &tn, true);
690     /* atomic_mb_set(&te->addr_write, write_address); */
691 }
692 
693 /* Add a new TLB entry, but without specifying the memory
694  * transaction attributes to be used.
695  */
696 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
697                   hwaddr paddr, int prot,
698                   int mmu_idx, target_ulong size)
699 {
700     tlb_set_page_with_attrs(cpu, vaddr, paddr, MEMTXATTRS_UNSPECIFIED,
701                             prot, mmu_idx, size);
702 }
703 
704 static void report_bad_exec(CPUState *cpu, target_ulong addr)
705 {
706     /* Accidentally executing outside RAM or ROM is quite common for
707      * several user-error situations, so report it in a way that
708      * makes it clear that this isn't a QEMU bug and provide suggestions
709      * about what a user could do to fix things.
710      */
711     error_report("Trying to execute code outside RAM or ROM at 0x"
712                  TARGET_FMT_lx, addr);
713     error_printf("This usually means one of the following happened:\n\n"
714                  "(1) You told QEMU to execute a kernel for the wrong machine "
715                  "type, and it crashed on startup (eg trying to run a "
716                  "raspberry pi kernel on a versatilepb QEMU machine)\n"
717                  "(2) You didn't give QEMU a kernel or BIOS filename at all, "
718                  "and QEMU executed a ROM full of no-op instructions until "
719                  "it fell off the end\n"
720                  "(3) Your guest kernel has a bug and crashed by jumping "
721                  "off into nowhere\n\n"
722                  "This is almost always one of the first two, so check your "
723                  "command line and that you are using the right type of kernel "
724                  "for this machine.\n"
725                  "If you think option (3) is likely then you can try debugging "
726                  "your guest with the -d debug options; in particular "
727                  "-d guest_errors will cause the log to include a dump of the "
728                  "guest register state at this point.\n\n"
729                  "Execution cannot continue; stopping here.\n\n");
730 
731     /* Report also to the logs, with more detail including register dump */
732     qemu_log_mask(LOG_GUEST_ERROR, "qemu: fatal: Trying to execute code "
733                   "outside RAM or ROM at 0x" TARGET_FMT_lx "\n", addr);
734     log_cpu_state_mask(LOG_GUEST_ERROR, cpu, CPU_DUMP_FPU | CPU_DUMP_CCOP);
735 }
736 
737 static inline ram_addr_t qemu_ram_addr_from_host_nofail(void *ptr)
738 {
739     ram_addr_t ram_addr;
740 
741     ram_addr = qemu_ram_addr_from_host(ptr);
742     if (ram_addr == RAM_ADDR_INVALID) {
743         error_report("Bad ram pointer %p", ptr);
744         abort();
745     }
746     return ram_addr;
747 }
748 
749 static uint64_t io_readx(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
750                          target_ulong addr, uintptr_t retaddr, int size)
751 {
752     CPUState *cpu = ENV_GET_CPU(env);
753     hwaddr physaddr = iotlbentry->addr;
754     MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
755     uint64_t val;
756     bool locked = false;
757 
758     physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
759     cpu->mem_io_pc = retaddr;
760     if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
761         cpu_io_recompile(cpu, retaddr);
762     }
763 
764     cpu->mem_io_vaddr = addr;
765 
766     if (mr->global_locking) {
767         qemu_mutex_lock_iothread();
768         locked = true;
769     }
770     memory_region_dispatch_read(mr, physaddr, &val, size, iotlbentry->attrs);
771     if (locked) {
772         qemu_mutex_unlock_iothread();
773     }
774 
775     return val;
776 }
777 
778 static void io_writex(CPUArchState *env, CPUIOTLBEntry *iotlbentry,
779                       uint64_t val, target_ulong addr,
780                       uintptr_t retaddr, int size)
781 {
782     CPUState *cpu = ENV_GET_CPU(env);
783     hwaddr physaddr = iotlbentry->addr;
784     MemoryRegion *mr = iotlb_to_region(cpu, physaddr, iotlbentry->attrs);
785     bool locked = false;
786 
787     physaddr = (physaddr & TARGET_PAGE_MASK) + addr;
788     if (mr != &io_mem_rom && mr != &io_mem_notdirty && !cpu->can_do_io) {
789         cpu_io_recompile(cpu, retaddr);
790     }
791     cpu->mem_io_vaddr = addr;
792     cpu->mem_io_pc = retaddr;
793 
794     if (mr->global_locking) {
795         qemu_mutex_lock_iothread();
796         locked = true;
797     }
798     memory_region_dispatch_write(mr, physaddr, val, size, iotlbentry->attrs);
799     if (locked) {
800         qemu_mutex_unlock_iothread();
801     }
802 }
803 
804 /* Return true if ADDR is present in the victim tlb, and has been copied
805    back to the main tlb.  */
806 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index,
807                            size_t elt_ofs, target_ulong page)
808 {
809     size_t vidx;
810     for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) {
811         CPUTLBEntry *vtlb = &env->tlb_v_table[mmu_idx][vidx];
812         target_ulong cmp = *(target_ulong *)((uintptr_t)vtlb + elt_ofs);
813 
814         if (cmp == page) {
815             /* Found entry in victim tlb, swap tlb and iotlb.  */
816             CPUTLBEntry tmptlb, *tlb = &env->tlb_table[mmu_idx][index];
817 
818             copy_tlb_helper(&tmptlb, tlb, false);
819             copy_tlb_helper(tlb, vtlb, true);
820             copy_tlb_helper(vtlb, &tmptlb, true);
821 
822             CPUIOTLBEntry tmpio, *io = &env->iotlb[mmu_idx][index];
823             CPUIOTLBEntry *vio = &env->iotlb_v[mmu_idx][vidx];
824             tmpio = *io; *io = *vio; *vio = tmpio;
825             return true;
826         }
827     }
828     return false;
829 }
830 
831 /* Macro to call the above, with local variables from the use context.  */
832 #define VICTIM_TLB_HIT(TY, ADDR) \
833   victim_tlb_hit(env, mmu_idx, index, offsetof(CPUTLBEntry, TY), \
834                  (ADDR) & TARGET_PAGE_MASK)
835 
836 /* NOTE: this function can trigger an exception */
837 /* NOTE2: the returned address is not exactly the physical address: it
838  * is actually a ram_addr_t (in system mode; the user mode emulation
839  * version of this function returns a guest virtual address).
840  */
841 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr)
842 {
843     int mmu_idx, index, pd;
844     void *p;
845     MemoryRegion *mr;
846     CPUState *cpu = ENV_GET_CPU(env);
847     CPUIOTLBEntry *iotlbentry;
848 
849     index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
850     mmu_idx = cpu_mmu_index(env, true);
851     if (unlikely(env->tlb_table[mmu_idx][index].addr_code !=
852                  (addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK)))) {
853         if (!VICTIM_TLB_HIT(addr_read, addr)) {
854             tlb_fill(ENV_GET_CPU(env), addr, MMU_INST_FETCH, mmu_idx, 0);
855         }
856     }
857     iotlbentry = &env->iotlb[mmu_idx][index];
858     pd = iotlbentry->addr & ~TARGET_PAGE_MASK;
859     mr = iotlb_to_region(cpu, pd, iotlbentry->attrs);
860     if (memory_region_is_unassigned(mr)) {
861         qemu_mutex_lock_iothread();
862         if (memory_region_request_mmio_ptr(mr, addr)) {
863             qemu_mutex_unlock_iothread();
864             /* A MemoryRegion is potentially added so re-run the
865              * get_page_addr_code.
866              */
867             return get_page_addr_code(env, addr);
868         }
869         qemu_mutex_unlock_iothread();
870 
871         cpu_unassigned_access(cpu, addr, false, true, 0, 4);
872         /* The CPU's unassigned access hook might have longjumped out
873          * with an exception. If it didn't (or there was no hook) then
874          * we can't proceed further.
875          */
876         report_bad_exec(cpu, addr);
877         exit(1);
878     }
879     p = (void *)((uintptr_t)addr + env->tlb_table[mmu_idx][index].addend);
880     return qemu_ram_addr_from_host_nofail(p);
881 }
882 
883 /* Probe for whether the specified guest write access is permitted.
884  * If it is not permitted then an exception will be taken in the same
885  * way as if this were a real write access (and we will not return).
886  * Otherwise the function will return, and there will be a valid
887  * entry in the TLB for this access.
888  */
889 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
890                  uintptr_t retaddr)
891 {
892     int index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
893     target_ulong tlb_addr = env->tlb_table[mmu_idx][index].addr_write;
894 
895     if ((addr & TARGET_PAGE_MASK)
896         != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
897         /* TLB entry is for a different page */
898         if (!VICTIM_TLB_HIT(addr_write, addr)) {
899             tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
900         }
901     }
902 }
903 
904 /* Probe for a read-modify-write atomic operation.  Do not allow unaligned
905  * operations, or io operations to proceed.  Return the host address.  */
906 static void *atomic_mmu_lookup(CPUArchState *env, target_ulong addr,
907                                TCGMemOpIdx oi, uintptr_t retaddr)
908 {
909     size_t mmu_idx = get_mmuidx(oi);
910     size_t index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
911     CPUTLBEntry *tlbe = &env->tlb_table[mmu_idx][index];
912     target_ulong tlb_addr = tlbe->addr_write;
913     TCGMemOp mop = get_memop(oi);
914     int a_bits = get_alignment_bits(mop);
915     int s_bits = mop & MO_SIZE;
916 
917     /* Adjust the given return address.  */
918     retaddr -= GETPC_ADJ;
919 
920     /* Enforce guest required alignment.  */
921     if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) {
922         /* ??? Maybe indicate atomic op to cpu_unaligned_access */
923         cpu_unaligned_access(ENV_GET_CPU(env), addr, MMU_DATA_STORE,
924                              mmu_idx, retaddr);
925     }
926 
927     /* Enforce qemu required alignment.  */
928     if (unlikely(addr & ((1 << s_bits) - 1))) {
929         /* We get here if guest alignment was not requested,
930            or was not enforced by cpu_unaligned_access above.
931            We might widen the access and emulate, but for now
932            mark an exception and exit the cpu loop.  */
933         goto stop_the_world;
934     }
935 
936     /* Check TLB entry and enforce page permissions.  */
937     if ((addr & TARGET_PAGE_MASK)
938         != (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
939         if (!VICTIM_TLB_HIT(addr_write, addr)) {
940             tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_STORE, mmu_idx, retaddr);
941         }
942         tlb_addr = tlbe->addr_write;
943     }
944 
945     /* Check notdirty */
946     if (unlikely(tlb_addr & TLB_NOTDIRTY)) {
947         tlb_set_dirty(ENV_GET_CPU(env), addr);
948         tlb_addr = tlb_addr & ~TLB_NOTDIRTY;
949     }
950 
951     /* Notice an IO access  */
952     if (unlikely(tlb_addr & ~TARGET_PAGE_MASK)) {
953         /* There's really nothing that can be done to
954            support this apart from stop-the-world.  */
955         goto stop_the_world;
956     }
957 
958     /* Let the guest notice RMW on a write-only page.  */
959     if (unlikely(tlbe->addr_read != tlb_addr)) {
960         tlb_fill(ENV_GET_CPU(env), addr, MMU_DATA_LOAD, mmu_idx, retaddr);
961         /* Since we don't support reads and writes to different addresses,
962            and we do have the proper page loaded for write, this shouldn't
963            ever return.  But just in case, handle via stop-the-world.  */
964         goto stop_the_world;
965     }
966 
967     return (void *)((uintptr_t)addr + tlbe->addend);
968 
969  stop_the_world:
970     cpu_loop_exit_atomic(ENV_GET_CPU(env), retaddr);
971 }
972 
973 #ifdef TARGET_WORDS_BIGENDIAN
974 # define TGT_BE(X)  (X)
975 # define TGT_LE(X)  BSWAP(X)
976 #else
977 # define TGT_BE(X)  BSWAP(X)
978 # define TGT_LE(X)  (X)
979 #endif
980 
981 #define MMUSUFFIX _mmu
982 
983 #define DATA_SIZE 1
984 #include "softmmu_template.h"
985 
986 #define DATA_SIZE 2
987 #include "softmmu_template.h"
988 
989 #define DATA_SIZE 4
990 #include "softmmu_template.h"
991 
992 #define DATA_SIZE 8
993 #include "softmmu_template.h"
994 
995 /* First set of helpers allows passing in of OI and RETADDR.  This makes
996    them callable from other helpers.  */
997 
998 #define EXTRA_ARGS     , TCGMemOpIdx oi, uintptr_t retaddr
999 #define ATOMIC_NAME(X) \
1000     HELPER(glue(glue(glue(atomic_ ## X, SUFFIX), END), _mmu))
1001 #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, oi, retaddr)
1002 
1003 #define DATA_SIZE 1
1004 #include "atomic_template.h"
1005 
1006 #define DATA_SIZE 2
1007 #include "atomic_template.h"
1008 
1009 #define DATA_SIZE 4
1010 #include "atomic_template.h"
1011 
1012 #ifdef CONFIG_ATOMIC64
1013 #define DATA_SIZE 8
1014 #include "atomic_template.h"
1015 #endif
1016 
1017 #ifdef CONFIG_ATOMIC128
1018 #define DATA_SIZE 16
1019 #include "atomic_template.h"
1020 #endif
1021 
1022 /* Second set of helpers are directly callable from TCG as helpers.  */
1023 
1024 #undef EXTRA_ARGS
1025 #undef ATOMIC_NAME
1026 #undef ATOMIC_MMU_LOOKUP
1027 #define EXTRA_ARGS         , TCGMemOpIdx oi
1028 #define ATOMIC_NAME(X)     HELPER(glue(glue(atomic_ ## X, SUFFIX), END))
1029 #define ATOMIC_MMU_LOOKUP  atomic_mmu_lookup(env, addr, oi, GETPC())
1030 
1031 #define DATA_SIZE 1
1032 #include "atomic_template.h"
1033 
1034 #define DATA_SIZE 2
1035 #include "atomic_template.h"
1036 
1037 #define DATA_SIZE 4
1038 #include "atomic_template.h"
1039 
1040 #ifdef CONFIG_ATOMIC64
1041 #define DATA_SIZE 8
1042 #include "atomic_template.h"
1043 #endif
1044 
1045 /* Code access functions.  */
1046 
1047 #undef MMUSUFFIX
1048 #define MMUSUFFIX _cmmu
1049 #undef GETPC
1050 #define GETPC() ((uintptr_t)0)
1051 #define SOFTMMU_CODE_ACCESS
1052 
1053 #define DATA_SIZE 1
1054 #include "softmmu_template.h"
1055 
1056 #define DATA_SIZE 2
1057 #include "softmmu_template.h"
1058 
1059 #define DATA_SIZE 4
1060 #include "softmmu_template.h"
1061 
1062 #define DATA_SIZE 8
1063 #include "softmmu_template.h"
1064