1 /* 2 * Common CPU TLB handling 3 * 4 * Copyright (c) 2003 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/main-loop.h" 22 #include "hw/core/tcg-cpu-ops.h" 23 #include "exec/exec-all.h" 24 #include "exec/memory.h" 25 #include "exec/cpu_ldst.h" 26 #include "exec/cputlb.h" 27 #include "exec/memory-internal.h" 28 #include "exec/ram_addr.h" 29 #include "tcg/tcg.h" 30 #include "qemu/error-report.h" 31 #include "exec/log.h" 32 #include "exec/helper-proto-common.h" 33 #include "qemu/atomic.h" 34 #include "qemu/atomic128.h" 35 #include "exec/translate-all.h" 36 #include "trace.h" 37 #include "tb-hash.h" 38 #include "internal.h" 39 #ifdef CONFIG_PLUGIN 40 #include "qemu/plugin-memory.h" 41 #endif 42 #include "tcg/tcg-ldst.h" 43 #include "tcg/oversized-guest.h" 44 45 /* DEBUG defines, enable DEBUG_TLB_LOG to log to the CPU_LOG_MMU target */ 46 /* #define DEBUG_TLB */ 47 /* #define DEBUG_TLB_LOG */ 48 49 #ifdef DEBUG_TLB 50 # define DEBUG_TLB_GATE 1 51 # ifdef DEBUG_TLB_LOG 52 # define DEBUG_TLB_LOG_GATE 1 53 # else 54 # define DEBUG_TLB_LOG_GATE 0 55 # endif 56 #else 57 # define DEBUG_TLB_GATE 0 58 # define DEBUG_TLB_LOG_GATE 0 59 #endif 60 61 #define tlb_debug(fmt, ...) do { \ 62 if (DEBUG_TLB_LOG_GATE) { \ 63 qemu_log_mask(CPU_LOG_MMU, "%s: " fmt, __func__, \ 64 ## __VA_ARGS__); \ 65 } else if (DEBUG_TLB_GATE) { \ 66 fprintf(stderr, "%s: " fmt, __func__, ## __VA_ARGS__); \ 67 } \ 68 } while (0) 69 70 #define assert_cpu_is_self(cpu) do { \ 71 if (DEBUG_TLB_GATE) { \ 72 g_assert(!(cpu)->created || qemu_cpu_is_self(cpu)); \ 73 } \ 74 } while (0) 75 76 /* run_on_cpu_data.target_ptr should always be big enough for a 77 * vaddr even on 32 bit builds 78 */ 79 QEMU_BUILD_BUG_ON(sizeof(vaddr) > sizeof(run_on_cpu_data)); 80 81 /* We currently can't handle more than 16 bits in the MMUIDX bitmask. 82 */ 83 QEMU_BUILD_BUG_ON(NB_MMU_MODES > 16); 84 #define ALL_MMUIDX_BITS ((1 << NB_MMU_MODES) - 1) 85 86 static inline size_t tlb_n_entries(CPUTLBDescFast *fast) 87 { 88 return (fast->mask >> CPU_TLB_ENTRY_BITS) + 1; 89 } 90 91 static inline size_t sizeof_tlb(CPUTLBDescFast *fast) 92 { 93 return fast->mask + (1 << CPU_TLB_ENTRY_BITS); 94 } 95 96 static void tlb_window_reset(CPUTLBDesc *desc, int64_t ns, 97 size_t max_entries) 98 { 99 desc->window_begin_ns = ns; 100 desc->window_max_entries = max_entries; 101 } 102 103 static void tb_jmp_cache_clear_page(CPUState *cpu, vaddr page_addr) 104 { 105 CPUJumpCache *jc = cpu->tb_jmp_cache; 106 int i, i0; 107 108 if (unlikely(!jc)) { 109 return; 110 } 111 112 i0 = tb_jmp_cache_hash_page(page_addr); 113 for (i = 0; i < TB_JMP_PAGE_SIZE; i++) { 114 qatomic_set(&jc->array[i0 + i].tb, NULL); 115 } 116 } 117 118 /** 119 * tlb_mmu_resize_locked() - perform TLB resize bookkeeping; resize if necessary 120 * @desc: The CPUTLBDesc portion of the TLB 121 * @fast: The CPUTLBDescFast portion of the same TLB 122 * 123 * Called with tlb_lock_held. 124 * 125 * We have two main constraints when resizing a TLB: (1) we only resize it 126 * on a TLB flush (otherwise we'd have to take a perf hit by either rehashing 127 * the array or unnecessarily flushing it), which means we do not control how 128 * frequently the resizing can occur; (2) we don't have access to the guest's 129 * future scheduling decisions, and therefore have to decide the magnitude of 130 * the resize based on past observations. 131 * 132 * In general, a memory-hungry process can benefit greatly from an appropriately 133 * sized TLB, since a guest TLB miss is very expensive. This doesn't mean that 134 * we just have to make the TLB as large as possible; while an oversized TLB 135 * results in minimal TLB miss rates, it also takes longer to be flushed 136 * (flushes can be _very_ frequent), and the reduced locality can also hurt 137 * performance. 138 * 139 * To achieve near-optimal performance for all kinds of workloads, we: 140 * 141 * 1. Aggressively increase the size of the TLB when the use rate of the 142 * TLB being flushed is high, since it is likely that in the near future this 143 * memory-hungry process will execute again, and its memory hungriness will 144 * probably be similar. 145 * 146 * 2. Slowly reduce the size of the TLB as the use rate declines over a 147 * reasonably large time window. The rationale is that if in such a time window 148 * we have not observed a high TLB use rate, it is likely that we won't observe 149 * it in the near future. In that case, once a time window expires we downsize 150 * the TLB to match the maximum use rate observed in the window. 151 * 152 * 3. Try to keep the maximum use rate in a time window in the 30-70% range, 153 * since in that range performance is likely near-optimal. Recall that the TLB 154 * is direct mapped, so we want the use rate to be low (or at least not too 155 * high), since otherwise we are likely to have a significant amount of 156 * conflict misses. 157 */ 158 static void tlb_mmu_resize_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast, 159 int64_t now) 160 { 161 size_t old_size = tlb_n_entries(fast); 162 size_t rate; 163 size_t new_size = old_size; 164 int64_t window_len_ms = 100; 165 int64_t window_len_ns = window_len_ms * 1000 * 1000; 166 bool window_expired = now > desc->window_begin_ns + window_len_ns; 167 168 if (desc->n_used_entries > desc->window_max_entries) { 169 desc->window_max_entries = desc->n_used_entries; 170 } 171 rate = desc->window_max_entries * 100 / old_size; 172 173 if (rate > 70) { 174 new_size = MIN(old_size << 1, 1 << CPU_TLB_DYN_MAX_BITS); 175 } else if (rate < 30 && window_expired) { 176 size_t ceil = pow2ceil(desc->window_max_entries); 177 size_t expected_rate = desc->window_max_entries * 100 / ceil; 178 179 /* 180 * Avoid undersizing when the max number of entries seen is just below 181 * a pow2. For instance, if max_entries == 1025, the expected use rate 182 * would be 1025/2048==50%. However, if max_entries == 1023, we'd get 183 * 1023/1024==99.9% use rate, so we'd likely end up doubling the size 184 * later. Thus, make sure that the expected use rate remains below 70%. 185 * (and since we double the size, that means the lowest rate we'd 186 * expect to get is 35%, which is still in the 30-70% range where 187 * we consider that the size is appropriate.) 188 */ 189 if (expected_rate > 70) { 190 ceil *= 2; 191 } 192 new_size = MAX(ceil, 1 << CPU_TLB_DYN_MIN_BITS); 193 } 194 195 if (new_size == old_size) { 196 if (window_expired) { 197 tlb_window_reset(desc, now, desc->n_used_entries); 198 } 199 return; 200 } 201 202 g_free(fast->table); 203 g_free(desc->fulltlb); 204 205 tlb_window_reset(desc, now, 0); 206 /* desc->n_used_entries is cleared by the caller */ 207 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 208 fast->table = g_try_new(CPUTLBEntry, new_size); 209 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 210 211 /* 212 * If the allocations fail, try smaller sizes. We just freed some 213 * memory, so going back to half of new_size has a good chance of working. 214 * Increased memory pressure elsewhere in the system might cause the 215 * allocations to fail though, so we progressively reduce the allocation 216 * size, aborting if we cannot even allocate the smallest TLB we support. 217 */ 218 while (fast->table == NULL || desc->fulltlb == NULL) { 219 if (new_size == (1 << CPU_TLB_DYN_MIN_BITS)) { 220 error_report("%s: %s", __func__, strerror(errno)); 221 abort(); 222 } 223 new_size = MAX(new_size >> 1, 1 << CPU_TLB_DYN_MIN_BITS); 224 fast->mask = (new_size - 1) << CPU_TLB_ENTRY_BITS; 225 226 g_free(fast->table); 227 g_free(desc->fulltlb); 228 fast->table = g_try_new(CPUTLBEntry, new_size); 229 desc->fulltlb = g_try_new(CPUTLBEntryFull, new_size); 230 } 231 } 232 233 static void tlb_mmu_flush_locked(CPUTLBDesc *desc, CPUTLBDescFast *fast) 234 { 235 desc->n_used_entries = 0; 236 desc->large_page_addr = -1; 237 desc->large_page_mask = -1; 238 desc->vindex = 0; 239 memset(fast->table, -1, sizeof_tlb(fast)); 240 memset(desc->vtable, -1, sizeof(desc->vtable)); 241 } 242 243 static void tlb_flush_one_mmuidx_locked(CPUArchState *env, int mmu_idx, 244 int64_t now) 245 { 246 CPUTLBDesc *desc = &env_tlb(env)->d[mmu_idx]; 247 CPUTLBDescFast *fast = &env_tlb(env)->f[mmu_idx]; 248 249 tlb_mmu_resize_locked(desc, fast, now); 250 tlb_mmu_flush_locked(desc, fast); 251 } 252 253 static void tlb_mmu_init(CPUTLBDesc *desc, CPUTLBDescFast *fast, int64_t now) 254 { 255 size_t n_entries = 1 << CPU_TLB_DYN_DEFAULT_BITS; 256 257 tlb_window_reset(desc, now, 0); 258 desc->n_used_entries = 0; 259 fast->mask = (n_entries - 1) << CPU_TLB_ENTRY_BITS; 260 fast->table = g_new(CPUTLBEntry, n_entries); 261 desc->fulltlb = g_new(CPUTLBEntryFull, n_entries); 262 tlb_mmu_flush_locked(desc, fast); 263 } 264 265 static inline void tlb_n_used_entries_inc(CPUArchState *env, uintptr_t mmu_idx) 266 { 267 env_tlb(env)->d[mmu_idx].n_used_entries++; 268 } 269 270 static inline void tlb_n_used_entries_dec(CPUArchState *env, uintptr_t mmu_idx) 271 { 272 env_tlb(env)->d[mmu_idx].n_used_entries--; 273 } 274 275 void tlb_init(CPUState *cpu) 276 { 277 CPUArchState *env = cpu->env_ptr; 278 int64_t now = get_clock_realtime(); 279 int i; 280 281 qemu_spin_init(&env_tlb(env)->c.lock); 282 283 /* All tlbs are initialized flushed. */ 284 env_tlb(env)->c.dirty = 0; 285 286 for (i = 0; i < NB_MMU_MODES; i++) { 287 tlb_mmu_init(&env_tlb(env)->d[i], &env_tlb(env)->f[i], now); 288 } 289 } 290 291 void tlb_destroy(CPUState *cpu) 292 { 293 CPUArchState *env = cpu->env_ptr; 294 int i; 295 296 qemu_spin_destroy(&env_tlb(env)->c.lock); 297 for (i = 0; i < NB_MMU_MODES; i++) { 298 CPUTLBDesc *desc = &env_tlb(env)->d[i]; 299 CPUTLBDescFast *fast = &env_tlb(env)->f[i]; 300 301 g_free(fast->table); 302 g_free(desc->fulltlb); 303 } 304 } 305 306 /* flush_all_helper: run fn across all cpus 307 * 308 * If the wait flag is set then the src cpu's helper will be queued as 309 * "safe" work and the loop exited creating a synchronisation point 310 * where all queued work will be finished before execution starts 311 * again. 312 */ 313 static void flush_all_helper(CPUState *src, run_on_cpu_func fn, 314 run_on_cpu_data d) 315 { 316 CPUState *cpu; 317 318 CPU_FOREACH(cpu) { 319 if (cpu != src) { 320 async_run_on_cpu(cpu, fn, d); 321 } 322 } 323 } 324 325 void tlb_flush_counts(size_t *pfull, size_t *ppart, size_t *pelide) 326 { 327 CPUState *cpu; 328 size_t full = 0, part = 0, elide = 0; 329 330 CPU_FOREACH(cpu) { 331 CPUArchState *env = cpu->env_ptr; 332 333 full += qatomic_read(&env_tlb(env)->c.full_flush_count); 334 part += qatomic_read(&env_tlb(env)->c.part_flush_count); 335 elide += qatomic_read(&env_tlb(env)->c.elide_flush_count); 336 } 337 *pfull = full; 338 *ppart = part; 339 *pelide = elide; 340 } 341 342 static void tlb_flush_by_mmuidx_async_work(CPUState *cpu, run_on_cpu_data data) 343 { 344 CPUArchState *env = cpu->env_ptr; 345 uint16_t asked = data.host_int; 346 uint16_t all_dirty, work, to_clean; 347 int64_t now = get_clock_realtime(); 348 349 assert_cpu_is_self(cpu); 350 351 tlb_debug("mmu_idx:0x%04" PRIx16 "\n", asked); 352 353 qemu_spin_lock(&env_tlb(env)->c.lock); 354 355 all_dirty = env_tlb(env)->c.dirty; 356 to_clean = asked & all_dirty; 357 all_dirty &= ~to_clean; 358 env_tlb(env)->c.dirty = all_dirty; 359 360 for (work = to_clean; work != 0; work &= work - 1) { 361 int mmu_idx = ctz32(work); 362 tlb_flush_one_mmuidx_locked(env, mmu_idx, now); 363 } 364 365 qemu_spin_unlock(&env_tlb(env)->c.lock); 366 367 tcg_flush_jmp_cache(cpu); 368 369 if (to_clean == ALL_MMUIDX_BITS) { 370 qatomic_set(&env_tlb(env)->c.full_flush_count, 371 env_tlb(env)->c.full_flush_count + 1); 372 } else { 373 qatomic_set(&env_tlb(env)->c.part_flush_count, 374 env_tlb(env)->c.part_flush_count + ctpop16(to_clean)); 375 if (to_clean != asked) { 376 qatomic_set(&env_tlb(env)->c.elide_flush_count, 377 env_tlb(env)->c.elide_flush_count + 378 ctpop16(asked & ~to_clean)); 379 } 380 } 381 } 382 383 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap) 384 { 385 tlb_debug("mmu_idx: 0x%" PRIx16 "\n", idxmap); 386 387 if (cpu->created && !qemu_cpu_is_self(cpu)) { 388 async_run_on_cpu(cpu, tlb_flush_by_mmuidx_async_work, 389 RUN_ON_CPU_HOST_INT(idxmap)); 390 } else { 391 tlb_flush_by_mmuidx_async_work(cpu, RUN_ON_CPU_HOST_INT(idxmap)); 392 } 393 } 394 395 void tlb_flush(CPUState *cpu) 396 { 397 tlb_flush_by_mmuidx(cpu, ALL_MMUIDX_BITS); 398 } 399 400 void tlb_flush_by_mmuidx_all_cpus(CPUState *src_cpu, uint16_t idxmap) 401 { 402 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 403 404 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 405 406 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 407 fn(src_cpu, RUN_ON_CPU_HOST_INT(idxmap)); 408 } 409 410 void tlb_flush_all_cpus(CPUState *src_cpu) 411 { 412 tlb_flush_by_mmuidx_all_cpus(src_cpu, ALL_MMUIDX_BITS); 413 } 414 415 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *src_cpu, uint16_t idxmap) 416 { 417 const run_on_cpu_func fn = tlb_flush_by_mmuidx_async_work; 418 419 tlb_debug("mmu_idx: 0x%"PRIx16"\n", idxmap); 420 421 flush_all_helper(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 422 async_safe_run_on_cpu(src_cpu, fn, RUN_ON_CPU_HOST_INT(idxmap)); 423 } 424 425 void tlb_flush_all_cpus_synced(CPUState *src_cpu) 426 { 427 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, ALL_MMUIDX_BITS); 428 } 429 430 static bool tlb_hit_page_mask_anyprot(CPUTLBEntry *tlb_entry, 431 vaddr page, vaddr mask) 432 { 433 page &= mask; 434 mask &= TARGET_PAGE_MASK | TLB_INVALID_MASK; 435 436 return (page == (tlb_entry->addr_read & mask) || 437 page == (tlb_addr_write(tlb_entry) & mask) || 438 page == (tlb_entry->addr_code & mask)); 439 } 440 441 static inline bool tlb_hit_page_anyprot(CPUTLBEntry *tlb_entry, vaddr page) 442 { 443 return tlb_hit_page_mask_anyprot(tlb_entry, page, -1); 444 } 445 446 /** 447 * tlb_entry_is_empty - return true if the entry is not in use 448 * @te: pointer to CPUTLBEntry 449 */ 450 static inline bool tlb_entry_is_empty(const CPUTLBEntry *te) 451 { 452 return te->addr_read == -1 && te->addr_write == -1 && te->addr_code == -1; 453 } 454 455 /* Called with tlb_c.lock held */ 456 static bool tlb_flush_entry_mask_locked(CPUTLBEntry *tlb_entry, 457 vaddr page, 458 vaddr mask) 459 { 460 if (tlb_hit_page_mask_anyprot(tlb_entry, page, mask)) { 461 memset(tlb_entry, -1, sizeof(*tlb_entry)); 462 return true; 463 } 464 return false; 465 } 466 467 static inline bool tlb_flush_entry_locked(CPUTLBEntry *tlb_entry, vaddr page) 468 { 469 return tlb_flush_entry_mask_locked(tlb_entry, page, -1); 470 } 471 472 /* Called with tlb_c.lock held */ 473 static void tlb_flush_vtlb_page_mask_locked(CPUArchState *env, int mmu_idx, 474 vaddr page, 475 vaddr mask) 476 { 477 CPUTLBDesc *d = &env_tlb(env)->d[mmu_idx]; 478 int k; 479 480 assert_cpu_is_self(env_cpu(env)); 481 for (k = 0; k < CPU_VTLB_SIZE; k++) { 482 if (tlb_flush_entry_mask_locked(&d->vtable[k], page, mask)) { 483 tlb_n_used_entries_dec(env, mmu_idx); 484 } 485 } 486 } 487 488 static inline void tlb_flush_vtlb_page_locked(CPUArchState *env, int mmu_idx, 489 vaddr page) 490 { 491 tlb_flush_vtlb_page_mask_locked(env, mmu_idx, page, -1); 492 } 493 494 static void tlb_flush_page_locked(CPUArchState *env, int midx, vaddr page) 495 { 496 vaddr lp_addr = env_tlb(env)->d[midx].large_page_addr; 497 vaddr lp_mask = env_tlb(env)->d[midx].large_page_mask; 498 499 /* Check if we need to flush due to large pages. */ 500 if ((page & lp_mask) == lp_addr) { 501 tlb_debug("forcing full flush midx %d (%016" 502 VADDR_PRIx "/%016" VADDR_PRIx ")\n", 503 midx, lp_addr, lp_mask); 504 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 505 } else { 506 if (tlb_flush_entry_locked(tlb_entry(env, midx, page), page)) { 507 tlb_n_used_entries_dec(env, midx); 508 } 509 tlb_flush_vtlb_page_locked(env, midx, page); 510 } 511 } 512 513 /** 514 * tlb_flush_page_by_mmuidx_async_0: 515 * @cpu: cpu on which to flush 516 * @addr: page of virtual address to flush 517 * @idxmap: set of mmu_idx to flush 518 * 519 * Helper for tlb_flush_page_by_mmuidx and friends, flush one page 520 * at @addr from the tlbs indicated by @idxmap from @cpu. 521 */ 522 static void tlb_flush_page_by_mmuidx_async_0(CPUState *cpu, 523 vaddr addr, 524 uint16_t idxmap) 525 { 526 CPUArchState *env = cpu->env_ptr; 527 int mmu_idx; 528 529 assert_cpu_is_self(cpu); 530 531 tlb_debug("page addr: %016" VADDR_PRIx " mmu_map:0x%x\n", addr, idxmap); 532 533 qemu_spin_lock(&env_tlb(env)->c.lock); 534 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 535 if ((idxmap >> mmu_idx) & 1) { 536 tlb_flush_page_locked(env, mmu_idx, addr); 537 } 538 } 539 qemu_spin_unlock(&env_tlb(env)->c.lock); 540 541 /* 542 * Discard jump cache entries for any tb which might potentially 543 * overlap the flushed page, which includes the previous. 544 */ 545 tb_jmp_cache_clear_page(cpu, addr - TARGET_PAGE_SIZE); 546 tb_jmp_cache_clear_page(cpu, addr); 547 } 548 549 /** 550 * tlb_flush_page_by_mmuidx_async_1: 551 * @cpu: cpu on which to flush 552 * @data: encoded addr + idxmap 553 * 554 * Helper for tlb_flush_page_by_mmuidx and friends, called through 555 * async_run_on_cpu. The idxmap parameter is encoded in the page 556 * offset of the target_ptr field. This limits the set of mmu_idx 557 * that can be passed via this method. 558 */ 559 static void tlb_flush_page_by_mmuidx_async_1(CPUState *cpu, 560 run_on_cpu_data data) 561 { 562 vaddr addr_and_idxmap = data.target_ptr; 563 vaddr addr = addr_and_idxmap & TARGET_PAGE_MASK; 564 uint16_t idxmap = addr_and_idxmap & ~TARGET_PAGE_MASK; 565 566 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 567 } 568 569 typedef struct { 570 vaddr addr; 571 uint16_t idxmap; 572 } TLBFlushPageByMMUIdxData; 573 574 /** 575 * tlb_flush_page_by_mmuidx_async_2: 576 * @cpu: cpu on which to flush 577 * @data: allocated addr + idxmap 578 * 579 * Helper for tlb_flush_page_by_mmuidx and friends, called through 580 * async_run_on_cpu. The addr+idxmap parameters are stored in a 581 * TLBFlushPageByMMUIdxData structure that has been allocated 582 * specifically for this helper. Free the structure when done. 583 */ 584 static void tlb_flush_page_by_mmuidx_async_2(CPUState *cpu, 585 run_on_cpu_data data) 586 { 587 TLBFlushPageByMMUIdxData *d = data.host_ptr; 588 589 tlb_flush_page_by_mmuidx_async_0(cpu, d->addr, d->idxmap); 590 g_free(d); 591 } 592 593 void tlb_flush_page_by_mmuidx(CPUState *cpu, vaddr addr, uint16_t idxmap) 594 { 595 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%" PRIx16 "\n", addr, idxmap); 596 597 /* This should already be page aligned */ 598 addr &= TARGET_PAGE_MASK; 599 600 if (qemu_cpu_is_self(cpu)) { 601 tlb_flush_page_by_mmuidx_async_0(cpu, addr, idxmap); 602 } else if (idxmap < TARGET_PAGE_SIZE) { 603 /* 604 * Most targets have only a few mmu_idx. In the case where 605 * we can stuff idxmap into the low TARGET_PAGE_BITS, avoid 606 * allocating memory for this operation. 607 */ 608 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_1, 609 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 610 } else { 611 TLBFlushPageByMMUIdxData *d = g_new(TLBFlushPageByMMUIdxData, 1); 612 613 /* Otherwise allocate a structure, freed by the worker. */ 614 d->addr = addr; 615 d->idxmap = idxmap; 616 async_run_on_cpu(cpu, tlb_flush_page_by_mmuidx_async_2, 617 RUN_ON_CPU_HOST_PTR(d)); 618 } 619 } 620 621 void tlb_flush_page(CPUState *cpu, vaddr addr) 622 { 623 tlb_flush_page_by_mmuidx(cpu, addr, ALL_MMUIDX_BITS); 624 } 625 626 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *src_cpu, vaddr addr, 627 uint16_t idxmap) 628 { 629 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 630 631 /* This should already be page aligned */ 632 addr &= TARGET_PAGE_MASK; 633 634 /* 635 * Allocate memory to hold addr+idxmap only when needed. 636 * See tlb_flush_page_by_mmuidx for details. 637 */ 638 if (idxmap < TARGET_PAGE_SIZE) { 639 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 640 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 641 } else { 642 CPUState *dst_cpu; 643 644 /* Allocate a separate data block for each destination cpu. */ 645 CPU_FOREACH(dst_cpu) { 646 if (dst_cpu != src_cpu) { 647 TLBFlushPageByMMUIdxData *d 648 = g_new(TLBFlushPageByMMUIdxData, 1); 649 650 d->addr = addr; 651 d->idxmap = idxmap; 652 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 653 RUN_ON_CPU_HOST_PTR(d)); 654 } 655 } 656 } 657 658 tlb_flush_page_by_mmuidx_async_0(src_cpu, addr, idxmap); 659 } 660 661 void tlb_flush_page_all_cpus(CPUState *src, vaddr addr) 662 { 663 tlb_flush_page_by_mmuidx_all_cpus(src, addr, ALL_MMUIDX_BITS); 664 } 665 666 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 667 vaddr addr, 668 uint16_t idxmap) 669 { 670 tlb_debug("addr: %016" VADDR_PRIx " mmu_idx:%"PRIx16"\n", addr, idxmap); 671 672 /* This should already be page aligned */ 673 addr &= TARGET_PAGE_MASK; 674 675 /* 676 * Allocate memory to hold addr+idxmap only when needed. 677 * See tlb_flush_page_by_mmuidx for details. 678 */ 679 if (idxmap < TARGET_PAGE_SIZE) { 680 flush_all_helper(src_cpu, tlb_flush_page_by_mmuidx_async_1, 681 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 682 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_1, 683 RUN_ON_CPU_TARGET_PTR(addr | idxmap)); 684 } else { 685 CPUState *dst_cpu; 686 TLBFlushPageByMMUIdxData *d; 687 688 /* Allocate a separate data block for each destination cpu. */ 689 CPU_FOREACH(dst_cpu) { 690 if (dst_cpu != src_cpu) { 691 d = g_new(TLBFlushPageByMMUIdxData, 1); 692 d->addr = addr; 693 d->idxmap = idxmap; 694 async_run_on_cpu(dst_cpu, tlb_flush_page_by_mmuidx_async_2, 695 RUN_ON_CPU_HOST_PTR(d)); 696 } 697 } 698 699 d = g_new(TLBFlushPageByMMUIdxData, 1); 700 d->addr = addr; 701 d->idxmap = idxmap; 702 async_safe_run_on_cpu(src_cpu, tlb_flush_page_by_mmuidx_async_2, 703 RUN_ON_CPU_HOST_PTR(d)); 704 } 705 } 706 707 void tlb_flush_page_all_cpus_synced(CPUState *src, vaddr addr) 708 { 709 tlb_flush_page_by_mmuidx_all_cpus_synced(src, addr, ALL_MMUIDX_BITS); 710 } 711 712 static void tlb_flush_range_locked(CPUArchState *env, int midx, 713 vaddr addr, vaddr len, 714 unsigned bits) 715 { 716 CPUTLBDesc *d = &env_tlb(env)->d[midx]; 717 CPUTLBDescFast *f = &env_tlb(env)->f[midx]; 718 vaddr mask = MAKE_64BIT_MASK(0, bits); 719 720 /* 721 * If @bits is smaller than the tlb size, there may be multiple entries 722 * within the TLB; otherwise all addresses that match under @mask hit 723 * the same TLB entry. 724 * TODO: Perhaps allow bits to be a few bits less than the size. 725 * For now, just flush the entire TLB. 726 * 727 * If @len is larger than the tlb size, then it will take longer to 728 * test all of the entries in the TLB than it will to flush it all. 729 */ 730 if (mask < f->mask || len > f->mask) { 731 tlb_debug("forcing full flush midx %d (" 732 "%016" VADDR_PRIx "/%016" VADDR_PRIx "+%016" VADDR_PRIx ")\n", 733 midx, addr, mask, len); 734 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 735 return; 736 } 737 738 /* 739 * Check if we need to flush due to large pages. 740 * Because large_page_mask contains all 1's from the msb, 741 * we only need to test the end of the range. 742 */ 743 if (((addr + len - 1) & d->large_page_mask) == d->large_page_addr) { 744 tlb_debug("forcing full flush midx %d (" 745 "%016" VADDR_PRIx "/%016" VADDR_PRIx ")\n", 746 midx, d->large_page_addr, d->large_page_mask); 747 tlb_flush_one_mmuidx_locked(env, midx, get_clock_realtime()); 748 return; 749 } 750 751 for (vaddr i = 0; i < len; i += TARGET_PAGE_SIZE) { 752 vaddr page = addr + i; 753 CPUTLBEntry *entry = tlb_entry(env, midx, page); 754 755 if (tlb_flush_entry_mask_locked(entry, page, mask)) { 756 tlb_n_used_entries_dec(env, midx); 757 } 758 tlb_flush_vtlb_page_mask_locked(env, midx, page, mask); 759 } 760 } 761 762 typedef struct { 763 vaddr addr; 764 vaddr len; 765 uint16_t idxmap; 766 uint16_t bits; 767 } TLBFlushRangeData; 768 769 static void tlb_flush_range_by_mmuidx_async_0(CPUState *cpu, 770 TLBFlushRangeData d) 771 { 772 CPUArchState *env = cpu->env_ptr; 773 int mmu_idx; 774 775 assert_cpu_is_self(cpu); 776 777 tlb_debug("range: %016" VADDR_PRIx "/%u+%016" VADDR_PRIx " mmu_map:0x%x\n", 778 d.addr, d.bits, d.len, d.idxmap); 779 780 qemu_spin_lock(&env_tlb(env)->c.lock); 781 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 782 if ((d.idxmap >> mmu_idx) & 1) { 783 tlb_flush_range_locked(env, mmu_idx, d.addr, d.len, d.bits); 784 } 785 } 786 qemu_spin_unlock(&env_tlb(env)->c.lock); 787 788 /* 789 * If the length is larger than the jump cache size, then it will take 790 * longer to clear each entry individually than it will to clear it all. 791 */ 792 if (d.len >= (TARGET_PAGE_SIZE * TB_JMP_CACHE_SIZE)) { 793 tcg_flush_jmp_cache(cpu); 794 return; 795 } 796 797 /* 798 * Discard jump cache entries for any tb which might potentially 799 * overlap the flushed pages, which includes the previous. 800 */ 801 d.addr -= TARGET_PAGE_SIZE; 802 for (vaddr i = 0, n = d.len / TARGET_PAGE_SIZE + 1; i < n; i++) { 803 tb_jmp_cache_clear_page(cpu, d.addr); 804 d.addr += TARGET_PAGE_SIZE; 805 } 806 } 807 808 static void tlb_flush_range_by_mmuidx_async_1(CPUState *cpu, 809 run_on_cpu_data data) 810 { 811 TLBFlushRangeData *d = data.host_ptr; 812 tlb_flush_range_by_mmuidx_async_0(cpu, *d); 813 g_free(d); 814 } 815 816 void tlb_flush_range_by_mmuidx(CPUState *cpu, vaddr addr, 817 vaddr len, uint16_t idxmap, 818 unsigned bits) 819 { 820 TLBFlushRangeData d; 821 822 /* 823 * If all bits are significant, and len is small, 824 * this devolves to tlb_flush_page. 825 */ 826 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 827 tlb_flush_page_by_mmuidx(cpu, addr, idxmap); 828 return; 829 } 830 /* If no page bits are significant, this devolves to tlb_flush. */ 831 if (bits < TARGET_PAGE_BITS) { 832 tlb_flush_by_mmuidx(cpu, idxmap); 833 return; 834 } 835 836 /* This should already be page aligned */ 837 d.addr = addr & TARGET_PAGE_MASK; 838 d.len = len; 839 d.idxmap = idxmap; 840 d.bits = bits; 841 842 if (qemu_cpu_is_self(cpu)) { 843 tlb_flush_range_by_mmuidx_async_0(cpu, d); 844 } else { 845 /* Otherwise allocate a structure, freed by the worker. */ 846 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 847 async_run_on_cpu(cpu, tlb_flush_range_by_mmuidx_async_1, 848 RUN_ON_CPU_HOST_PTR(p)); 849 } 850 } 851 852 void tlb_flush_page_bits_by_mmuidx(CPUState *cpu, vaddr addr, 853 uint16_t idxmap, unsigned bits) 854 { 855 tlb_flush_range_by_mmuidx(cpu, addr, TARGET_PAGE_SIZE, idxmap, bits); 856 } 857 858 void tlb_flush_range_by_mmuidx_all_cpus(CPUState *src_cpu, 859 vaddr addr, vaddr len, 860 uint16_t idxmap, unsigned bits) 861 { 862 TLBFlushRangeData d; 863 CPUState *dst_cpu; 864 865 /* 866 * If all bits are significant, and len is small, 867 * this devolves to tlb_flush_page. 868 */ 869 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 870 tlb_flush_page_by_mmuidx_all_cpus(src_cpu, addr, idxmap); 871 return; 872 } 873 /* If no page bits are significant, this devolves to tlb_flush. */ 874 if (bits < TARGET_PAGE_BITS) { 875 tlb_flush_by_mmuidx_all_cpus(src_cpu, idxmap); 876 return; 877 } 878 879 /* This should already be page aligned */ 880 d.addr = addr & TARGET_PAGE_MASK; 881 d.len = len; 882 d.idxmap = idxmap; 883 d.bits = bits; 884 885 /* Allocate a separate data block for each destination cpu. */ 886 CPU_FOREACH(dst_cpu) { 887 if (dst_cpu != src_cpu) { 888 TLBFlushRangeData *p = g_memdup(&d, sizeof(d)); 889 async_run_on_cpu(dst_cpu, 890 tlb_flush_range_by_mmuidx_async_1, 891 RUN_ON_CPU_HOST_PTR(p)); 892 } 893 } 894 895 tlb_flush_range_by_mmuidx_async_0(src_cpu, d); 896 } 897 898 void tlb_flush_page_bits_by_mmuidx_all_cpus(CPUState *src_cpu, 899 vaddr addr, uint16_t idxmap, 900 unsigned bits) 901 { 902 tlb_flush_range_by_mmuidx_all_cpus(src_cpu, addr, TARGET_PAGE_SIZE, 903 idxmap, bits); 904 } 905 906 void tlb_flush_range_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 907 vaddr addr, 908 vaddr len, 909 uint16_t idxmap, 910 unsigned bits) 911 { 912 TLBFlushRangeData d, *p; 913 CPUState *dst_cpu; 914 915 /* 916 * If all bits are significant, and len is small, 917 * this devolves to tlb_flush_page. 918 */ 919 if (bits >= TARGET_LONG_BITS && len <= TARGET_PAGE_SIZE) { 920 tlb_flush_page_by_mmuidx_all_cpus_synced(src_cpu, addr, idxmap); 921 return; 922 } 923 /* If no page bits are significant, this devolves to tlb_flush. */ 924 if (bits < TARGET_PAGE_BITS) { 925 tlb_flush_by_mmuidx_all_cpus_synced(src_cpu, idxmap); 926 return; 927 } 928 929 /* This should already be page aligned */ 930 d.addr = addr & TARGET_PAGE_MASK; 931 d.len = len; 932 d.idxmap = idxmap; 933 d.bits = bits; 934 935 /* Allocate a separate data block for each destination cpu. */ 936 CPU_FOREACH(dst_cpu) { 937 if (dst_cpu != src_cpu) { 938 p = g_memdup(&d, sizeof(d)); 939 async_run_on_cpu(dst_cpu, tlb_flush_range_by_mmuidx_async_1, 940 RUN_ON_CPU_HOST_PTR(p)); 941 } 942 } 943 944 p = g_memdup(&d, sizeof(d)); 945 async_safe_run_on_cpu(src_cpu, tlb_flush_range_by_mmuidx_async_1, 946 RUN_ON_CPU_HOST_PTR(p)); 947 } 948 949 void tlb_flush_page_bits_by_mmuidx_all_cpus_synced(CPUState *src_cpu, 950 vaddr addr, 951 uint16_t idxmap, 952 unsigned bits) 953 { 954 tlb_flush_range_by_mmuidx_all_cpus_synced(src_cpu, addr, TARGET_PAGE_SIZE, 955 idxmap, bits); 956 } 957 958 /* update the TLBs so that writes to code in the virtual page 'addr' 959 can be detected */ 960 void tlb_protect_code(ram_addr_t ram_addr) 961 { 962 cpu_physical_memory_test_and_clear_dirty(ram_addr & TARGET_PAGE_MASK, 963 TARGET_PAGE_SIZE, 964 DIRTY_MEMORY_CODE); 965 } 966 967 /* update the TLB so that writes in physical page 'phys_addr' are no longer 968 tested for self modifying code */ 969 void tlb_unprotect_code(ram_addr_t ram_addr) 970 { 971 cpu_physical_memory_set_dirty_flag(ram_addr, DIRTY_MEMORY_CODE); 972 } 973 974 975 /* 976 * Dirty write flag handling 977 * 978 * When the TCG code writes to a location it looks up the address in 979 * the TLB and uses that data to compute the final address. If any of 980 * the lower bits of the address are set then the slow path is forced. 981 * There are a number of reasons to do this but for normal RAM the 982 * most usual is detecting writes to code regions which may invalidate 983 * generated code. 984 * 985 * Other vCPUs might be reading their TLBs during guest execution, so we update 986 * te->addr_write with qatomic_set. We don't need to worry about this for 987 * oversized guests as MTTCG is disabled for them. 988 * 989 * Called with tlb_c.lock held. 990 */ 991 static void tlb_reset_dirty_range_locked(CPUTLBEntry *tlb_entry, 992 uintptr_t start, uintptr_t length) 993 { 994 uintptr_t addr = tlb_entry->addr_write; 995 996 if ((addr & (TLB_INVALID_MASK | TLB_MMIO | 997 TLB_DISCARD_WRITE | TLB_NOTDIRTY)) == 0) { 998 addr &= TARGET_PAGE_MASK; 999 addr += tlb_entry->addend; 1000 if ((addr - start) < length) { 1001 #if TARGET_LONG_BITS == 32 1002 uint32_t *ptr_write = (uint32_t *)&tlb_entry->addr_write; 1003 ptr_write += HOST_BIG_ENDIAN; 1004 qatomic_set(ptr_write, *ptr_write | TLB_NOTDIRTY); 1005 #elif TCG_OVERSIZED_GUEST 1006 tlb_entry->addr_write |= TLB_NOTDIRTY; 1007 #else 1008 qatomic_set(&tlb_entry->addr_write, 1009 tlb_entry->addr_write | TLB_NOTDIRTY); 1010 #endif 1011 } 1012 } 1013 } 1014 1015 /* 1016 * Called with tlb_c.lock held. 1017 * Called only from the vCPU context, i.e. the TLB's owner thread. 1018 */ 1019 static inline void copy_tlb_helper_locked(CPUTLBEntry *d, const CPUTLBEntry *s) 1020 { 1021 *d = *s; 1022 } 1023 1024 /* This is a cross vCPU call (i.e. another vCPU resetting the flags of 1025 * the target vCPU). 1026 * We must take tlb_c.lock to avoid racing with another vCPU update. The only 1027 * thing actually updated is the target TLB entry ->addr_write flags. 1028 */ 1029 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length) 1030 { 1031 CPUArchState *env; 1032 1033 int mmu_idx; 1034 1035 env = cpu->env_ptr; 1036 qemu_spin_lock(&env_tlb(env)->c.lock); 1037 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1038 unsigned int i; 1039 unsigned int n = tlb_n_entries(&env_tlb(env)->f[mmu_idx]); 1040 1041 for (i = 0; i < n; i++) { 1042 tlb_reset_dirty_range_locked(&env_tlb(env)->f[mmu_idx].table[i], 1043 start1, length); 1044 } 1045 1046 for (i = 0; i < CPU_VTLB_SIZE; i++) { 1047 tlb_reset_dirty_range_locked(&env_tlb(env)->d[mmu_idx].vtable[i], 1048 start1, length); 1049 } 1050 } 1051 qemu_spin_unlock(&env_tlb(env)->c.lock); 1052 } 1053 1054 /* Called with tlb_c.lock held */ 1055 static inline void tlb_set_dirty1_locked(CPUTLBEntry *tlb_entry, 1056 vaddr addr) 1057 { 1058 if (tlb_entry->addr_write == (addr | TLB_NOTDIRTY)) { 1059 tlb_entry->addr_write = addr; 1060 } 1061 } 1062 1063 /* update the TLB corresponding to virtual page vaddr 1064 so that it is no longer dirty */ 1065 void tlb_set_dirty(CPUState *cpu, vaddr addr) 1066 { 1067 CPUArchState *env = cpu->env_ptr; 1068 int mmu_idx; 1069 1070 assert_cpu_is_self(cpu); 1071 1072 addr &= TARGET_PAGE_MASK; 1073 qemu_spin_lock(&env_tlb(env)->c.lock); 1074 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1075 tlb_set_dirty1_locked(tlb_entry(env, mmu_idx, addr), addr); 1076 } 1077 1078 for (mmu_idx = 0; mmu_idx < NB_MMU_MODES; mmu_idx++) { 1079 int k; 1080 for (k = 0; k < CPU_VTLB_SIZE; k++) { 1081 tlb_set_dirty1_locked(&env_tlb(env)->d[mmu_idx].vtable[k], addr); 1082 } 1083 } 1084 qemu_spin_unlock(&env_tlb(env)->c.lock); 1085 } 1086 1087 /* Our TLB does not support large pages, so remember the area covered by 1088 large pages and trigger a full TLB flush if these are invalidated. */ 1089 static void tlb_add_large_page(CPUArchState *env, int mmu_idx, 1090 vaddr addr, uint64_t size) 1091 { 1092 vaddr lp_addr = env_tlb(env)->d[mmu_idx].large_page_addr; 1093 vaddr lp_mask = ~(size - 1); 1094 1095 if (lp_addr == (vaddr)-1) { 1096 /* No previous large page. */ 1097 lp_addr = addr; 1098 } else { 1099 /* Extend the existing region to include the new page. 1100 This is a compromise between unnecessary flushes and 1101 the cost of maintaining a full variable size TLB. */ 1102 lp_mask &= env_tlb(env)->d[mmu_idx].large_page_mask; 1103 while (((lp_addr ^ addr) & lp_mask) != 0) { 1104 lp_mask <<= 1; 1105 } 1106 } 1107 env_tlb(env)->d[mmu_idx].large_page_addr = lp_addr & lp_mask; 1108 env_tlb(env)->d[mmu_idx].large_page_mask = lp_mask; 1109 } 1110 1111 static inline void tlb_set_compare(CPUTLBEntryFull *full, CPUTLBEntry *ent, 1112 vaddr address, int flags, 1113 MMUAccessType access_type, bool enable) 1114 { 1115 if (enable) { 1116 address |= flags & TLB_FLAGS_MASK; 1117 flags &= TLB_SLOW_FLAGS_MASK; 1118 if (flags) { 1119 address |= TLB_FORCE_SLOW; 1120 } 1121 } else { 1122 address = -1; 1123 flags = 0; 1124 } 1125 ent->addr_idx[access_type] = address; 1126 full->slow_flags[access_type] = flags; 1127 } 1128 1129 /* 1130 * Add a new TLB entry. At most one entry for a given virtual address 1131 * is permitted. Only a single TARGET_PAGE_SIZE region is mapped, the 1132 * supplied size is only used by tlb_flush_page. 1133 * 1134 * Called from TCG-generated code, which is under an RCU read-side 1135 * critical section. 1136 */ 1137 void tlb_set_page_full(CPUState *cpu, int mmu_idx, 1138 vaddr addr, CPUTLBEntryFull *full) 1139 { 1140 CPUArchState *env = cpu->env_ptr; 1141 CPUTLB *tlb = env_tlb(env); 1142 CPUTLBDesc *desc = &tlb->d[mmu_idx]; 1143 MemoryRegionSection *section; 1144 unsigned int index, read_flags, write_flags; 1145 uintptr_t addend; 1146 CPUTLBEntry *te, tn; 1147 hwaddr iotlb, xlat, sz, paddr_page; 1148 vaddr addr_page; 1149 int asidx, wp_flags, prot; 1150 bool is_ram, is_romd; 1151 1152 assert_cpu_is_self(cpu); 1153 1154 if (full->lg_page_size <= TARGET_PAGE_BITS) { 1155 sz = TARGET_PAGE_SIZE; 1156 } else { 1157 sz = (hwaddr)1 << full->lg_page_size; 1158 tlb_add_large_page(env, mmu_idx, addr, sz); 1159 } 1160 addr_page = addr & TARGET_PAGE_MASK; 1161 paddr_page = full->phys_addr & TARGET_PAGE_MASK; 1162 1163 prot = full->prot; 1164 asidx = cpu_asidx_from_attrs(cpu, full->attrs); 1165 section = address_space_translate_for_iotlb(cpu, asidx, paddr_page, 1166 &xlat, &sz, full->attrs, &prot); 1167 assert(sz >= TARGET_PAGE_SIZE); 1168 1169 tlb_debug("vaddr=%016" VADDR_PRIx " paddr=0x" HWADDR_FMT_plx 1170 " prot=%x idx=%d\n", 1171 addr, full->phys_addr, prot, mmu_idx); 1172 1173 read_flags = 0; 1174 if (full->lg_page_size < TARGET_PAGE_BITS) { 1175 /* Repeat the MMU check and TLB fill on every access. */ 1176 read_flags |= TLB_INVALID_MASK; 1177 } 1178 if (full->attrs.byte_swap) { 1179 read_flags |= TLB_BSWAP; 1180 } 1181 1182 is_ram = memory_region_is_ram(section->mr); 1183 is_romd = memory_region_is_romd(section->mr); 1184 1185 if (is_ram || is_romd) { 1186 /* RAM and ROMD both have associated host memory. */ 1187 addend = (uintptr_t)memory_region_get_ram_ptr(section->mr) + xlat; 1188 } else { 1189 /* I/O does not; force the host address to NULL. */ 1190 addend = 0; 1191 } 1192 1193 write_flags = read_flags; 1194 if (is_ram) { 1195 iotlb = memory_region_get_ram_addr(section->mr) + xlat; 1196 /* 1197 * Computing is_clean is expensive; avoid all that unless 1198 * the page is actually writable. 1199 */ 1200 if (prot & PAGE_WRITE) { 1201 if (section->readonly) { 1202 write_flags |= TLB_DISCARD_WRITE; 1203 } else if (cpu_physical_memory_is_clean(iotlb)) { 1204 write_flags |= TLB_NOTDIRTY; 1205 } 1206 } 1207 } else { 1208 /* I/O or ROMD */ 1209 iotlb = memory_region_section_get_iotlb(cpu, section) + xlat; 1210 /* 1211 * Writes to romd devices must go through MMIO to enable write. 1212 * Reads to romd devices go through the ram_ptr found above, 1213 * but of course reads to I/O must go through MMIO. 1214 */ 1215 write_flags |= TLB_MMIO; 1216 if (!is_romd) { 1217 read_flags = write_flags; 1218 } 1219 } 1220 1221 wp_flags = cpu_watchpoint_address_matches(cpu, addr_page, 1222 TARGET_PAGE_SIZE); 1223 1224 index = tlb_index(env, mmu_idx, addr_page); 1225 te = tlb_entry(env, mmu_idx, addr_page); 1226 1227 /* 1228 * Hold the TLB lock for the rest of the function. We could acquire/release 1229 * the lock several times in the function, but it is faster to amortize the 1230 * acquisition cost by acquiring it just once. Note that this leads to 1231 * a longer critical section, but this is not a concern since the TLB lock 1232 * is unlikely to be contended. 1233 */ 1234 qemu_spin_lock(&tlb->c.lock); 1235 1236 /* Note that the tlb is no longer clean. */ 1237 tlb->c.dirty |= 1 << mmu_idx; 1238 1239 /* Make sure there's no cached translation for the new page. */ 1240 tlb_flush_vtlb_page_locked(env, mmu_idx, addr_page); 1241 1242 /* 1243 * Only evict the old entry to the victim tlb if it's for a 1244 * different page; otherwise just overwrite the stale data. 1245 */ 1246 if (!tlb_hit_page_anyprot(te, addr_page) && !tlb_entry_is_empty(te)) { 1247 unsigned vidx = desc->vindex++ % CPU_VTLB_SIZE; 1248 CPUTLBEntry *tv = &desc->vtable[vidx]; 1249 1250 /* Evict the old entry into the victim tlb. */ 1251 copy_tlb_helper_locked(tv, te); 1252 desc->vfulltlb[vidx] = desc->fulltlb[index]; 1253 tlb_n_used_entries_dec(env, mmu_idx); 1254 } 1255 1256 /* refill the tlb */ 1257 /* 1258 * At this point iotlb contains a physical section number in the lower 1259 * TARGET_PAGE_BITS, and either 1260 * + the ram_addr_t of the page base of the target RAM (RAM) 1261 * + the offset within section->mr of the page base (I/O, ROMD) 1262 * We subtract addr_page (which is page aligned and thus won't 1263 * disturb the low bits) to give an offset which can be added to the 1264 * (non-page-aligned) vaddr of the eventual memory access to get 1265 * the MemoryRegion offset for the access. Note that the vaddr we 1266 * subtract here is that of the page base, and not the same as the 1267 * vaddr we add back in io_readx()/io_writex()/get_page_addr_code(). 1268 */ 1269 desc->fulltlb[index] = *full; 1270 full = &desc->fulltlb[index]; 1271 full->xlat_section = iotlb - addr_page; 1272 full->phys_addr = paddr_page; 1273 1274 /* Now calculate the new entry */ 1275 tn.addend = addend - addr_page; 1276 1277 tlb_set_compare(full, &tn, addr_page, read_flags, 1278 MMU_INST_FETCH, prot & PAGE_EXEC); 1279 1280 if (wp_flags & BP_MEM_READ) { 1281 read_flags |= TLB_WATCHPOINT; 1282 } 1283 tlb_set_compare(full, &tn, addr_page, read_flags, 1284 MMU_DATA_LOAD, prot & PAGE_READ); 1285 1286 if (prot & PAGE_WRITE_INV) { 1287 write_flags |= TLB_INVALID_MASK; 1288 } 1289 if (wp_flags & BP_MEM_WRITE) { 1290 write_flags |= TLB_WATCHPOINT; 1291 } 1292 tlb_set_compare(full, &tn, addr_page, write_flags, 1293 MMU_DATA_STORE, prot & PAGE_WRITE); 1294 1295 copy_tlb_helper_locked(te, &tn); 1296 tlb_n_used_entries_inc(env, mmu_idx); 1297 qemu_spin_unlock(&tlb->c.lock); 1298 } 1299 1300 void tlb_set_page_with_attrs(CPUState *cpu, vaddr addr, 1301 hwaddr paddr, MemTxAttrs attrs, int prot, 1302 int mmu_idx, uint64_t size) 1303 { 1304 CPUTLBEntryFull full = { 1305 .phys_addr = paddr, 1306 .attrs = attrs, 1307 .prot = prot, 1308 .lg_page_size = ctz64(size) 1309 }; 1310 1311 assert(is_power_of_2(size)); 1312 tlb_set_page_full(cpu, mmu_idx, addr, &full); 1313 } 1314 1315 void tlb_set_page(CPUState *cpu, vaddr addr, 1316 hwaddr paddr, int prot, 1317 int mmu_idx, uint64_t size) 1318 { 1319 tlb_set_page_with_attrs(cpu, addr, paddr, MEMTXATTRS_UNSPECIFIED, 1320 prot, mmu_idx, size); 1321 } 1322 1323 /* 1324 * Note: tlb_fill() can trigger a resize of the TLB. This means that all of the 1325 * caller's prior references to the TLB table (e.g. CPUTLBEntry pointers) must 1326 * be discarded and looked up again (e.g. via tlb_entry()). 1327 */ 1328 static void tlb_fill(CPUState *cpu, vaddr addr, int size, 1329 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1330 { 1331 bool ok; 1332 1333 /* 1334 * This is not a probe, so only valid return is success; failure 1335 * should result in exception + longjmp to the cpu loop. 1336 */ 1337 ok = cpu->cc->tcg_ops->tlb_fill(cpu, addr, size, 1338 access_type, mmu_idx, false, retaddr); 1339 assert(ok); 1340 } 1341 1342 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 1343 MMUAccessType access_type, 1344 int mmu_idx, uintptr_t retaddr) 1345 { 1346 cpu->cc->tcg_ops->do_unaligned_access(cpu, addr, access_type, 1347 mmu_idx, retaddr); 1348 } 1349 1350 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 1351 vaddr addr, unsigned size, 1352 MMUAccessType access_type, 1353 int mmu_idx, MemTxAttrs attrs, 1354 MemTxResult response, 1355 uintptr_t retaddr) 1356 { 1357 CPUClass *cc = CPU_GET_CLASS(cpu); 1358 1359 if (!cpu->ignore_memory_transaction_failures && 1360 cc->tcg_ops->do_transaction_failed) { 1361 cc->tcg_ops->do_transaction_failed(cpu, physaddr, addr, size, 1362 access_type, mmu_idx, attrs, 1363 response, retaddr); 1364 } 1365 } 1366 1367 /* 1368 * Save a potentially trashed CPUTLBEntryFull for later lookup by plugin. 1369 * This is read by tlb_plugin_lookup if the fulltlb entry doesn't match 1370 * because of the side effect of io_writex changing memory layout. 1371 */ 1372 static void save_iotlb_data(CPUState *cs, MemoryRegionSection *section, 1373 hwaddr mr_offset) 1374 { 1375 #ifdef CONFIG_PLUGIN 1376 SavedIOTLB *saved = &cs->saved_iotlb; 1377 saved->section = section; 1378 saved->mr_offset = mr_offset; 1379 #endif 1380 } 1381 1382 static uint64_t io_readx(CPUArchState *env, CPUTLBEntryFull *full, 1383 int mmu_idx, vaddr addr, uintptr_t retaddr, 1384 MMUAccessType access_type, MemOp op) 1385 { 1386 CPUState *cpu = env_cpu(env); 1387 hwaddr mr_offset; 1388 MemoryRegionSection *section; 1389 MemoryRegion *mr; 1390 uint64_t val; 1391 MemTxResult r; 1392 1393 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1394 mr = section->mr; 1395 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1396 cpu->mem_io_pc = retaddr; 1397 if (!cpu->can_do_io) { 1398 cpu_io_recompile(cpu, retaddr); 1399 } 1400 1401 /* 1402 * The memory_region_dispatch may trigger a flush/resize 1403 * so for plugins we save the iotlb_data just in case. 1404 */ 1405 save_iotlb_data(cpu, section, mr_offset); 1406 1407 { 1408 QEMU_IOTHREAD_LOCK_GUARD(); 1409 r = memory_region_dispatch_read(mr, mr_offset, &val, op, full->attrs); 1410 } 1411 1412 if (r != MEMTX_OK) { 1413 hwaddr physaddr = mr_offset + 1414 section->offset_within_address_space - 1415 section->offset_within_region; 1416 1417 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), access_type, 1418 mmu_idx, full->attrs, r, retaddr); 1419 } 1420 return val; 1421 } 1422 1423 static void io_writex(CPUArchState *env, CPUTLBEntryFull *full, 1424 int mmu_idx, uint64_t val, vaddr addr, 1425 uintptr_t retaddr, MemOp op) 1426 { 1427 CPUState *cpu = env_cpu(env); 1428 hwaddr mr_offset; 1429 MemoryRegionSection *section; 1430 MemoryRegion *mr; 1431 MemTxResult r; 1432 1433 section = iotlb_to_section(cpu, full->xlat_section, full->attrs); 1434 mr = section->mr; 1435 mr_offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1436 if (!cpu->can_do_io) { 1437 cpu_io_recompile(cpu, retaddr); 1438 } 1439 cpu->mem_io_pc = retaddr; 1440 1441 /* 1442 * The memory_region_dispatch may trigger a flush/resize 1443 * so for plugins we save the iotlb_data just in case. 1444 */ 1445 save_iotlb_data(cpu, section, mr_offset); 1446 1447 { 1448 QEMU_IOTHREAD_LOCK_GUARD(); 1449 r = memory_region_dispatch_write(mr, mr_offset, val, op, full->attrs); 1450 } 1451 1452 if (r != MEMTX_OK) { 1453 hwaddr physaddr = mr_offset + 1454 section->offset_within_address_space - 1455 section->offset_within_region; 1456 1457 cpu_transaction_failed(cpu, physaddr, addr, memop_size(op), 1458 MMU_DATA_STORE, mmu_idx, full->attrs, r, 1459 retaddr); 1460 } 1461 } 1462 1463 /* Return true if ADDR is present in the victim tlb, and has been copied 1464 back to the main tlb. */ 1465 static bool victim_tlb_hit(CPUArchState *env, size_t mmu_idx, size_t index, 1466 MMUAccessType access_type, vaddr page) 1467 { 1468 size_t vidx; 1469 1470 assert_cpu_is_self(env_cpu(env)); 1471 for (vidx = 0; vidx < CPU_VTLB_SIZE; ++vidx) { 1472 CPUTLBEntry *vtlb = &env_tlb(env)->d[mmu_idx].vtable[vidx]; 1473 uint64_t cmp = tlb_read_idx(vtlb, access_type); 1474 1475 if (cmp == page) { 1476 /* Found entry in victim tlb, swap tlb and iotlb. */ 1477 CPUTLBEntry tmptlb, *tlb = &env_tlb(env)->f[mmu_idx].table[index]; 1478 1479 qemu_spin_lock(&env_tlb(env)->c.lock); 1480 copy_tlb_helper_locked(&tmptlb, tlb); 1481 copy_tlb_helper_locked(tlb, vtlb); 1482 copy_tlb_helper_locked(vtlb, &tmptlb); 1483 qemu_spin_unlock(&env_tlb(env)->c.lock); 1484 1485 CPUTLBEntryFull *f1 = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1486 CPUTLBEntryFull *f2 = &env_tlb(env)->d[mmu_idx].vfulltlb[vidx]; 1487 CPUTLBEntryFull tmpf; 1488 tmpf = *f1; *f1 = *f2; *f2 = tmpf; 1489 return true; 1490 } 1491 } 1492 return false; 1493 } 1494 1495 static void notdirty_write(CPUState *cpu, vaddr mem_vaddr, unsigned size, 1496 CPUTLBEntryFull *full, uintptr_t retaddr) 1497 { 1498 ram_addr_t ram_addr = mem_vaddr + full->xlat_section; 1499 1500 trace_memory_notdirty_write_access(mem_vaddr, ram_addr, size); 1501 1502 if (!cpu_physical_memory_get_dirty_flag(ram_addr, DIRTY_MEMORY_CODE)) { 1503 tb_invalidate_phys_range_fast(ram_addr, size, retaddr); 1504 } 1505 1506 /* 1507 * Set both VGA and migration bits for simplicity and to remove 1508 * the notdirty callback faster. 1509 */ 1510 cpu_physical_memory_set_dirty_range(ram_addr, size, DIRTY_CLIENTS_NOCODE); 1511 1512 /* We remove the notdirty callback only if the code has been flushed. */ 1513 if (!cpu_physical_memory_is_clean(ram_addr)) { 1514 trace_memory_notdirty_set_dirty(mem_vaddr); 1515 tlb_set_dirty(cpu, mem_vaddr); 1516 } 1517 } 1518 1519 static int probe_access_internal(CPUArchState *env, vaddr addr, 1520 int fault_size, MMUAccessType access_type, 1521 int mmu_idx, bool nonfault, 1522 void **phost, CPUTLBEntryFull **pfull, 1523 uintptr_t retaddr, bool check_mem_cbs) 1524 { 1525 uintptr_t index = tlb_index(env, mmu_idx, addr); 1526 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1527 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1528 vaddr page_addr = addr & TARGET_PAGE_MASK; 1529 int flags = TLB_FLAGS_MASK & ~TLB_FORCE_SLOW; 1530 bool force_mmio = check_mem_cbs && cpu_plugin_mem_cbs_enabled(env_cpu(env)); 1531 CPUTLBEntryFull *full; 1532 1533 if (!tlb_hit_page(tlb_addr, page_addr)) { 1534 if (!victim_tlb_hit(env, mmu_idx, index, access_type, page_addr)) { 1535 CPUState *cs = env_cpu(env); 1536 1537 if (!cs->cc->tcg_ops->tlb_fill(cs, addr, fault_size, access_type, 1538 mmu_idx, nonfault, retaddr)) { 1539 /* Non-faulting page table read failed. */ 1540 *phost = NULL; 1541 *pfull = NULL; 1542 return TLB_INVALID_MASK; 1543 } 1544 1545 /* TLB resize via tlb_fill may have moved the entry. */ 1546 index = tlb_index(env, mmu_idx, addr); 1547 entry = tlb_entry(env, mmu_idx, addr); 1548 1549 /* 1550 * With PAGE_WRITE_INV, we set TLB_INVALID_MASK immediately, 1551 * to force the next access through tlb_fill. We've just 1552 * called tlb_fill, so we know that this entry *is* valid. 1553 */ 1554 flags &= ~TLB_INVALID_MASK; 1555 } 1556 tlb_addr = tlb_read_idx(entry, access_type); 1557 } 1558 flags &= tlb_addr; 1559 1560 *pfull = full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1561 flags |= full->slow_flags[access_type]; 1562 1563 /* Fold all "mmio-like" bits into TLB_MMIO. This is not RAM. */ 1564 if (unlikely(flags & ~(TLB_WATCHPOINT | TLB_NOTDIRTY)) 1565 || 1566 (access_type != MMU_INST_FETCH && force_mmio)) { 1567 *phost = NULL; 1568 return TLB_MMIO; 1569 } 1570 1571 /* Everything else is RAM. */ 1572 *phost = (void *)((uintptr_t)addr + entry->addend); 1573 return flags; 1574 } 1575 1576 int probe_access_full(CPUArchState *env, vaddr addr, int size, 1577 MMUAccessType access_type, int mmu_idx, 1578 bool nonfault, void **phost, CPUTLBEntryFull **pfull, 1579 uintptr_t retaddr) 1580 { 1581 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1582 nonfault, phost, pfull, retaddr, true); 1583 1584 /* Handle clean RAM pages. */ 1585 if (unlikely(flags & TLB_NOTDIRTY)) { 1586 notdirty_write(env_cpu(env), addr, 1, *pfull, retaddr); 1587 flags &= ~TLB_NOTDIRTY; 1588 } 1589 1590 return flags; 1591 } 1592 1593 int probe_access_full_mmu(CPUArchState *env, vaddr addr, int size, 1594 MMUAccessType access_type, int mmu_idx, 1595 void **phost, CPUTLBEntryFull **pfull) 1596 { 1597 void *discard_phost; 1598 CPUTLBEntryFull *discard_tlb; 1599 1600 /* privately handle users that don't need full results */ 1601 phost = phost ? phost : &discard_phost; 1602 pfull = pfull ? pfull : &discard_tlb; 1603 1604 int flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1605 true, phost, pfull, 0, false); 1606 1607 /* Handle clean RAM pages. */ 1608 if (unlikely(flags & TLB_NOTDIRTY)) { 1609 notdirty_write(env_cpu(env), addr, 1, *pfull, 0); 1610 flags &= ~TLB_NOTDIRTY; 1611 } 1612 1613 return flags; 1614 } 1615 1616 int probe_access_flags(CPUArchState *env, vaddr addr, int size, 1617 MMUAccessType access_type, int mmu_idx, 1618 bool nonfault, void **phost, uintptr_t retaddr) 1619 { 1620 CPUTLBEntryFull *full; 1621 int flags; 1622 1623 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1624 1625 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1626 nonfault, phost, &full, retaddr, true); 1627 1628 /* Handle clean RAM pages. */ 1629 if (unlikely(flags & TLB_NOTDIRTY)) { 1630 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1631 flags &= ~TLB_NOTDIRTY; 1632 } 1633 1634 return flags; 1635 } 1636 1637 void *probe_access(CPUArchState *env, vaddr addr, int size, 1638 MMUAccessType access_type, int mmu_idx, uintptr_t retaddr) 1639 { 1640 CPUTLBEntryFull *full; 1641 void *host; 1642 int flags; 1643 1644 g_assert(-(addr | TARGET_PAGE_MASK) >= size); 1645 1646 flags = probe_access_internal(env, addr, size, access_type, mmu_idx, 1647 false, &host, &full, retaddr, true); 1648 1649 /* Per the interface, size == 0 merely faults the access. */ 1650 if (size == 0) { 1651 return NULL; 1652 } 1653 1654 if (unlikely(flags & (TLB_NOTDIRTY | TLB_WATCHPOINT))) { 1655 /* Handle watchpoints. */ 1656 if (flags & TLB_WATCHPOINT) { 1657 int wp_access = (access_type == MMU_DATA_STORE 1658 ? BP_MEM_WRITE : BP_MEM_READ); 1659 cpu_check_watchpoint(env_cpu(env), addr, size, 1660 full->attrs, wp_access, retaddr); 1661 } 1662 1663 /* Handle clean RAM pages. */ 1664 if (flags & TLB_NOTDIRTY) { 1665 notdirty_write(env_cpu(env), addr, 1, full, retaddr); 1666 } 1667 } 1668 1669 return host; 1670 } 1671 1672 void *tlb_vaddr_to_host(CPUArchState *env, abi_ptr addr, 1673 MMUAccessType access_type, int mmu_idx) 1674 { 1675 CPUTLBEntryFull *full; 1676 void *host; 1677 int flags; 1678 1679 flags = probe_access_internal(env, addr, 0, access_type, 1680 mmu_idx, true, &host, &full, 0, false); 1681 1682 /* No combination of flags are expected by the caller. */ 1683 return flags ? NULL : host; 1684 } 1685 1686 /* 1687 * Return a ram_addr_t for the virtual address for execution. 1688 * 1689 * Return -1 if we can't translate and execute from an entire page 1690 * of RAM. This will force us to execute by loading and translating 1691 * one insn at a time, without caching. 1692 * 1693 * NOTE: This function will trigger an exception if the page is 1694 * not executable. 1695 */ 1696 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, vaddr addr, 1697 void **hostp) 1698 { 1699 CPUTLBEntryFull *full; 1700 void *p; 1701 1702 (void)probe_access_internal(env, addr, 1, MMU_INST_FETCH, 1703 cpu_mmu_index(env, true), false, 1704 &p, &full, 0, false); 1705 if (p == NULL) { 1706 return -1; 1707 } 1708 1709 if (full->lg_page_size < TARGET_PAGE_BITS) { 1710 return -1; 1711 } 1712 1713 if (hostp) { 1714 *hostp = p; 1715 } 1716 return qemu_ram_addr_from_host_nofail(p); 1717 } 1718 1719 /* Load/store with atomicity primitives. */ 1720 #include "ldst_atomicity.c.inc" 1721 1722 #ifdef CONFIG_PLUGIN 1723 /* 1724 * Perform a TLB lookup and populate the qemu_plugin_hwaddr structure. 1725 * This should be a hot path as we will have just looked this path up 1726 * in the softmmu lookup code (or helper). We don't handle re-fills or 1727 * checking the victim table. This is purely informational. 1728 * 1729 * This almost never fails as the memory access being instrumented 1730 * should have just filled the TLB. The one corner case is io_writex 1731 * which can cause TLB flushes and potential resizing of the TLBs 1732 * losing the information we need. In those cases we need to recover 1733 * data from a copy of the CPUTLBEntryFull. As long as this always occurs 1734 * from the same thread (which a mem callback will be) this is safe. 1735 */ 1736 1737 bool tlb_plugin_lookup(CPUState *cpu, vaddr addr, int mmu_idx, 1738 bool is_store, struct qemu_plugin_hwaddr *data) 1739 { 1740 CPUArchState *env = cpu->env_ptr; 1741 CPUTLBEntry *tlbe = tlb_entry(env, mmu_idx, addr); 1742 uintptr_t index = tlb_index(env, mmu_idx, addr); 1743 uint64_t tlb_addr = is_store ? tlb_addr_write(tlbe) : tlbe->addr_read; 1744 1745 if (likely(tlb_hit(tlb_addr, addr))) { 1746 /* We must have an iotlb entry for MMIO */ 1747 if (tlb_addr & TLB_MMIO) { 1748 CPUTLBEntryFull *full; 1749 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1750 data->is_io = true; 1751 data->v.io.section = 1752 iotlb_to_section(cpu, full->xlat_section, full->attrs); 1753 data->v.io.offset = (full->xlat_section & TARGET_PAGE_MASK) + addr; 1754 } else { 1755 data->is_io = false; 1756 data->v.ram.hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 1757 } 1758 return true; 1759 } else { 1760 SavedIOTLB *saved = &cpu->saved_iotlb; 1761 data->is_io = true; 1762 data->v.io.section = saved->section; 1763 data->v.io.offset = saved->mr_offset; 1764 return true; 1765 } 1766 } 1767 1768 #endif 1769 1770 /* 1771 * Probe for a load/store operation. 1772 * Return the host address and into @flags. 1773 */ 1774 1775 typedef struct MMULookupPageData { 1776 CPUTLBEntryFull *full; 1777 void *haddr; 1778 vaddr addr; 1779 int flags; 1780 int size; 1781 } MMULookupPageData; 1782 1783 typedef struct MMULookupLocals { 1784 MMULookupPageData page[2]; 1785 MemOp memop; 1786 int mmu_idx; 1787 } MMULookupLocals; 1788 1789 /** 1790 * mmu_lookup1: translate one page 1791 * @env: cpu context 1792 * @data: lookup parameters 1793 * @mmu_idx: virtual address context 1794 * @access_type: load/store/code 1795 * @ra: return address into tcg generated code, or 0 1796 * 1797 * Resolve the translation for the one page at @data.addr, filling in 1798 * the rest of @data with the results. If the translation fails, 1799 * tlb_fill will longjmp out. Return true if the softmmu tlb for 1800 * @mmu_idx may have resized. 1801 */ 1802 static bool mmu_lookup1(CPUArchState *env, MMULookupPageData *data, 1803 int mmu_idx, MMUAccessType access_type, uintptr_t ra) 1804 { 1805 vaddr addr = data->addr; 1806 uintptr_t index = tlb_index(env, mmu_idx, addr); 1807 CPUTLBEntry *entry = tlb_entry(env, mmu_idx, addr); 1808 uint64_t tlb_addr = tlb_read_idx(entry, access_type); 1809 bool maybe_resized = false; 1810 CPUTLBEntryFull *full; 1811 int flags; 1812 1813 /* If the TLB entry is for a different page, reload and try again. */ 1814 if (!tlb_hit(tlb_addr, addr)) { 1815 if (!victim_tlb_hit(env, mmu_idx, index, access_type, 1816 addr & TARGET_PAGE_MASK)) { 1817 tlb_fill(env_cpu(env), addr, data->size, access_type, mmu_idx, ra); 1818 maybe_resized = true; 1819 index = tlb_index(env, mmu_idx, addr); 1820 entry = tlb_entry(env, mmu_idx, addr); 1821 } 1822 tlb_addr = tlb_read_idx(entry, access_type) & ~TLB_INVALID_MASK; 1823 } 1824 1825 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 1826 flags = tlb_addr & (TLB_FLAGS_MASK & ~TLB_FORCE_SLOW); 1827 flags |= full->slow_flags[access_type]; 1828 1829 data->full = full; 1830 data->flags = flags; 1831 /* Compute haddr speculatively; depending on flags it might be invalid. */ 1832 data->haddr = (void *)((uintptr_t)addr + entry->addend); 1833 1834 return maybe_resized; 1835 } 1836 1837 /** 1838 * mmu_watch_or_dirty 1839 * @env: cpu context 1840 * @data: lookup parameters 1841 * @access_type: load/store/code 1842 * @ra: return address into tcg generated code, or 0 1843 * 1844 * Trigger watchpoints for @data.addr:@data.size; 1845 * record writes to protected clean pages. 1846 */ 1847 static void mmu_watch_or_dirty(CPUArchState *env, MMULookupPageData *data, 1848 MMUAccessType access_type, uintptr_t ra) 1849 { 1850 CPUTLBEntryFull *full = data->full; 1851 vaddr addr = data->addr; 1852 int flags = data->flags; 1853 int size = data->size; 1854 1855 /* On watchpoint hit, this will longjmp out. */ 1856 if (flags & TLB_WATCHPOINT) { 1857 int wp = access_type == MMU_DATA_STORE ? BP_MEM_WRITE : BP_MEM_READ; 1858 cpu_check_watchpoint(env_cpu(env), addr, size, full->attrs, wp, ra); 1859 flags &= ~TLB_WATCHPOINT; 1860 } 1861 1862 /* Note that notdirty is only set for writes. */ 1863 if (flags & TLB_NOTDIRTY) { 1864 notdirty_write(env_cpu(env), addr, size, full, ra); 1865 flags &= ~TLB_NOTDIRTY; 1866 } 1867 data->flags = flags; 1868 } 1869 1870 /** 1871 * mmu_lookup: translate page(s) 1872 * @env: cpu context 1873 * @addr: virtual address 1874 * @oi: combined mmu_idx and MemOp 1875 * @ra: return address into tcg generated code, or 0 1876 * @access_type: load/store/code 1877 * @l: output result 1878 * 1879 * Resolve the translation for the page(s) beginning at @addr, for MemOp.size 1880 * bytes. Return true if the lookup crosses a page boundary. 1881 */ 1882 static bool mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi, 1883 uintptr_t ra, MMUAccessType type, MMULookupLocals *l) 1884 { 1885 unsigned a_bits; 1886 bool crosspage; 1887 int flags; 1888 1889 l->memop = get_memop(oi); 1890 l->mmu_idx = get_mmuidx(oi); 1891 1892 tcg_debug_assert(l->mmu_idx < NB_MMU_MODES); 1893 1894 /* Handle CPU specific unaligned behaviour */ 1895 a_bits = get_alignment_bits(l->memop); 1896 if (addr & ((1 << a_bits) - 1)) { 1897 cpu_unaligned_access(env_cpu(env), addr, type, l->mmu_idx, ra); 1898 } 1899 1900 l->page[0].addr = addr; 1901 l->page[0].size = memop_size(l->memop); 1902 l->page[1].addr = (addr + l->page[0].size - 1) & TARGET_PAGE_MASK; 1903 l->page[1].size = 0; 1904 crosspage = (addr ^ l->page[1].addr) & TARGET_PAGE_MASK; 1905 1906 if (likely(!crosspage)) { 1907 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); 1908 1909 flags = l->page[0].flags; 1910 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1911 mmu_watch_or_dirty(env, &l->page[0], type, ra); 1912 } 1913 if (unlikely(flags & TLB_BSWAP)) { 1914 l->memop ^= MO_BSWAP; 1915 } 1916 } else { 1917 /* Finish compute of page crossing. */ 1918 int size0 = l->page[1].addr - addr; 1919 l->page[1].size = l->page[0].size - size0; 1920 l->page[0].size = size0; 1921 1922 /* 1923 * Lookup both pages, recognizing exceptions from either. If the 1924 * second lookup potentially resized, refresh first CPUTLBEntryFull. 1925 */ 1926 mmu_lookup1(env, &l->page[0], l->mmu_idx, type, ra); 1927 if (mmu_lookup1(env, &l->page[1], l->mmu_idx, type, ra)) { 1928 uintptr_t index = tlb_index(env, l->mmu_idx, addr); 1929 l->page[0].full = &env_tlb(env)->d[l->mmu_idx].fulltlb[index]; 1930 } 1931 1932 flags = l->page[0].flags | l->page[1].flags; 1933 if (unlikely(flags & (TLB_WATCHPOINT | TLB_NOTDIRTY))) { 1934 mmu_watch_or_dirty(env, &l->page[0], type, ra); 1935 mmu_watch_or_dirty(env, &l->page[1], type, ra); 1936 } 1937 1938 /* 1939 * Since target/sparc is the only user of TLB_BSWAP, and all 1940 * Sparc accesses are aligned, any treatment across two pages 1941 * would be arbitrary. Refuse it until there's a use. 1942 */ 1943 tcg_debug_assert((flags & TLB_BSWAP) == 0); 1944 } 1945 1946 return crosspage; 1947 } 1948 1949 /* 1950 * Probe for an atomic operation. Do not allow unaligned operations, 1951 * or io operations to proceed. Return the host address. 1952 */ 1953 static void *atomic_mmu_lookup(CPUArchState *env, vaddr addr, MemOpIdx oi, 1954 int size, uintptr_t retaddr) 1955 { 1956 uintptr_t mmu_idx = get_mmuidx(oi); 1957 MemOp mop = get_memop(oi); 1958 int a_bits = get_alignment_bits(mop); 1959 uintptr_t index; 1960 CPUTLBEntry *tlbe; 1961 vaddr tlb_addr; 1962 void *hostaddr; 1963 CPUTLBEntryFull *full; 1964 1965 tcg_debug_assert(mmu_idx < NB_MMU_MODES); 1966 1967 /* Adjust the given return address. */ 1968 retaddr -= GETPC_ADJ; 1969 1970 /* Enforce guest required alignment. */ 1971 if (unlikely(a_bits > 0 && (addr & ((1 << a_bits) - 1)))) { 1972 /* ??? Maybe indicate atomic op to cpu_unaligned_access */ 1973 cpu_unaligned_access(env_cpu(env), addr, MMU_DATA_STORE, 1974 mmu_idx, retaddr); 1975 } 1976 1977 /* Enforce qemu required alignment. */ 1978 if (unlikely(addr & (size - 1))) { 1979 /* We get here if guest alignment was not requested, 1980 or was not enforced by cpu_unaligned_access above. 1981 We might widen the access and emulate, but for now 1982 mark an exception and exit the cpu loop. */ 1983 goto stop_the_world; 1984 } 1985 1986 index = tlb_index(env, mmu_idx, addr); 1987 tlbe = tlb_entry(env, mmu_idx, addr); 1988 1989 /* Check TLB entry and enforce page permissions. */ 1990 tlb_addr = tlb_addr_write(tlbe); 1991 if (!tlb_hit(tlb_addr, addr)) { 1992 if (!victim_tlb_hit(env, mmu_idx, index, MMU_DATA_STORE, 1993 addr & TARGET_PAGE_MASK)) { 1994 tlb_fill(env_cpu(env), addr, size, 1995 MMU_DATA_STORE, mmu_idx, retaddr); 1996 index = tlb_index(env, mmu_idx, addr); 1997 tlbe = tlb_entry(env, mmu_idx, addr); 1998 } 1999 tlb_addr = tlb_addr_write(tlbe) & ~TLB_INVALID_MASK; 2000 } 2001 2002 /* 2003 * Let the guest notice RMW on a write-only page. 2004 * We have just verified that the page is writable. 2005 * Subpage lookups may have left TLB_INVALID_MASK set, 2006 * but addr_read will only be -1 if PAGE_READ was unset. 2007 */ 2008 if (unlikely(tlbe->addr_read == -1)) { 2009 tlb_fill(env_cpu(env), addr, size, MMU_DATA_LOAD, mmu_idx, retaddr); 2010 /* 2011 * Since we don't support reads and writes to different 2012 * addresses, and we do have the proper page loaded for 2013 * write, this shouldn't ever return. But just in case, 2014 * handle via stop-the-world. 2015 */ 2016 goto stop_the_world; 2017 } 2018 /* Collect tlb flags for read. */ 2019 tlb_addr |= tlbe->addr_read; 2020 2021 /* Notice an IO access or a needs-MMU-lookup access */ 2022 if (unlikely(tlb_addr & (TLB_MMIO | TLB_DISCARD_WRITE))) { 2023 /* There's really nothing that can be done to 2024 support this apart from stop-the-world. */ 2025 goto stop_the_world; 2026 } 2027 2028 hostaddr = (void *)((uintptr_t)addr + tlbe->addend); 2029 full = &env_tlb(env)->d[mmu_idx].fulltlb[index]; 2030 2031 if (unlikely(tlb_addr & TLB_NOTDIRTY)) { 2032 notdirty_write(env_cpu(env), addr, size, full, retaddr); 2033 } 2034 2035 if (unlikely(tlb_addr & TLB_FORCE_SLOW)) { 2036 int wp_flags = 0; 2037 2038 if (full->slow_flags[MMU_DATA_STORE] & TLB_WATCHPOINT) { 2039 wp_flags |= BP_MEM_WRITE; 2040 } 2041 if (full->slow_flags[MMU_DATA_LOAD] & TLB_WATCHPOINT) { 2042 wp_flags |= BP_MEM_READ; 2043 } 2044 if (wp_flags) { 2045 cpu_check_watchpoint(env_cpu(env), addr, size, 2046 full->attrs, wp_flags, retaddr); 2047 } 2048 } 2049 2050 return hostaddr; 2051 2052 stop_the_world: 2053 cpu_loop_exit_atomic(env_cpu(env), retaddr); 2054 } 2055 2056 /* 2057 * Load Helpers 2058 * 2059 * We support two different access types. SOFTMMU_CODE_ACCESS is 2060 * specifically for reading instructions from system memory. It is 2061 * called by the translation loop and in some helpers where the code 2062 * is disassembled. It shouldn't be called directly by guest code. 2063 * 2064 * For the benefit of TCG generated code, we want to avoid the 2065 * complication of ABI-specific return type promotion and always 2066 * return a value extended to the register size of the host. This is 2067 * tcg_target_long, except in the case of a 32-bit host and 64-bit 2068 * data, and for that we always have uint64_t. 2069 * 2070 * We don't bother with this widened value for SOFTMMU_CODE_ACCESS. 2071 */ 2072 2073 /** 2074 * do_ld_mmio_beN: 2075 * @env: cpu context 2076 * @full: page parameters 2077 * @ret_be: accumulated data 2078 * @addr: virtual address 2079 * @size: number of bytes 2080 * @mmu_idx: virtual address context 2081 * @ra: return address into tcg generated code, or 0 2082 * Context: iothread lock held 2083 * 2084 * Load @size bytes from @addr, which is memory-mapped i/o. 2085 * The bytes are concatenated in big-endian order with @ret_be. 2086 */ 2087 static uint64_t do_ld_mmio_beN(CPUArchState *env, CPUTLBEntryFull *full, 2088 uint64_t ret_be, vaddr addr, int size, 2089 int mmu_idx, MMUAccessType type, uintptr_t ra) 2090 { 2091 uint64_t t; 2092 2093 tcg_debug_assert(size > 0 && size <= 8); 2094 do { 2095 /* Read aligned pieces up to 8 bytes. */ 2096 switch ((size | (int)addr) & 7) { 2097 case 1: 2098 case 3: 2099 case 5: 2100 case 7: 2101 t = io_readx(env, full, mmu_idx, addr, ra, type, MO_UB); 2102 ret_be = (ret_be << 8) | t; 2103 size -= 1; 2104 addr += 1; 2105 break; 2106 case 2: 2107 case 6: 2108 t = io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUW); 2109 ret_be = (ret_be << 16) | t; 2110 size -= 2; 2111 addr += 2; 2112 break; 2113 case 4: 2114 t = io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUL); 2115 ret_be = (ret_be << 32) | t; 2116 size -= 4; 2117 addr += 4; 2118 break; 2119 case 0: 2120 return io_readx(env, full, mmu_idx, addr, ra, type, MO_BEUQ); 2121 default: 2122 qemu_build_not_reached(); 2123 } 2124 } while (size); 2125 return ret_be; 2126 } 2127 2128 /** 2129 * do_ld_bytes_beN 2130 * @p: translation parameters 2131 * @ret_be: accumulated data 2132 * 2133 * Load @p->size bytes from @p->haddr, which is RAM. 2134 * The bytes to concatenated in big-endian order with @ret_be. 2135 */ 2136 static uint64_t do_ld_bytes_beN(MMULookupPageData *p, uint64_t ret_be) 2137 { 2138 uint8_t *haddr = p->haddr; 2139 int i, size = p->size; 2140 2141 for (i = 0; i < size; i++) { 2142 ret_be = (ret_be << 8) | haddr[i]; 2143 } 2144 return ret_be; 2145 } 2146 2147 /** 2148 * do_ld_parts_beN 2149 * @p: translation parameters 2150 * @ret_be: accumulated data 2151 * 2152 * As do_ld_bytes_beN, but atomically on each aligned part. 2153 */ 2154 static uint64_t do_ld_parts_beN(MMULookupPageData *p, uint64_t ret_be) 2155 { 2156 void *haddr = p->haddr; 2157 int size = p->size; 2158 2159 do { 2160 uint64_t x; 2161 int n; 2162 2163 /* 2164 * Find minimum of alignment and size. 2165 * This is slightly stronger than required by MO_ATOM_SUBALIGN, which 2166 * would have only checked the low bits of addr|size once at the start, 2167 * but is just as easy. 2168 */ 2169 switch (((uintptr_t)haddr | size) & 7) { 2170 case 4: 2171 x = cpu_to_be32(load_atomic4(haddr)); 2172 ret_be = (ret_be << 32) | x; 2173 n = 4; 2174 break; 2175 case 2: 2176 case 6: 2177 x = cpu_to_be16(load_atomic2(haddr)); 2178 ret_be = (ret_be << 16) | x; 2179 n = 2; 2180 break; 2181 default: 2182 x = *(uint8_t *)haddr; 2183 ret_be = (ret_be << 8) | x; 2184 n = 1; 2185 break; 2186 case 0: 2187 g_assert_not_reached(); 2188 } 2189 haddr += n; 2190 size -= n; 2191 } while (size != 0); 2192 return ret_be; 2193 } 2194 2195 /** 2196 * do_ld_parts_be4 2197 * @p: translation parameters 2198 * @ret_be: accumulated data 2199 * 2200 * As do_ld_bytes_beN, but with one atomic load. 2201 * Four aligned bytes are guaranteed to cover the load. 2202 */ 2203 static uint64_t do_ld_whole_be4(MMULookupPageData *p, uint64_t ret_be) 2204 { 2205 int o = p->addr & 3; 2206 uint32_t x = load_atomic4(p->haddr - o); 2207 2208 x = cpu_to_be32(x); 2209 x <<= o * 8; 2210 x >>= (4 - p->size) * 8; 2211 return (ret_be << (p->size * 8)) | x; 2212 } 2213 2214 /** 2215 * do_ld_parts_be8 2216 * @p: translation parameters 2217 * @ret_be: accumulated data 2218 * 2219 * As do_ld_bytes_beN, but with one atomic load. 2220 * Eight aligned bytes are guaranteed to cover the load. 2221 */ 2222 static uint64_t do_ld_whole_be8(CPUArchState *env, uintptr_t ra, 2223 MMULookupPageData *p, uint64_t ret_be) 2224 { 2225 int o = p->addr & 7; 2226 uint64_t x = load_atomic8_or_exit(env, ra, p->haddr - o); 2227 2228 x = cpu_to_be64(x); 2229 x <<= o * 8; 2230 x >>= (8 - p->size) * 8; 2231 return (ret_be << (p->size * 8)) | x; 2232 } 2233 2234 /** 2235 * do_ld_parts_be16 2236 * @p: translation parameters 2237 * @ret_be: accumulated data 2238 * 2239 * As do_ld_bytes_beN, but with one atomic load. 2240 * 16 aligned bytes are guaranteed to cover the load. 2241 */ 2242 static Int128 do_ld_whole_be16(CPUArchState *env, uintptr_t ra, 2243 MMULookupPageData *p, uint64_t ret_be) 2244 { 2245 int o = p->addr & 15; 2246 Int128 x, y = load_atomic16_or_exit(env, ra, p->haddr - o); 2247 int size = p->size; 2248 2249 if (!HOST_BIG_ENDIAN) { 2250 y = bswap128(y); 2251 } 2252 y = int128_lshift(y, o * 8); 2253 y = int128_urshift(y, (16 - size) * 8); 2254 x = int128_make64(ret_be); 2255 x = int128_lshift(x, size * 8); 2256 return int128_or(x, y); 2257 } 2258 2259 /* 2260 * Wrapper for the above. 2261 */ 2262 static uint64_t do_ld_beN(CPUArchState *env, MMULookupPageData *p, 2263 uint64_t ret_be, int mmu_idx, MMUAccessType type, 2264 MemOp mop, uintptr_t ra) 2265 { 2266 MemOp atom; 2267 unsigned tmp, half_size; 2268 2269 if (unlikely(p->flags & TLB_MMIO)) { 2270 QEMU_IOTHREAD_LOCK_GUARD(); 2271 return do_ld_mmio_beN(env, p->full, ret_be, p->addr, p->size, 2272 mmu_idx, type, ra); 2273 } 2274 2275 /* 2276 * It is a given that we cross a page and therefore there is no 2277 * atomicity for the load as a whole, but subobjects may need attention. 2278 */ 2279 atom = mop & MO_ATOM_MASK; 2280 switch (atom) { 2281 case MO_ATOM_SUBALIGN: 2282 return do_ld_parts_beN(p, ret_be); 2283 2284 case MO_ATOM_IFALIGN_PAIR: 2285 case MO_ATOM_WITHIN16_PAIR: 2286 tmp = mop & MO_SIZE; 2287 tmp = tmp ? tmp - 1 : 0; 2288 half_size = 1 << tmp; 2289 if (atom == MO_ATOM_IFALIGN_PAIR 2290 ? p->size == half_size 2291 : p->size >= half_size) { 2292 if (!HAVE_al8_fast && p->size < 4) { 2293 return do_ld_whole_be4(p, ret_be); 2294 } else { 2295 return do_ld_whole_be8(env, ra, p, ret_be); 2296 } 2297 } 2298 /* fall through */ 2299 2300 case MO_ATOM_IFALIGN: 2301 case MO_ATOM_WITHIN16: 2302 case MO_ATOM_NONE: 2303 return do_ld_bytes_beN(p, ret_be); 2304 2305 default: 2306 g_assert_not_reached(); 2307 } 2308 } 2309 2310 /* 2311 * Wrapper for the above, for 8 < size < 16. 2312 */ 2313 static Int128 do_ld16_beN(CPUArchState *env, MMULookupPageData *p, 2314 uint64_t a, int mmu_idx, MemOp mop, uintptr_t ra) 2315 { 2316 int size = p->size; 2317 uint64_t b; 2318 MemOp atom; 2319 2320 if (unlikely(p->flags & TLB_MMIO)) { 2321 QEMU_IOTHREAD_LOCK_GUARD(); 2322 a = do_ld_mmio_beN(env, p->full, a, p->addr, size - 8, 2323 mmu_idx, MMU_DATA_LOAD, ra); 2324 b = do_ld_mmio_beN(env, p->full, 0, p->addr + 8, 8, 2325 mmu_idx, MMU_DATA_LOAD, ra); 2326 return int128_make128(b, a); 2327 } 2328 2329 /* 2330 * It is a given that we cross a page and therefore there is no 2331 * atomicity for the load as a whole, but subobjects may need attention. 2332 */ 2333 atom = mop & MO_ATOM_MASK; 2334 switch (atom) { 2335 case MO_ATOM_SUBALIGN: 2336 p->size = size - 8; 2337 a = do_ld_parts_beN(p, a); 2338 p->haddr += size - 8; 2339 p->size = 8; 2340 b = do_ld_parts_beN(p, 0); 2341 break; 2342 2343 case MO_ATOM_WITHIN16_PAIR: 2344 /* Since size > 8, this is the half that must be atomic. */ 2345 return do_ld_whole_be16(env, ra, p, a); 2346 2347 case MO_ATOM_IFALIGN_PAIR: 2348 /* 2349 * Since size > 8, both halves are misaligned, 2350 * and so neither is atomic. 2351 */ 2352 case MO_ATOM_IFALIGN: 2353 case MO_ATOM_WITHIN16: 2354 case MO_ATOM_NONE: 2355 p->size = size - 8; 2356 a = do_ld_bytes_beN(p, a); 2357 b = ldq_be_p(p->haddr + size - 8); 2358 break; 2359 2360 default: 2361 g_assert_not_reached(); 2362 } 2363 2364 return int128_make128(b, a); 2365 } 2366 2367 static uint8_t do_ld_1(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2368 MMUAccessType type, uintptr_t ra) 2369 { 2370 if (unlikely(p->flags & TLB_MMIO)) { 2371 return io_readx(env, p->full, mmu_idx, p->addr, ra, type, MO_UB); 2372 } else { 2373 return *(uint8_t *)p->haddr; 2374 } 2375 } 2376 2377 static uint16_t do_ld_2(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2378 MMUAccessType type, MemOp memop, uintptr_t ra) 2379 { 2380 uint16_t ret; 2381 2382 if (unlikely(p->flags & TLB_MMIO)) { 2383 QEMU_IOTHREAD_LOCK_GUARD(); 2384 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 2, mmu_idx, type, ra); 2385 if ((memop & MO_BSWAP) == MO_LE) { 2386 ret = bswap16(ret); 2387 } 2388 } else { 2389 /* Perform the load host endian, then swap if necessary. */ 2390 ret = load_atom_2(env, ra, p->haddr, memop); 2391 if (memop & MO_BSWAP) { 2392 ret = bswap16(ret); 2393 } 2394 } 2395 return ret; 2396 } 2397 2398 static uint32_t do_ld_4(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2399 MMUAccessType type, MemOp memop, uintptr_t ra) 2400 { 2401 uint32_t ret; 2402 2403 if (unlikely(p->flags & TLB_MMIO)) { 2404 QEMU_IOTHREAD_LOCK_GUARD(); 2405 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 4, mmu_idx, type, ra); 2406 if ((memop & MO_BSWAP) == MO_LE) { 2407 ret = bswap32(ret); 2408 } 2409 } else { 2410 /* Perform the load host endian. */ 2411 ret = load_atom_4(env, ra, p->haddr, memop); 2412 if (memop & MO_BSWAP) { 2413 ret = bswap32(ret); 2414 } 2415 } 2416 return ret; 2417 } 2418 2419 static uint64_t do_ld_8(CPUArchState *env, MMULookupPageData *p, int mmu_idx, 2420 MMUAccessType type, MemOp memop, uintptr_t ra) 2421 { 2422 uint64_t ret; 2423 2424 if (unlikely(p->flags & TLB_MMIO)) { 2425 QEMU_IOTHREAD_LOCK_GUARD(); 2426 ret = do_ld_mmio_beN(env, p->full, 0, p->addr, 8, mmu_idx, type, ra); 2427 if ((memop & MO_BSWAP) == MO_LE) { 2428 ret = bswap64(ret); 2429 } 2430 } else { 2431 /* Perform the load host endian. */ 2432 ret = load_atom_8(env, ra, p->haddr, memop); 2433 if (memop & MO_BSWAP) { 2434 ret = bswap64(ret); 2435 } 2436 } 2437 return ret; 2438 } 2439 2440 static uint8_t do_ld1_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2441 uintptr_t ra, MMUAccessType access_type) 2442 { 2443 MMULookupLocals l; 2444 bool crosspage; 2445 2446 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2447 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2448 tcg_debug_assert(!crosspage); 2449 2450 return do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); 2451 } 2452 2453 tcg_target_ulong helper_ldub_mmu(CPUArchState *env, uint64_t addr, 2454 MemOpIdx oi, uintptr_t retaddr) 2455 { 2456 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8); 2457 return do_ld1_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2458 } 2459 2460 static uint16_t do_ld2_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2461 uintptr_t ra, MMUAccessType access_type) 2462 { 2463 MMULookupLocals l; 2464 bool crosspage; 2465 uint16_t ret; 2466 uint8_t a, b; 2467 2468 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2469 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2470 if (likely(!crosspage)) { 2471 return do_ld_2(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2472 } 2473 2474 a = do_ld_1(env, &l.page[0], l.mmu_idx, access_type, ra); 2475 b = do_ld_1(env, &l.page[1], l.mmu_idx, access_type, ra); 2476 2477 if ((l.memop & MO_BSWAP) == MO_LE) { 2478 ret = a | (b << 8); 2479 } else { 2480 ret = b | (a << 8); 2481 } 2482 return ret; 2483 } 2484 2485 tcg_target_ulong helper_lduw_mmu(CPUArchState *env, uint64_t addr, 2486 MemOpIdx oi, uintptr_t retaddr) 2487 { 2488 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2489 return do_ld2_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2490 } 2491 2492 static uint32_t do_ld4_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2493 uintptr_t ra, MMUAccessType access_type) 2494 { 2495 MMULookupLocals l; 2496 bool crosspage; 2497 uint32_t ret; 2498 2499 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2500 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2501 if (likely(!crosspage)) { 2502 return do_ld_4(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2503 } 2504 2505 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2506 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2507 if ((l.memop & MO_BSWAP) == MO_LE) { 2508 ret = bswap32(ret); 2509 } 2510 return ret; 2511 } 2512 2513 tcg_target_ulong helper_ldul_mmu(CPUArchState *env, uint64_t addr, 2514 MemOpIdx oi, uintptr_t retaddr) 2515 { 2516 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2517 return do_ld4_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2518 } 2519 2520 static uint64_t do_ld8_mmu(CPUArchState *env, vaddr addr, MemOpIdx oi, 2521 uintptr_t ra, MMUAccessType access_type) 2522 { 2523 MMULookupLocals l; 2524 bool crosspage; 2525 uint64_t ret; 2526 2527 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2528 crosspage = mmu_lookup(env, addr, oi, ra, access_type, &l); 2529 if (likely(!crosspage)) { 2530 return do_ld_8(env, &l.page[0], l.mmu_idx, access_type, l.memop, ra); 2531 } 2532 2533 ret = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, access_type, l.memop, ra); 2534 ret = do_ld_beN(env, &l.page[1], ret, l.mmu_idx, access_type, l.memop, ra); 2535 if ((l.memop & MO_BSWAP) == MO_LE) { 2536 ret = bswap64(ret); 2537 } 2538 return ret; 2539 } 2540 2541 uint64_t helper_ldq_mmu(CPUArchState *env, uint64_t addr, 2542 MemOpIdx oi, uintptr_t retaddr) 2543 { 2544 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2545 return do_ld8_mmu(env, addr, oi, retaddr, MMU_DATA_LOAD); 2546 } 2547 2548 /* 2549 * Provide signed versions of the load routines as well. We can of course 2550 * avoid this for 64-bit data, or for 32-bit data on 32-bit host. 2551 */ 2552 2553 tcg_target_ulong helper_ldsb_mmu(CPUArchState *env, uint64_t addr, 2554 MemOpIdx oi, uintptr_t retaddr) 2555 { 2556 return (int8_t)helper_ldub_mmu(env, addr, oi, retaddr); 2557 } 2558 2559 tcg_target_ulong helper_ldsw_mmu(CPUArchState *env, uint64_t addr, 2560 MemOpIdx oi, uintptr_t retaddr) 2561 { 2562 return (int16_t)helper_lduw_mmu(env, addr, oi, retaddr); 2563 } 2564 2565 tcg_target_ulong helper_ldsl_mmu(CPUArchState *env, uint64_t addr, 2566 MemOpIdx oi, uintptr_t retaddr) 2567 { 2568 return (int32_t)helper_ldul_mmu(env, addr, oi, retaddr); 2569 } 2570 2571 static Int128 do_ld16_mmu(CPUArchState *env, vaddr addr, 2572 MemOpIdx oi, uintptr_t ra) 2573 { 2574 MMULookupLocals l; 2575 bool crosspage; 2576 uint64_t a, b; 2577 Int128 ret; 2578 int first; 2579 2580 cpu_req_mo(TCG_MO_LD_LD | TCG_MO_ST_LD); 2581 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_LOAD, &l); 2582 if (likely(!crosspage)) { 2583 if (unlikely(l.page[0].flags & TLB_MMIO)) { 2584 QEMU_IOTHREAD_LOCK_GUARD(); 2585 a = do_ld_mmio_beN(env, l.page[0].full, 0, addr, 8, 2586 l.mmu_idx, MMU_DATA_LOAD, ra); 2587 b = do_ld_mmio_beN(env, l.page[0].full, 0, addr + 8, 8, 2588 l.mmu_idx, MMU_DATA_LOAD, ra); 2589 ret = int128_make128(b, a); 2590 if ((l.memop & MO_BSWAP) == MO_LE) { 2591 ret = bswap128(ret); 2592 } 2593 } else { 2594 /* Perform the load host endian. */ 2595 ret = load_atom_16(env, ra, l.page[0].haddr, l.memop); 2596 if (l.memop & MO_BSWAP) { 2597 ret = bswap128(ret); 2598 } 2599 } 2600 return ret; 2601 } 2602 2603 first = l.page[0].size; 2604 if (first == 8) { 2605 MemOp mop8 = (l.memop & ~MO_SIZE) | MO_64; 2606 2607 a = do_ld_8(env, &l.page[0], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2608 b = do_ld_8(env, &l.page[1], l.mmu_idx, MMU_DATA_LOAD, mop8, ra); 2609 if ((mop8 & MO_BSWAP) == MO_LE) { 2610 ret = int128_make128(a, b); 2611 } else { 2612 ret = int128_make128(b, a); 2613 } 2614 return ret; 2615 } 2616 2617 if (first < 8) { 2618 a = do_ld_beN(env, &l.page[0], 0, l.mmu_idx, 2619 MMU_DATA_LOAD, l.memop, ra); 2620 ret = do_ld16_beN(env, &l.page[1], a, l.mmu_idx, l.memop, ra); 2621 } else { 2622 ret = do_ld16_beN(env, &l.page[0], 0, l.mmu_idx, l.memop, ra); 2623 b = int128_getlo(ret); 2624 ret = int128_lshift(ret, l.page[1].size * 8); 2625 a = int128_gethi(ret); 2626 b = do_ld_beN(env, &l.page[1], b, l.mmu_idx, 2627 MMU_DATA_LOAD, l.memop, ra); 2628 ret = int128_make128(b, a); 2629 } 2630 if ((l.memop & MO_BSWAP) == MO_LE) { 2631 ret = bswap128(ret); 2632 } 2633 return ret; 2634 } 2635 2636 Int128 helper_ld16_mmu(CPUArchState *env, uint64_t addr, 2637 uint32_t oi, uintptr_t retaddr) 2638 { 2639 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 2640 return do_ld16_mmu(env, addr, oi, retaddr); 2641 } 2642 2643 Int128 helper_ld_i128(CPUArchState *env, uint64_t addr, uint32_t oi) 2644 { 2645 return helper_ld16_mmu(env, addr, oi, GETPC()); 2646 } 2647 2648 /* 2649 * Load helpers for cpu_ldst.h. 2650 */ 2651 2652 static void plugin_load_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) 2653 { 2654 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_R); 2655 } 2656 2657 uint8_t cpu_ldb_mmu(CPUArchState *env, abi_ptr addr, MemOpIdx oi, uintptr_t ra) 2658 { 2659 uint8_t ret; 2660 2661 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_UB); 2662 ret = do_ld1_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2663 plugin_load_cb(env, addr, oi); 2664 return ret; 2665 } 2666 2667 uint16_t cpu_ldw_mmu(CPUArchState *env, abi_ptr addr, 2668 MemOpIdx oi, uintptr_t ra) 2669 { 2670 uint16_t ret; 2671 2672 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2673 ret = do_ld2_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2674 plugin_load_cb(env, addr, oi); 2675 return ret; 2676 } 2677 2678 uint32_t cpu_ldl_mmu(CPUArchState *env, abi_ptr addr, 2679 MemOpIdx oi, uintptr_t ra) 2680 { 2681 uint32_t ret; 2682 2683 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 2684 ret = do_ld4_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2685 plugin_load_cb(env, addr, oi); 2686 return ret; 2687 } 2688 2689 uint64_t cpu_ldq_mmu(CPUArchState *env, abi_ptr addr, 2690 MemOpIdx oi, uintptr_t ra) 2691 { 2692 uint64_t ret; 2693 2694 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 2695 ret = do_ld8_mmu(env, addr, oi, ra, MMU_DATA_LOAD); 2696 plugin_load_cb(env, addr, oi); 2697 return ret; 2698 } 2699 2700 Int128 cpu_ld16_mmu(CPUArchState *env, abi_ptr addr, 2701 MemOpIdx oi, uintptr_t ra) 2702 { 2703 Int128 ret; 2704 2705 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 2706 ret = do_ld16_mmu(env, addr, oi, ra); 2707 plugin_load_cb(env, addr, oi); 2708 return ret; 2709 } 2710 2711 /* 2712 * Store Helpers 2713 */ 2714 2715 /** 2716 * do_st_mmio_leN: 2717 * @env: cpu context 2718 * @full: page parameters 2719 * @val_le: data to store 2720 * @addr: virtual address 2721 * @size: number of bytes 2722 * @mmu_idx: virtual address context 2723 * @ra: return address into tcg generated code, or 0 2724 * Context: iothread lock held 2725 * 2726 * Store @size bytes at @addr, which is memory-mapped i/o. 2727 * The bytes to store are extracted in little-endian order from @val_le; 2728 * return the bytes of @val_le beyond @p->size that have not been stored. 2729 */ 2730 static uint64_t do_st_mmio_leN(CPUArchState *env, CPUTLBEntryFull *full, 2731 uint64_t val_le, vaddr addr, int size, 2732 int mmu_idx, uintptr_t ra) 2733 { 2734 tcg_debug_assert(size > 0 && size <= 8); 2735 2736 do { 2737 /* Store aligned pieces up to 8 bytes. */ 2738 switch ((size | (int)addr) & 7) { 2739 case 1: 2740 case 3: 2741 case 5: 2742 case 7: 2743 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_UB); 2744 val_le >>= 8; 2745 size -= 1; 2746 addr += 1; 2747 break; 2748 case 2: 2749 case 6: 2750 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUW); 2751 val_le >>= 16; 2752 size -= 2; 2753 addr += 2; 2754 break; 2755 case 4: 2756 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUL); 2757 val_le >>= 32; 2758 size -= 4; 2759 addr += 4; 2760 break; 2761 case 0: 2762 io_writex(env, full, mmu_idx, val_le, addr, ra, MO_LEUQ); 2763 return 0; 2764 default: 2765 qemu_build_not_reached(); 2766 } 2767 } while (size); 2768 2769 return val_le; 2770 } 2771 2772 /* 2773 * Wrapper for the above. 2774 */ 2775 static uint64_t do_st_leN(CPUArchState *env, MMULookupPageData *p, 2776 uint64_t val_le, int mmu_idx, 2777 MemOp mop, uintptr_t ra) 2778 { 2779 MemOp atom; 2780 unsigned tmp, half_size; 2781 2782 if (unlikely(p->flags & TLB_MMIO)) { 2783 QEMU_IOTHREAD_LOCK_GUARD(); 2784 return do_st_mmio_leN(env, p->full, val_le, p->addr, 2785 p->size, mmu_idx, ra); 2786 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2787 return val_le >> (p->size * 8); 2788 } 2789 2790 /* 2791 * It is a given that we cross a page and therefore there is no atomicity 2792 * for the store as a whole, but subobjects may need attention. 2793 */ 2794 atom = mop & MO_ATOM_MASK; 2795 switch (atom) { 2796 case MO_ATOM_SUBALIGN: 2797 return store_parts_leN(p->haddr, p->size, val_le); 2798 2799 case MO_ATOM_IFALIGN_PAIR: 2800 case MO_ATOM_WITHIN16_PAIR: 2801 tmp = mop & MO_SIZE; 2802 tmp = tmp ? tmp - 1 : 0; 2803 half_size = 1 << tmp; 2804 if (atom == MO_ATOM_IFALIGN_PAIR 2805 ? p->size == half_size 2806 : p->size >= half_size) { 2807 if (!HAVE_al8_fast && p->size <= 4) { 2808 return store_whole_le4(p->haddr, p->size, val_le); 2809 } else if (HAVE_al8) { 2810 return store_whole_le8(p->haddr, p->size, val_le); 2811 } else { 2812 cpu_loop_exit_atomic(env_cpu(env), ra); 2813 } 2814 } 2815 /* fall through */ 2816 2817 case MO_ATOM_IFALIGN: 2818 case MO_ATOM_WITHIN16: 2819 case MO_ATOM_NONE: 2820 return store_bytes_leN(p->haddr, p->size, val_le); 2821 2822 default: 2823 g_assert_not_reached(); 2824 } 2825 } 2826 2827 /* 2828 * Wrapper for the above, for 8 < size < 16. 2829 */ 2830 static uint64_t do_st16_leN(CPUArchState *env, MMULookupPageData *p, 2831 Int128 val_le, int mmu_idx, 2832 MemOp mop, uintptr_t ra) 2833 { 2834 int size = p->size; 2835 MemOp atom; 2836 2837 if (unlikely(p->flags & TLB_MMIO)) { 2838 QEMU_IOTHREAD_LOCK_GUARD(); 2839 do_st_mmio_leN(env, p->full, int128_getlo(val_le), 2840 p->addr, 8, mmu_idx, ra); 2841 return do_st_mmio_leN(env, p->full, int128_gethi(val_le), 2842 p->addr + 8, size - 8, mmu_idx, ra); 2843 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2844 return int128_gethi(val_le) >> ((size - 8) * 8); 2845 } 2846 2847 /* 2848 * It is a given that we cross a page and therefore there is no atomicity 2849 * for the store as a whole, but subobjects may need attention. 2850 */ 2851 atom = mop & MO_ATOM_MASK; 2852 switch (atom) { 2853 case MO_ATOM_SUBALIGN: 2854 store_parts_leN(p->haddr, 8, int128_getlo(val_le)); 2855 return store_parts_leN(p->haddr + 8, p->size - 8, 2856 int128_gethi(val_le)); 2857 2858 case MO_ATOM_WITHIN16_PAIR: 2859 /* Since size > 8, this is the half that must be atomic. */ 2860 if (!HAVE_ATOMIC128_RW) { 2861 cpu_loop_exit_atomic(env_cpu(env), ra); 2862 } 2863 return store_whole_le16(p->haddr, p->size, val_le); 2864 2865 case MO_ATOM_IFALIGN_PAIR: 2866 /* 2867 * Since size > 8, both halves are misaligned, 2868 * and so neither is atomic. 2869 */ 2870 case MO_ATOM_IFALIGN: 2871 case MO_ATOM_WITHIN16: 2872 case MO_ATOM_NONE: 2873 stq_le_p(p->haddr, int128_getlo(val_le)); 2874 return store_bytes_leN(p->haddr + 8, p->size - 8, 2875 int128_gethi(val_le)); 2876 2877 default: 2878 g_assert_not_reached(); 2879 } 2880 } 2881 2882 static void do_st_1(CPUArchState *env, MMULookupPageData *p, uint8_t val, 2883 int mmu_idx, uintptr_t ra) 2884 { 2885 if (unlikely(p->flags & TLB_MMIO)) { 2886 io_writex(env, p->full, mmu_idx, val, p->addr, ra, MO_UB); 2887 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2888 /* nothing */ 2889 } else { 2890 *(uint8_t *)p->haddr = val; 2891 } 2892 } 2893 2894 static void do_st_2(CPUArchState *env, MMULookupPageData *p, uint16_t val, 2895 int mmu_idx, MemOp memop, uintptr_t ra) 2896 { 2897 if (unlikely(p->flags & TLB_MMIO)) { 2898 if ((memop & MO_BSWAP) != MO_LE) { 2899 val = bswap16(val); 2900 } 2901 QEMU_IOTHREAD_LOCK_GUARD(); 2902 do_st_mmio_leN(env, p->full, val, p->addr, 2, mmu_idx, ra); 2903 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2904 /* nothing */ 2905 } else { 2906 /* Swap to host endian if necessary, then store. */ 2907 if (memop & MO_BSWAP) { 2908 val = bswap16(val); 2909 } 2910 store_atom_2(env, ra, p->haddr, memop, val); 2911 } 2912 } 2913 2914 static void do_st_4(CPUArchState *env, MMULookupPageData *p, uint32_t val, 2915 int mmu_idx, MemOp memop, uintptr_t ra) 2916 { 2917 if (unlikely(p->flags & TLB_MMIO)) { 2918 if ((memop & MO_BSWAP) != MO_LE) { 2919 val = bswap32(val); 2920 } 2921 QEMU_IOTHREAD_LOCK_GUARD(); 2922 do_st_mmio_leN(env, p->full, val, p->addr, 4, mmu_idx, ra); 2923 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2924 /* nothing */ 2925 } else { 2926 /* Swap to host endian if necessary, then store. */ 2927 if (memop & MO_BSWAP) { 2928 val = bswap32(val); 2929 } 2930 store_atom_4(env, ra, p->haddr, memop, val); 2931 } 2932 } 2933 2934 static void do_st_8(CPUArchState *env, MMULookupPageData *p, uint64_t val, 2935 int mmu_idx, MemOp memop, uintptr_t ra) 2936 { 2937 if (unlikely(p->flags & TLB_MMIO)) { 2938 if ((memop & MO_BSWAP) != MO_LE) { 2939 val = bswap64(val); 2940 } 2941 QEMU_IOTHREAD_LOCK_GUARD(); 2942 do_st_mmio_leN(env, p->full, val, p->addr, 8, mmu_idx, ra); 2943 } else if (unlikely(p->flags & TLB_DISCARD_WRITE)) { 2944 /* nothing */ 2945 } else { 2946 /* Swap to host endian if necessary, then store. */ 2947 if (memop & MO_BSWAP) { 2948 val = bswap64(val); 2949 } 2950 store_atom_8(env, ra, p->haddr, memop, val); 2951 } 2952 } 2953 2954 void helper_stb_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 2955 MemOpIdx oi, uintptr_t ra) 2956 { 2957 MMULookupLocals l; 2958 bool crosspage; 2959 2960 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_8); 2961 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2962 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2963 tcg_debug_assert(!crosspage); 2964 2965 do_st_1(env, &l.page[0], val, l.mmu_idx, ra); 2966 } 2967 2968 static void do_st2_mmu(CPUArchState *env, vaddr addr, uint16_t val, 2969 MemOpIdx oi, uintptr_t ra) 2970 { 2971 MMULookupLocals l; 2972 bool crosspage; 2973 uint8_t a, b; 2974 2975 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 2976 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 2977 if (likely(!crosspage)) { 2978 do_st_2(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 2979 return; 2980 } 2981 2982 if ((l.memop & MO_BSWAP) == MO_LE) { 2983 a = val, b = val >> 8; 2984 } else { 2985 b = val, a = val >> 8; 2986 } 2987 do_st_1(env, &l.page[0], a, l.mmu_idx, ra); 2988 do_st_1(env, &l.page[1], b, l.mmu_idx, ra); 2989 } 2990 2991 void helper_stw_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 2992 MemOpIdx oi, uintptr_t retaddr) 2993 { 2994 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 2995 do_st2_mmu(env, addr, val, oi, retaddr); 2996 } 2997 2998 static void do_st4_mmu(CPUArchState *env, vaddr addr, uint32_t val, 2999 MemOpIdx oi, uintptr_t ra) 3000 { 3001 MMULookupLocals l; 3002 bool crosspage; 3003 3004 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 3005 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 3006 if (likely(!crosspage)) { 3007 do_st_4(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3008 return; 3009 } 3010 3011 /* Swap to little endian for simplicity, then store by bytes. */ 3012 if ((l.memop & MO_BSWAP) != MO_LE) { 3013 val = bswap32(val); 3014 } 3015 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3016 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 3017 } 3018 3019 void helper_stl_mmu(CPUArchState *env, uint64_t addr, uint32_t val, 3020 MemOpIdx oi, uintptr_t retaddr) 3021 { 3022 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 3023 do_st4_mmu(env, addr, val, oi, retaddr); 3024 } 3025 3026 static void do_st8_mmu(CPUArchState *env, vaddr addr, uint64_t val, 3027 MemOpIdx oi, uintptr_t ra) 3028 { 3029 MMULookupLocals l; 3030 bool crosspage; 3031 3032 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 3033 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 3034 if (likely(!crosspage)) { 3035 do_st_8(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3036 return; 3037 } 3038 3039 /* Swap to little endian for simplicity, then store by bytes. */ 3040 if ((l.memop & MO_BSWAP) != MO_LE) { 3041 val = bswap64(val); 3042 } 3043 val = do_st_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3044 (void) do_st_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 3045 } 3046 3047 void helper_stq_mmu(CPUArchState *env, uint64_t addr, uint64_t val, 3048 MemOpIdx oi, uintptr_t retaddr) 3049 { 3050 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 3051 do_st8_mmu(env, addr, val, oi, retaddr); 3052 } 3053 3054 static void do_st16_mmu(CPUArchState *env, vaddr addr, Int128 val, 3055 MemOpIdx oi, uintptr_t ra) 3056 { 3057 MMULookupLocals l; 3058 bool crosspage; 3059 uint64_t a, b; 3060 int first; 3061 3062 cpu_req_mo(TCG_MO_LD_ST | TCG_MO_ST_ST); 3063 crosspage = mmu_lookup(env, addr, oi, ra, MMU_DATA_STORE, &l); 3064 if (likely(!crosspage)) { 3065 if (unlikely(l.page[0].flags & TLB_MMIO)) { 3066 if ((l.memop & MO_BSWAP) != MO_LE) { 3067 val = bswap128(val); 3068 } 3069 a = int128_getlo(val); 3070 b = int128_gethi(val); 3071 QEMU_IOTHREAD_LOCK_GUARD(); 3072 do_st_mmio_leN(env, l.page[0].full, a, addr, 8, l.mmu_idx, ra); 3073 do_st_mmio_leN(env, l.page[0].full, b, addr + 8, 8, l.mmu_idx, ra); 3074 } else if (unlikely(l.page[0].flags & TLB_DISCARD_WRITE)) { 3075 /* nothing */ 3076 } else { 3077 /* Swap to host endian if necessary, then store. */ 3078 if (l.memop & MO_BSWAP) { 3079 val = bswap128(val); 3080 } 3081 store_atom_16(env, ra, l.page[0].haddr, l.memop, val); 3082 } 3083 return; 3084 } 3085 3086 first = l.page[0].size; 3087 if (first == 8) { 3088 MemOp mop8 = (l.memop & ~(MO_SIZE | MO_BSWAP)) | MO_64; 3089 3090 if (l.memop & MO_BSWAP) { 3091 val = bswap128(val); 3092 } 3093 if (HOST_BIG_ENDIAN) { 3094 b = int128_getlo(val), a = int128_gethi(val); 3095 } else { 3096 a = int128_getlo(val), b = int128_gethi(val); 3097 } 3098 do_st_8(env, &l.page[0], a, l.mmu_idx, mop8, ra); 3099 do_st_8(env, &l.page[1], b, l.mmu_idx, mop8, ra); 3100 return; 3101 } 3102 3103 if ((l.memop & MO_BSWAP) != MO_LE) { 3104 val = bswap128(val); 3105 } 3106 if (first < 8) { 3107 do_st_leN(env, &l.page[0], int128_getlo(val), l.mmu_idx, l.memop, ra); 3108 val = int128_urshift(val, first * 8); 3109 do_st16_leN(env, &l.page[1], val, l.mmu_idx, l.memop, ra); 3110 } else { 3111 b = do_st16_leN(env, &l.page[0], val, l.mmu_idx, l.memop, ra); 3112 do_st_leN(env, &l.page[1], b, l.mmu_idx, l.memop, ra); 3113 } 3114 } 3115 3116 void helper_st16_mmu(CPUArchState *env, uint64_t addr, Int128 val, 3117 MemOpIdx oi, uintptr_t retaddr) 3118 { 3119 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 3120 do_st16_mmu(env, addr, val, oi, retaddr); 3121 } 3122 3123 void helper_st_i128(CPUArchState *env, uint64_t addr, Int128 val, MemOpIdx oi) 3124 { 3125 helper_st16_mmu(env, addr, val, oi, GETPC()); 3126 } 3127 3128 /* 3129 * Store Helpers for cpu_ldst.h 3130 */ 3131 3132 static void plugin_store_cb(CPUArchState *env, abi_ptr addr, MemOpIdx oi) 3133 { 3134 qemu_plugin_vcpu_mem_cb(env_cpu(env), addr, oi, QEMU_PLUGIN_MEM_W); 3135 } 3136 3137 void cpu_stb_mmu(CPUArchState *env, abi_ptr addr, uint8_t val, 3138 MemOpIdx oi, uintptr_t retaddr) 3139 { 3140 helper_stb_mmu(env, addr, val, oi, retaddr); 3141 plugin_store_cb(env, addr, oi); 3142 } 3143 3144 void cpu_stw_mmu(CPUArchState *env, abi_ptr addr, uint16_t val, 3145 MemOpIdx oi, uintptr_t retaddr) 3146 { 3147 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_16); 3148 do_st2_mmu(env, addr, val, oi, retaddr); 3149 plugin_store_cb(env, addr, oi); 3150 } 3151 3152 void cpu_stl_mmu(CPUArchState *env, abi_ptr addr, uint32_t val, 3153 MemOpIdx oi, uintptr_t retaddr) 3154 { 3155 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_32); 3156 do_st4_mmu(env, addr, val, oi, retaddr); 3157 plugin_store_cb(env, addr, oi); 3158 } 3159 3160 void cpu_stq_mmu(CPUArchState *env, abi_ptr addr, uint64_t val, 3161 MemOpIdx oi, uintptr_t retaddr) 3162 { 3163 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_64); 3164 do_st8_mmu(env, addr, val, oi, retaddr); 3165 plugin_store_cb(env, addr, oi); 3166 } 3167 3168 void cpu_st16_mmu(CPUArchState *env, abi_ptr addr, Int128 val, 3169 MemOpIdx oi, uintptr_t retaddr) 3170 { 3171 tcg_debug_assert((get_memop(oi) & MO_SIZE) == MO_128); 3172 do_st16_mmu(env, addr, val, oi, retaddr); 3173 plugin_store_cb(env, addr, oi); 3174 } 3175 3176 #include "ldst_common.c.inc" 3177 3178 /* 3179 * First set of functions passes in OI and RETADDR. 3180 * This makes them callable from other helpers. 3181 */ 3182 3183 #define ATOMIC_NAME(X) \ 3184 glue(glue(glue(cpu_atomic_ ## X, SUFFIX), END), _mmu) 3185 3186 #define ATOMIC_MMU_CLEANUP 3187 3188 #include "atomic_common.c.inc" 3189 3190 #define DATA_SIZE 1 3191 #include "atomic_template.h" 3192 3193 #define DATA_SIZE 2 3194 #include "atomic_template.h" 3195 3196 #define DATA_SIZE 4 3197 #include "atomic_template.h" 3198 3199 #ifdef CONFIG_ATOMIC64 3200 #define DATA_SIZE 8 3201 #include "atomic_template.h" 3202 #endif 3203 3204 #if defined(CONFIG_ATOMIC128) || HAVE_CMPXCHG128 3205 #define DATA_SIZE 16 3206 #include "atomic_template.h" 3207 #endif 3208 3209 /* Code access functions. */ 3210 3211 uint32_t cpu_ldub_code(CPUArchState *env, abi_ptr addr) 3212 { 3213 MemOpIdx oi = make_memop_idx(MO_UB, cpu_mmu_index(env, true)); 3214 return do_ld1_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3215 } 3216 3217 uint32_t cpu_lduw_code(CPUArchState *env, abi_ptr addr) 3218 { 3219 MemOpIdx oi = make_memop_idx(MO_TEUW, cpu_mmu_index(env, true)); 3220 return do_ld2_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3221 } 3222 3223 uint32_t cpu_ldl_code(CPUArchState *env, abi_ptr addr) 3224 { 3225 MemOpIdx oi = make_memop_idx(MO_TEUL, cpu_mmu_index(env, true)); 3226 return do_ld4_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3227 } 3228 3229 uint64_t cpu_ldq_code(CPUArchState *env, abi_ptr addr) 3230 { 3231 MemOpIdx oi = make_memop_idx(MO_TEUQ, cpu_mmu_index(env, true)); 3232 return do_ld8_mmu(env, addr, oi, 0, MMU_INST_FETCH); 3233 } 3234 3235 uint8_t cpu_ldb_code_mmu(CPUArchState *env, abi_ptr addr, 3236 MemOpIdx oi, uintptr_t retaddr) 3237 { 3238 return do_ld1_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3239 } 3240 3241 uint16_t cpu_ldw_code_mmu(CPUArchState *env, abi_ptr addr, 3242 MemOpIdx oi, uintptr_t retaddr) 3243 { 3244 return do_ld2_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3245 } 3246 3247 uint32_t cpu_ldl_code_mmu(CPUArchState *env, abi_ptr addr, 3248 MemOpIdx oi, uintptr_t retaddr) 3249 { 3250 return do_ld4_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3251 } 3252 3253 uint64_t cpu_ldq_code_mmu(CPUArchState *env, abi_ptr addr, 3254 MemOpIdx oi, uintptr_t retaddr) 3255 { 3256 return do_ld8_mmu(env, addr, oi, retaddr, MMU_INST_FETCH); 3257 } 3258