1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "qemu/qemu-print.h" 23 #include "hw/core/tcg-cpu-ops.h" 24 #include "trace.h" 25 #include "disas/disas.h" 26 #include "exec/exec-all.h" 27 #include "tcg/tcg.h" 28 #include "qemu/atomic.h" 29 #include "qemu/compiler.h" 30 #include "qemu/timer.h" 31 #include "qemu/rcu.h" 32 #include "exec/log.h" 33 #include "qemu/main-loop.h" 34 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 35 #include "hw/i386/apic.h" 36 #endif 37 #include "sysemu/cpus.h" 38 #include "exec/cpu-all.h" 39 #include "sysemu/cpu-timers.h" 40 #include "sysemu/replay.h" 41 #include "exec/helper-proto.h" 42 #include "tb-hash.h" 43 #include "tb-context.h" 44 #include "internal.h" 45 46 /* -icount align implementation. */ 47 48 typedef struct SyncClocks { 49 int64_t diff_clk; 50 int64_t last_cpu_icount; 51 int64_t realtime_clock; 52 } SyncClocks; 53 54 #if !defined(CONFIG_USER_ONLY) 55 /* Allow the guest to have a max 3ms advance. 56 * The difference between the 2 clocks could therefore 57 * oscillate around 0. 58 */ 59 #define VM_CLOCK_ADVANCE 3000000 60 #define THRESHOLD_REDUCE 1.5 61 #define MAX_DELAY_PRINT_RATE 2000000000LL 62 #define MAX_NB_PRINTS 100 63 64 static int64_t max_delay; 65 static int64_t max_advance; 66 67 static void align_clocks(SyncClocks *sc, CPUState *cpu) 68 { 69 int64_t cpu_icount; 70 71 if (!icount_align_option) { 72 return; 73 } 74 75 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 76 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 77 sc->last_cpu_icount = cpu_icount; 78 79 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 80 #ifndef _WIN32 81 struct timespec sleep_delay, rem_delay; 82 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 83 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 84 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 85 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 86 } else { 87 sc->diff_clk = 0; 88 } 89 #else 90 Sleep(sc->diff_clk / SCALE_MS); 91 sc->diff_clk = 0; 92 #endif 93 } 94 } 95 96 static void print_delay(const SyncClocks *sc) 97 { 98 static float threshold_delay; 99 static int64_t last_realtime_clock; 100 static int nb_prints; 101 102 if (icount_align_option && 103 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 104 nb_prints < MAX_NB_PRINTS) { 105 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 106 (-sc->diff_clk / (float)1000000000LL < 107 (threshold_delay - THRESHOLD_REDUCE))) { 108 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 109 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 110 threshold_delay - 1, 111 threshold_delay); 112 nb_prints++; 113 last_realtime_clock = sc->realtime_clock; 114 } 115 } 116 } 117 118 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 119 { 120 if (!icount_align_option) { 121 return; 122 } 123 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 124 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 125 sc->last_cpu_icount 126 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 127 if (sc->diff_clk < max_delay) { 128 max_delay = sc->diff_clk; 129 } 130 if (sc->diff_clk > max_advance) { 131 max_advance = sc->diff_clk; 132 } 133 134 /* Print every 2s max if the guest is late. We limit the number 135 of printed messages to NB_PRINT_MAX(currently 100) */ 136 print_delay(sc); 137 } 138 #else 139 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 140 { 141 } 142 143 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 144 { 145 } 146 #endif /* CONFIG USER ONLY */ 147 148 uint32_t curr_cflags(CPUState *cpu) 149 { 150 uint32_t cflags = cpu->tcg_cflags; 151 152 /* 153 * Record gdb single-step. We should be exiting the TB by raising 154 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 155 * 156 * For singlestep and -d nochain, suppress goto_tb so that 157 * we can log -d cpu,exec after every TB. 158 */ 159 if (unlikely(cpu->singlestep_enabled)) { 160 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 161 } else if (singlestep) { 162 cflags |= CF_NO_GOTO_TB | 1; 163 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 164 cflags |= CF_NO_GOTO_TB; 165 } 166 167 return cflags; 168 } 169 170 /* Might cause an exception, so have a longjmp destination ready */ 171 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc, 172 target_ulong cs_base, 173 uint32_t flags, uint32_t cflags) 174 { 175 TranslationBlock *tb; 176 uint32_t hash; 177 178 /* we should never be trying to look up an INVALID tb */ 179 tcg_debug_assert(!(cflags & CF_INVALID)); 180 181 hash = tb_jmp_cache_hash_func(pc); 182 tb = qatomic_rcu_read(&cpu->tb_jmp_cache[hash]); 183 184 if (likely(tb && 185 tb->pc == pc && 186 tb->cs_base == cs_base && 187 tb->flags == flags && 188 tb->trace_vcpu_dstate == *cpu->trace_dstate && 189 tb_cflags(tb) == cflags)) { 190 return tb; 191 } 192 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 193 if (tb == NULL) { 194 return NULL; 195 } 196 qatomic_set(&cpu->tb_jmp_cache[hash], tb); 197 return tb; 198 } 199 200 static inline void log_cpu_exec(target_ulong pc, CPUState *cpu, 201 const TranslationBlock *tb) 202 { 203 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) 204 && qemu_log_in_addr_range(pc)) { 205 206 qemu_log_mask(CPU_LOG_EXEC, 207 "Trace %d: %p [" TARGET_FMT_lx 208 "/" TARGET_FMT_lx "/%08x/%08x] %s\n", 209 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 210 tb->flags, tb->cflags, lookup_symbol(pc)); 211 212 #if defined(DEBUG_DISAS) 213 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 214 FILE *logfile = qemu_log_lock(); 215 int flags = 0; 216 217 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 218 flags |= CPU_DUMP_FPU; 219 } 220 #if defined(TARGET_I386) 221 flags |= CPU_DUMP_CCOP; 222 #endif 223 log_cpu_state(cpu, flags); 224 qemu_log_unlock(logfile); 225 } 226 #endif /* DEBUG_DISAS */ 227 } 228 } 229 230 static bool check_for_breakpoints(CPUState *cpu, target_ulong pc, 231 uint32_t *cflags) 232 { 233 CPUBreakpoint *bp; 234 bool match_page = false; 235 236 if (likely(QTAILQ_EMPTY(&cpu->breakpoints))) { 237 return false; 238 } 239 240 /* 241 * Singlestep overrides breakpoints. 242 * This requirement is visible in the record-replay tests, where 243 * we would fail to make forward progress in reverse-continue. 244 * 245 * TODO: gdb singlestep should only override gdb breakpoints, 246 * so that one could (gdb) singlestep into the guest kernel's 247 * architectural breakpoint handler. 248 */ 249 if (cpu->singlestep_enabled) { 250 return false; 251 } 252 253 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 254 /* 255 * If we have an exact pc match, trigger the breakpoint. 256 * Otherwise, note matches within the page. 257 */ 258 if (pc == bp->pc) { 259 bool match_bp = false; 260 261 if (bp->flags & BP_GDB) { 262 match_bp = true; 263 } else if (bp->flags & BP_CPU) { 264 #ifdef CONFIG_USER_ONLY 265 g_assert_not_reached(); 266 #else 267 CPUClass *cc = CPU_GET_CLASS(cpu); 268 assert(cc->tcg_ops->debug_check_breakpoint); 269 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu); 270 #endif 271 } 272 273 if (match_bp) { 274 cpu->exception_index = EXCP_DEBUG; 275 return true; 276 } 277 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 278 match_page = true; 279 } 280 } 281 282 /* 283 * Within the same page as a breakpoint, single-step, 284 * returning to helper_lookup_tb_ptr after each insn looking 285 * for the actual breakpoint. 286 * 287 * TODO: Perhaps better to record all of the TBs associated 288 * with a given virtual page that contains a breakpoint, and 289 * then invalidate them when a new overlapping breakpoint is 290 * set on the page. Non-overlapping TBs would not be 291 * invalidated, nor would any TB need to be invalidated as 292 * breakpoints are removed. 293 */ 294 if (match_page) { 295 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1; 296 } 297 return false; 298 } 299 300 /** 301 * helper_lookup_tb_ptr: quick check for next tb 302 * @env: current cpu state 303 * 304 * Look for an existing TB matching the current cpu state. 305 * If found, return the code pointer. If not found, return 306 * the tcg epilogue so that we return into cpu_tb_exec. 307 */ 308 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 309 { 310 CPUState *cpu = env_cpu(env); 311 TranslationBlock *tb; 312 target_ulong cs_base, pc; 313 uint32_t flags, cflags; 314 315 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 316 317 cflags = curr_cflags(cpu); 318 if (check_for_breakpoints(cpu, pc, &cflags)) { 319 cpu_loop_exit(cpu); 320 } 321 322 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 323 if (tb == NULL) { 324 return tcg_code_gen_epilogue; 325 } 326 327 log_cpu_exec(pc, cpu, tb); 328 329 return tb->tc.ptr; 330 } 331 332 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 333 /* 334 * Disable CFI checks. 335 * TCG creates binary blobs at runtime, with the transformed code. 336 * A TB is a blob of binary code, created at runtime and called with an 337 * indirect function call. Since such function did not exist at compile time, 338 * the CFI runtime has no way to verify its signature and would fail. 339 * TCG is not considered a security-sensitive part of QEMU so this does not 340 * affect the impact of CFI in environment with high security requirements 341 */ 342 static inline TranslationBlock * QEMU_DISABLE_CFI 343 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 344 { 345 CPUArchState *env = cpu->env_ptr; 346 uintptr_t ret; 347 TranslationBlock *last_tb; 348 const void *tb_ptr = itb->tc.ptr; 349 350 log_cpu_exec(itb->pc, cpu, itb); 351 352 qemu_thread_jit_execute(); 353 ret = tcg_qemu_tb_exec(env, tb_ptr); 354 cpu->can_do_io = 1; 355 /* 356 * TODO: Delay swapping back to the read-write region of the TB 357 * until we actually need to modify the TB. The read-only copy, 358 * coming from the rx region, shares the same host TLB entry as 359 * the code that executed the exit_tb opcode that arrived here. 360 * If we insist on touching both the RX and the RW pages, we 361 * double the host TLB pressure. 362 */ 363 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 364 *tb_exit = ret & TB_EXIT_MASK; 365 366 trace_exec_tb_exit(last_tb, *tb_exit); 367 368 if (*tb_exit > TB_EXIT_IDX1) { 369 /* We didn't start executing this TB (eg because the instruction 370 * counter hit zero); we must restore the guest PC to the address 371 * of the start of the TB. 372 */ 373 CPUClass *cc = CPU_GET_CLASS(cpu); 374 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, 375 "Stopped execution of TB chain before %p [" 376 TARGET_FMT_lx "] %s\n", 377 last_tb->tc.ptr, last_tb->pc, 378 lookup_symbol(last_tb->pc)); 379 if (cc->tcg_ops->synchronize_from_tb) { 380 cc->tcg_ops->synchronize_from_tb(cpu, last_tb); 381 } else { 382 assert(cc->set_pc); 383 cc->set_pc(cpu, last_tb->pc); 384 } 385 } 386 387 /* 388 * If gdb single-step, and we haven't raised another exception, 389 * raise a debug exception. Single-step with another exception 390 * is handled in cpu_handle_exception. 391 */ 392 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 393 cpu->exception_index = EXCP_DEBUG; 394 cpu_loop_exit(cpu); 395 } 396 397 return last_tb; 398 } 399 400 401 static void cpu_exec_enter(CPUState *cpu) 402 { 403 CPUClass *cc = CPU_GET_CLASS(cpu); 404 405 if (cc->tcg_ops->cpu_exec_enter) { 406 cc->tcg_ops->cpu_exec_enter(cpu); 407 } 408 } 409 410 static void cpu_exec_exit(CPUState *cpu) 411 { 412 CPUClass *cc = CPU_GET_CLASS(cpu); 413 414 if (cc->tcg_ops->cpu_exec_exit) { 415 cc->tcg_ops->cpu_exec_exit(cpu); 416 } 417 } 418 419 void cpu_exec_step_atomic(CPUState *cpu) 420 { 421 CPUArchState *env = (CPUArchState *)cpu->env_ptr; 422 TranslationBlock *tb; 423 target_ulong cs_base, pc; 424 uint32_t flags, cflags; 425 int tb_exit; 426 427 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 428 start_exclusive(); 429 g_assert(cpu == current_cpu); 430 g_assert(!cpu->running); 431 cpu->running = true; 432 433 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 434 435 cflags = curr_cflags(cpu); 436 /* Execute in a serial context. */ 437 cflags &= ~CF_PARALLEL; 438 /* After 1 insn, return and release the exclusive lock. */ 439 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 440 /* 441 * No need to check_for_breakpoints here. 442 * We only arrive in cpu_exec_step_atomic after beginning execution 443 * of an insn that includes an atomic operation we can't handle. 444 * Any breakpoint for this insn will have been recognized earlier. 445 */ 446 447 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 448 if (tb == NULL) { 449 mmap_lock(); 450 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 451 mmap_unlock(); 452 } 453 454 cpu_exec_enter(cpu); 455 /* execute the generated code */ 456 trace_exec_tb(tb, pc); 457 cpu_tb_exec(cpu, tb, &tb_exit); 458 cpu_exec_exit(cpu); 459 } else { 460 /* 461 * The mmap_lock is dropped by tb_gen_code if it runs out of 462 * memory. 463 */ 464 #ifndef CONFIG_SOFTMMU 465 tcg_debug_assert(!have_mmap_lock()); 466 #endif 467 if (qemu_mutex_iothread_locked()) { 468 qemu_mutex_unlock_iothread(); 469 } 470 assert_no_pages_locked(); 471 qemu_plugin_disable_mem_helpers(cpu); 472 } 473 474 475 /* 476 * As we start the exclusive region before codegen we must still 477 * be in the region if we longjump out of either the codegen or 478 * the execution. 479 */ 480 g_assert(cpu_in_exclusive_context(cpu)); 481 cpu->running = false; 482 end_exclusive(); 483 } 484 485 struct tb_desc { 486 target_ulong pc; 487 target_ulong cs_base; 488 CPUArchState *env; 489 tb_page_addr_t phys_page1; 490 uint32_t flags; 491 uint32_t cflags; 492 uint32_t trace_vcpu_dstate; 493 }; 494 495 static bool tb_lookup_cmp(const void *p, const void *d) 496 { 497 const TranslationBlock *tb = p; 498 const struct tb_desc *desc = d; 499 500 if (tb->pc == desc->pc && 501 tb->page_addr[0] == desc->phys_page1 && 502 tb->cs_base == desc->cs_base && 503 tb->flags == desc->flags && 504 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 505 tb_cflags(tb) == desc->cflags) { 506 /* check next page if needed */ 507 if (tb->page_addr[1] == -1) { 508 return true; 509 } else { 510 tb_page_addr_t phys_page2; 511 target_ulong virt_page2; 512 513 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 514 phys_page2 = get_page_addr_code(desc->env, virt_page2); 515 if (tb->page_addr[1] == phys_page2) { 516 return true; 517 } 518 } 519 } 520 return false; 521 } 522 523 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 524 target_ulong cs_base, uint32_t flags, 525 uint32_t cflags) 526 { 527 tb_page_addr_t phys_pc; 528 struct tb_desc desc; 529 uint32_t h; 530 531 desc.env = (CPUArchState *)cpu->env_ptr; 532 desc.cs_base = cs_base; 533 desc.flags = flags; 534 desc.cflags = cflags; 535 desc.trace_vcpu_dstate = *cpu->trace_dstate; 536 desc.pc = pc; 537 phys_pc = get_page_addr_code(desc.env, pc); 538 if (phys_pc == -1) { 539 return NULL; 540 } 541 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; 542 h = tb_hash_func(phys_pc, pc, flags, cflags, *cpu->trace_dstate); 543 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 544 } 545 546 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 547 { 548 if (TCG_TARGET_HAS_direct_jump) { 549 uintptr_t offset = tb->jmp_target_arg[n]; 550 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; 551 uintptr_t jmp_rx = tc_ptr + offset; 552 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 553 tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr); 554 } else { 555 tb->jmp_target_arg[n] = addr; 556 } 557 } 558 559 static inline void tb_add_jump(TranslationBlock *tb, int n, 560 TranslationBlock *tb_next) 561 { 562 uintptr_t old; 563 564 qemu_thread_jit_write(); 565 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 566 qemu_spin_lock(&tb_next->jmp_lock); 567 568 /* make sure the destination TB is valid */ 569 if (tb_next->cflags & CF_INVALID) { 570 goto out_unlock_next; 571 } 572 /* Atomically claim the jump destination slot only if it was NULL */ 573 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 574 (uintptr_t)tb_next); 575 if (old) { 576 goto out_unlock_next; 577 } 578 579 /* patch the native jump address */ 580 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 581 582 /* add in TB jmp list */ 583 tb->jmp_list_next[n] = tb_next->jmp_list_head; 584 tb_next->jmp_list_head = (uintptr_t)tb | n; 585 586 qemu_spin_unlock(&tb_next->jmp_lock); 587 588 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 589 "Linking TBs %p [" TARGET_FMT_lx 590 "] index %d -> %p [" TARGET_FMT_lx "]\n", 591 tb->tc.ptr, tb->pc, n, 592 tb_next->tc.ptr, tb_next->pc); 593 return; 594 595 out_unlock_next: 596 qemu_spin_unlock(&tb_next->jmp_lock); 597 return; 598 } 599 600 static inline bool cpu_handle_halt(CPUState *cpu) 601 { 602 #ifndef CONFIG_USER_ONLY 603 if (cpu->halted) { 604 #if defined(TARGET_I386) 605 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) { 606 X86CPU *x86_cpu = X86_CPU(cpu); 607 qemu_mutex_lock_iothread(); 608 apic_poll_irq(x86_cpu->apic_state); 609 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 610 qemu_mutex_unlock_iothread(); 611 } 612 #endif /* TARGET_I386 */ 613 if (!cpu_has_work(cpu)) { 614 return true; 615 } 616 617 cpu->halted = 0; 618 } 619 #endif /* !CONFIG_USER_ONLY */ 620 621 return false; 622 } 623 624 static inline void cpu_handle_debug_exception(CPUState *cpu) 625 { 626 CPUClass *cc = CPU_GET_CLASS(cpu); 627 CPUWatchpoint *wp; 628 629 if (!cpu->watchpoint_hit) { 630 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 631 wp->flags &= ~BP_WATCHPOINT_HIT; 632 } 633 } 634 635 if (cc->tcg_ops->debug_excp_handler) { 636 cc->tcg_ops->debug_excp_handler(cpu); 637 } 638 } 639 640 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 641 { 642 if (cpu->exception_index < 0) { 643 #ifndef CONFIG_USER_ONLY 644 if (replay_has_exception() 645 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) { 646 /* Execute just one insn to trigger exception pending in the log */ 647 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) | 1; 648 } 649 #endif 650 return false; 651 } 652 if (cpu->exception_index >= EXCP_INTERRUPT) { 653 /* exit request from the cpu execution loop */ 654 *ret = cpu->exception_index; 655 if (*ret == EXCP_DEBUG) { 656 cpu_handle_debug_exception(cpu); 657 } 658 cpu->exception_index = -1; 659 return true; 660 } else { 661 #if defined(CONFIG_USER_ONLY) 662 /* if user mode only, we simulate a fake exception 663 which will be handled outside the cpu execution 664 loop */ 665 #if defined(TARGET_I386) 666 CPUClass *cc = CPU_GET_CLASS(cpu); 667 cc->tcg_ops->fake_user_interrupt(cpu); 668 #endif /* TARGET_I386 */ 669 *ret = cpu->exception_index; 670 cpu->exception_index = -1; 671 return true; 672 #else 673 if (replay_exception()) { 674 CPUClass *cc = CPU_GET_CLASS(cpu); 675 qemu_mutex_lock_iothread(); 676 cc->tcg_ops->do_interrupt(cpu); 677 qemu_mutex_unlock_iothread(); 678 cpu->exception_index = -1; 679 680 if (unlikely(cpu->singlestep_enabled)) { 681 /* 682 * After processing the exception, ensure an EXCP_DEBUG is 683 * raised when single-stepping so that GDB doesn't miss the 684 * next instruction. 685 */ 686 *ret = EXCP_DEBUG; 687 cpu_handle_debug_exception(cpu); 688 return true; 689 } 690 } else if (!replay_has_interrupt()) { 691 /* give a chance to iothread in replay mode */ 692 *ret = EXCP_INTERRUPT; 693 return true; 694 } 695 #endif 696 } 697 698 return false; 699 } 700 701 #ifndef CONFIG_USER_ONLY 702 /* 703 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a 704 * "real" interrupt event later. It does not need to be recorded for 705 * replay purposes. 706 */ 707 static inline bool need_replay_interrupt(int interrupt_request) 708 { 709 #if defined(TARGET_I386) 710 return !(interrupt_request & CPU_INTERRUPT_POLL); 711 #else 712 return true; 713 #endif 714 } 715 #endif /* !CONFIG_USER_ONLY */ 716 717 static inline bool cpu_handle_interrupt(CPUState *cpu, 718 TranslationBlock **last_tb) 719 { 720 /* Clear the interrupt flag now since we're processing 721 * cpu->interrupt_request and cpu->exit_request. 722 * Ensure zeroing happens before reading cpu->exit_request or 723 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 724 */ 725 qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0); 726 727 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 728 int interrupt_request; 729 qemu_mutex_lock_iothread(); 730 interrupt_request = cpu->interrupt_request; 731 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 732 /* Mask out external interrupts for this step. */ 733 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 734 } 735 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 736 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 737 cpu->exception_index = EXCP_DEBUG; 738 qemu_mutex_unlock_iothread(); 739 return true; 740 } 741 #if !defined(CONFIG_USER_ONLY) 742 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 743 /* Do nothing */ 744 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 745 replay_interrupt(); 746 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 747 cpu->halted = 1; 748 cpu->exception_index = EXCP_HLT; 749 qemu_mutex_unlock_iothread(); 750 return true; 751 } 752 #if defined(TARGET_I386) 753 else if (interrupt_request & CPU_INTERRUPT_INIT) { 754 X86CPU *x86_cpu = X86_CPU(cpu); 755 CPUArchState *env = &x86_cpu->env; 756 replay_interrupt(); 757 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 758 do_cpu_init(x86_cpu); 759 cpu->exception_index = EXCP_HALTED; 760 qemu_mutex_unlock_iothread(); 761 return true; 762 } 763 #else 764 else if (interrupt_request & CPU_INTERRUPT_RESET) { 765 replay_interrupt(); 766 cpu_reset(cpu); 767 qemu_mutex_unlock_iothread(); 768 return true; 769 } 770 #endif /* !TARGET_I386 */ 771 /* The target hook has 3 exit conditions: 772 False when the interrupt isn't processed, 773 True when it is, and we should restart on a new TB, 774 and via longjmp via cpu_loop_exit. */ 775 else { 776 CPUClass *cc = CPU_GET_CLASS(cpu); 777 778 if (cc->tcg_ops->cpu_exec_interrupt && 779 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 780 if (need_replay_interrupt(interrupt_request)) { 781 replay_interrupt(); 782 } 783 /* 784 * After processing the interrupt, ensure an EXCP_DEBUG is 785 * raised when single-stepping so that GDB doesn't miss the 786 * next instruction. 787 */ 788 cpu->exception_index = 789 (cpu->singlestep_enabled ? EXCP_DEBUG : -1); 790 *last_tb = NULL; 791 } 792 /* The target hook may have updated the 'cpu->interrupt_request'; 793 * reload the 'interrupt_request' value */ 794 interrupt_request = cpu->interrupt_request; 795 } 796 #endif /* !CONFIG_USER_ONLY */ 797 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 798 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 799 /* ensure that no TB jump will be modified as 800 the program flow was changed */ 801 *last_tb = NULL; 802 } 803 804 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 805 qemu_mutex_unlock_iothread(); 806 } 807 808 /* Finally, check if we need to exit to the main loop. */ 809 if (unlikely(qatomic_read(&cpu->exit_request)) 810 || (icount_enabled() 811 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT) 812 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) { 813 qatomic_set(&cpu->exit_request, 0); 814 if (cpu->exception_index == -1) { 815 cpu->exception_index = EXCP_INTERRUPT; 816 } 817 return true; 818 } 819 820 return false; 821 } 822 823 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 824 TranslationBlock **last_tb, int *tb_exit) 825 { 826 int32_t insns_left; 827 828 trace_exec_tb(tb, tb->pc); 829 tb = cpu_tb_exec(cpu, tb, tb_exit); 830 if (*tb_exit != TB_EXIT_REQUESTED) { 831 *last_tb = tb; 832 return; 833 } 834 835 *last_tb = NULL; 836 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32); 837 if (insns_left < 0) { 838 /* Something asked us to stop executing chained TBs; just 839 * continue round the main loop. Whatever requested the exit 840 * will also have set something else (eg exit_request or 841 * interrupt_request) which will be handled by 842 * cpu_handle_interrupt. cpu_handle_interrupt will also 843 * clear cpu->icount_decr.u16.high. 844 */ 845 return; 846 } 847 848 /* Instruction counter expired. */ 849 assert(icount_enabled()); 850 #ifndef CONFIG_USER_ONLY 851 /* Ensure global icount has gone forward */ 852 icount_update(cpu); 853 /* Refill decrementer and continue execution. */ 854 insns_left = MIN(0xffff, cpu->icount_budget); 855 cpu_neg(cpu)->icount_decr.u16.low = insns_left; 856 cpu->icount_extra = cpu->icount_budget - insns_left; 857 858 /* 859 * If the next tb has more instructions than we have left to 860 * execute we need to ensure we find/generate a TB with exactly 861 * insns_left instructions in it. 862 */ 863 if (insns_left > 0 && insns_left < tb->icount) { 864 assert(insns_left <= CF_COUNT_MASK); 865 assert(cpu->icount_extra == 0); 866 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 867 } 868 #endif 869 } 870 871 /* main execution loop */ 872 873 int cpu_exec(CPUState *cpu) 874 { 875 int ret; 876 SyncClocks sc = { 0 }; 877 878 /* replay_interrupt may need current_cpu */ 879 current_cpu = cpu; 880 881 if (cpu_handle_halt(cpu)) { 882 return EXCP_HALTED; 883 } 884 885 rcu_read_lock(); 886 887 cpu_exec_enter(cpu); 888 889 /* Calculate difference between guest clock and host clock. 890 * This delay includes the delay of the last cycle, so 891 * what we have to do is sleep until it is 0. As for the 892 * advance/delay we gain here, we try to fix it next time. 893 */ 894 init_delay_params(&sc, cpu); 895 896 /* prepare setjmp context for exception handling */ 897 if (sigsetjmp(cpu->jmp_env, 0) != 0) { 898 #if defined(__clang__) 899 /* 900 * Some compilers wrongly smash all local variables after 901 * siglongjmp (the spec requires that only non-volatile locals 902 * which are changed between the sigsetjmp and siglongjmp are 903 * permitted to be trashed). There were bug reports for gcc 904 * 4.5.0 and clang. The bug is fixed in all versions of gcc 905 * that we support, but is still unfixed in clang: 906 * https://bugs.llvm.org/show_bug.cgi?id=21183 907 * 908 * Reload an essential local variable here for those compilers. 909 * Newer versions of gcc would complain about this code (-Wclobbered), 910 * so we only perform the workaround for clang. 911 */ 912 cpu = current_cpu; 913 #else 914 /* Non-buggy compilers preserve this; assert the correct value. */ 915 g_assert(cpu == current_cpu); 916 #endif 917 918 #ifndef CONFIG_SOFTMMU 919 tcg_debug_assert(!have_mmap_lock()); 920 #endif 921 if (qemu_mutex_iothread_locked()) { 922 qemu_mutex_unlock_iothread(); 923 } 924 qemu_plugin_disable_mem_helpers(cpu); 925 926 assert_no_pages_locked(); 927 } 928 929 /* if an exception is pending, we execute it here */ 930 while (!cpu_handle_exception(cpu, &ret)) { 931 TranslationBlock *last_tb = NULL; 932 int tb_exit = 0; 933 934 while (!cpu_handle_interrupt(cpu, &last_tb)) { 935 TranslationBlock *tb; 936 target_ulong cs_base, pc; 937 uint32_t flags, cflags; 938 939 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags); 940 941 /* 942 * When requested, use an exact setting for cflags for the next 943 * execution. This is used for icount, precise smc, and stop- 944 * after-access watchpoints. Since this request should never 945 * have CF_INVALID set, -1 is a convenient invalid value that 946 * does not require tcg headers for cpu_common_reset. 947 */ 948 cflags = cpu->cflags_next_tb; 949 if (cflags == -1) { 950 cflags = curr_cflags(cpu); 951 } else { 952 cpu->cflags_next_tb = -1; 953 } 954 955 if (check_for_breakpoints(cpu, pc, &cflags)) { 956 break; 957 } 958 959 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 960 if (tb == NULL) { 961 mmap_lock(); 962 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 963 mmap_unlock(); 964 /* 965 * We add the TB in the virtual pc hash table 966 * for the fast lookup 967 */ 968 qatomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); 969 } 970 971 #ifndef CONFIG_USER_ONLY 972 /* 973 * We don't take care of direct jumps when address mapping 974 * changes in system emulation. So it's not safe to make a 975 * direct jump to a TB spanning two pages because the mapping 976 * for the second page can change. 977 */ 978 if (tb->page_addr[1] != -1) { 979 last_tb = NULL; 980 } 981 #endif 982 /* See if we can patch the calling TB. */ 983 if (last_tb) { 984 tb_add_jump(last_tb, tb_exit, tb); 985 } 986 987 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); 988 989 /* Try to align the host and virtual clocks 990 if the guest is in advance */ 991 align_clocks(&sc, cpu); 992 } 993 } 994 995 cpu_exec_exit(cpu); 996 rcu_read_unlock(); 997 998 return ret; 999 } 1000 1001 void tcg_exec_realizefn(CPUState *cpu, Error **errp) 1002 { 1003 static bool tcg_target_initialized; 1004 CPUClass *cc = CPU_GET_CLASS(cpu); 1005 1006 if (!tcg_target_initialized) { 1007 cc->tcg_ops->initialize(); 1008 tcg_target_initialized = true; 1009 } 1010 tlb_init(cpu); 1011 qemu_plugin_vcpu_init_hook(cpu); 1012 1013 #ifndef CONFIG_USER_ONLY 1014 tcg_iommu_init_notifier_list(cpu); 1015 #endif /* !CONFIG_USER_ONLY */ 1016 } 1017 1018 /* undo the initializations in reverse order */ 1019 void tcg_exec_unrealizefn(CPUState *cpu) 1020 { 1021 #ifndef CONFIG_USER_ONLY 1022 tcg_iommu_free_notifier_list(cpu); 1023 #endif /* !CONFIG_USER_ONLY */ 1024 1025 qemu_plugin_vcpu_exit_hook(cpu); 1026 tlb_destroy(cpu); 1027 } 1028 1029 #ifndef CONFIG_USER_ONLY 1030 1031 void dump_drift_info(void) 1032 { 1033 if (!icount_enabled()) { 1034 return; 1035 } 1036 1037 qemu_printf("Host - Guest clock %"PRIi64" ms\n", 1038 (cpu_get_clock() - icount_get()) / SCALE_MS); 1039 if (icount_align_option) { 1040 qemu_printf("Max guest delay %"PRIi64" ms\n", 1041 -max_delay / SCALE_MS); 1042 qemu_printf("Max guest advance %"PRIi64" ms\n", 1043 max_advance / SCALE_MS); 1044 } else { 1045 qemu_printf("Max guest delay NA\n"); 1046 qemu_printf("Max guest advance NA\n"); 1047 } 1048 } 1049 1050 #endif /* !CONFIG_USER_ONLY */ 1051