1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "trace.h" 22 #include "disas/disas.h" 23 #include "exec/exec-all.h" 24 #include "tcg.h" 25 #include "qemu/atomic.h" 26 #include "sysemu/qtest.h" 27 #include "qemu/timer.h" 28 #include "qemu/rcu.h" 29 #include "exec/tb-hash.h" 30 #include "exec/tb-lookup.h" 31 #include "exec/log.h" 32 #include "qemu/main-loop.h" 33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 34 #include "hw/i386/apic.h" 35 #endif 36 #include "sysemu/cpus.h" 37 #include "sysemu/replay.h" 38 39 /* -icount align implementation. */ 40 41 typedef struct SyncClocks { 42 int64_t diff_clk; 43 int64_t last_cpu_icount; 44 int64_t realtime_clock; 45 } SyncClocks; 46 47 #if !defined(CONFIG_USER_ONLY) 48 /* Allow the guest to have a max 3ms advance. 49 * The difference between the 2 clocks could therefore 50 * oscillate around 0. 51 */ 52 #define VM_CLOCK_ADVANCE 3000000 53 #define THRESHOLD_REDUCE 1.5 54 #define MAX_DELAY_PRINT_RATE 2000000000LL 55 #define MAX_NB_PRINTS 100 56 57 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 58 { 59 int64_t cpu_icount; 60 61 if (!icount_align_option) { 62 return; 63 } 64 65 cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; 66 sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount); 67 sc->last_cpu_icount = cpu_icount; 68 69 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 70 #ifndef _WIN32 71 struct timespec sleep_delay, rem_delay; 72 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 73 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 74 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 75 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 76 } else { 77 sc->diff_clk = 0; 78 } 79 #else 80 Sleep(sc->diff_clk / SCALE_MS); 81 sc->diff_clk = 0; 82 #endif 83 } 84 } 85 86 static void print_delay(const SyncClocks *sc) 87 { 88 static float threshold_delay; 89 static int64_t last_realtime_clock; 90 static int nb_prints; 91 92 if (icount_align_option && 93 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 94 nb_prints < MAX_NB_PRINTS) { 95 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 96 (-sc->diff_clk / (float)1000000000LL < 97 (threshold_delay - THRESHOLD_REDUCE))) { 98 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 99 printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 100 threshold_delay - 1, 101 threshold_delay); 102 nb_prints++; 103 last_realtime_clock = sc->realtime_clock; 104 } 105 } 106 } 107 108 static void init_delay_params(SyncClocks *sc, 109 const CPUState *cpu) 110 { 111 if (!icount_align_option) { 112 return; 113 } 114 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 115 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 116 sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; 117 if (sc->diff_clk < max_delay) { 118 max_delay = sc->diff_clk; 119 } 120 if (sc->diff_clk > max_advance) { 121 max_advance = sc->diff_clk; 122 } 123 124 /* Print every 2s max if the guest is late. We limit the number 125 of printed messages to NB_PRINT_MAX(currently 100) */ 126 print_delay(sc); 127 } 128 #else 129 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 130 { 131 } 132 133 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 134 { 135 } 136 #endif /* CONFIG USER ONLY */ 137 138 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 139 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb) 140 { 141 CPUArchState *env = cpu->env_ptr; 142 uintptr_t ret; 143 TranslationBlock *last_tb; 144 int tb_exit; 145 uint8_t *tb_ptr = itb->tc.ptr; 146 147 qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc, 148 "Trace %d: %p [" 149 TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n", 150 cpu->cpu_index, itb->tc.ptr, 151 itb->cs_base, itb->pc, itb->flags, 152 lookup_symbol(itb->pc)); 153 154 #if defined(DEBUG_DISAS) 155 if (qemu_loglevel_mask(CPU_LOG_TB_CPU) 156 && qemu_log_in_addr_range(itb->pc)) { 157 qemu_log_lock(); 158 int flags = 0; 159 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 160 flags |= CPU_DUMP_FPU; 161 } 162 #if defined(TARGET_I386) 163 flags |= CPU_DUMP_CCOP; 164 #endif 165 log_cpu_state(cpu, flags); 166 qemu_log_unlock(); 167 } 168 #endif /* DEBUG_DISAS */ 169 170 cpu->can_do_io = !use_icount; 171 ret = tcg_qemu_tb_exec(env, tb_ptr); 172 cpu->can_do_io = 1; 173 last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 174 tb_exit = ret & TB_EXIT_MASK; 175 trace_exec_tb_exit(last_tb, tb_exit); 176 177 if (tb_exit > TB_EXIT_IDX1) { 178 /* We didn't start executing this TB (eg because the instruction 179 * counter hit zero); we must restore the guest PC to the address 180 * of the start of the TB. 181 */ 182 CPUClass *cc = CPU_GET_CLASS(cpu); 183 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, 184 "Stopped execution of TB chain before %p [" 185 TARGET_FMT_lx "] %s\n", 186 last_tb->tc.ptr, last_tb->pc, 187 lookup_symbol(last_tb->pc)); 188 if (cc->synchronize_from_tb) { 189 cc->synchronize_from_tb(cpu, last_tb); 190 } else { 191 assert(cc->set_pc); 192 cc->set_pc(cpu, last_tb->pc); 193 } 194 } 195 return ret; 196 } 197 198 #ifndef CONFIG_USER_ONLY 199 /* Execute the code without caching the generated code. An interpreter 200 could be used if available. */ 201 static void cpu_exec_nocache(CPUState *cpu, int max_cycles, 202 TranslationBlock *orig_tb, bool ignore_icount) 203 { 204 TranslationBlock *tb; 205 uint32_t cflags = curr_cflags() | CF_NOCACHE; 206 207 if (ignore_icount) { 208 cflags &= ~CF_USE_ICOUNT; 209 } 210 211 /* Should never happen. 212 We only end up here when an existing TB is too long. */ 213 cflags |= MIN(max_cycles, CF_COUNT_MASK); 214 215 tb_lock(); 216 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, 217 orig_tb->flags, cflags); 218 tb->orig_tb = orig_tb; 219 tb_unlock(); 220 221 /* execute the generated code */ 222 trace_exec_tb_nocache(tb, tb->pc); 223 cpu_tb_exec(cpu, tb); 224 225 tb_lock(); 226 tb_phys_invalidate(tb, -1); 227 tcg_tb_remove(tb); 228 tb_unlock(); 229 } 230 #endif 231 232 void cpu_exec_step_atomic(CPUState *cpu) 233 { 234 CPUClass *cc = CPU_GET_CLASS(cpu); 235 TranslationBlock *tb; 236 target_ulong cs_base, pc; 237 uint32_t flags; 238 uint32_t cflags = 1; 239 uint32_t cf_mask = cflags & CF_HASH_MASK; 240 /* volatile because we modify it between setjmp and longjmp */ 241 volatile bool in_exclusive_region = false; 242 243 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 244 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 245 if (tb == NULL) { 246 mmap_lock(); 247 tb_lock(); 248 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask); 249 if (likely(tb == NULL)) { 250 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 251 } 252 tb_unlock(); 253 mmap_unlock(); 254 } 255 256 start_exclusive(); 257 258 /* Since we got here, we know that parallel_cpus must be true. */ 259 parallel_cpus = false; 260 in_exclusive_region = true; 261 cc->cpu_exec_enter(cpu); 262 /* execute the generated code */ 263 trace_exec_tb(tb, pc); 264 cpu_tb_exec(cpu, tb); 265 cc->cpu_exec_exit(cpu); 266 } else { 267 /* We may have exited due to another problem here, so we need 268 * to reset any tb_locks we may have taken but didn't release. 269 * The mmap_lock is dropped by tb_gen_code if it runs out of 270 * memory. 271 */ 272 #ifndef CONFIG_SOFTMMU 273 tcg_debug_assert(!have_mmap_lock()); 274 #endif 275 tb_lock_reset(); 276 assert_no_pages_locked(); 277 } 278 279 if (in_exclusive_region) { 280 /* We might longjump out of either the codegen or the 281 * execution, so must make sure we only end the exclusive 282 * region if we started it. 283 */ 284 parallel_cpus = true; 285 end_exclusive(); 286 } 287 } 288 289 struct tb_desc { 290 target_ulong pc; 291 target_ulong cs_base; 292 CPUArchState *env; 293 tb_page_addr_t phys_page1; 294 uint32_t flags; 295 uint32_t cf_mask; 296 uint32_t trace_vcpu_dstate; 297 }; 298 299 static bool tb_lookup_cmp(const void *p, const void *d) 300 { 301 const TranslationBlock *tb = p; 302 const struct tb_desc *desc = d; 303 304 if (tb->pc == desc->pc && 305 tb->page_addr[0] == desc->phys_page1 && 306 tb->cs_base == desc->cs_base && 307 tb->flags == desc->flags && 308 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 309 (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) { 310 /* check next page if needed */ 311 if (tb->page_addr[1] == -1) { 312 return true; 313 } else { 314 tb_page_addr_t phys_page2; 315 target_ulong virt_page2; 316 317 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 318 phys_page2 = get_page_addr_code(desc->env, virt_page2); 319 if (tb->page_addr[1] == phys_page2) { 320 return true; 321 } 322 } 323 } 324 return false; 325 } 326 327 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 328 target_ulong cs_base, uint32_t flags, 329 uint32_t cf_mask) 330 { 331 tb_page_addr_t phys_pc; 332 struct tb_desc desc; 333 uint32_t h; 334 335 desc.env = (CPUArchState *)cpu->env_ptr; 336 desc.cs_base = cs_base; 337 desc.flags = flags; 338 desc.cf_mask = cf_mask; 339 desc.trace_vcpu_dstate = *cpu->trace_dstate; 340 desc.pc = pc; 341 phys_pc = get_page_addr_code(desc.env, pc); 342 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; 343 h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate); 344 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 345 } 346 347 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 348 { 349 if (TCG_TARGET_HAS_direct_jump) { 350 uintptr_t offset = tb->jmp_target_arg[n]; 351 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; 352 tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr); 353 } else { 354 tb->jmp_target_arg[n] = addr; 355 } 356 } 357 358 /* Called with tb_lock held. */ 359 static inline void tb_add_jump(TranslationBlock *tb, int n, 360 TranslationBlock *tb_next) 361 { 362 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 363 if (tb->jmp_list_next[n]) { 364 /* Another thread has already done this while we were 365 * outside of the lock; nothing to do in this case */ 366 return; 367 } 368 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 369 "Linking TBs %p [" TARGET_FMT_lx 370 "] index %d -> %p [" TARGET_FMT_lx "]\n", 371 tb->tc.ptr, tb->pc, n, 372 tb_next->tc.ptr, tb_next->pc); 373 374 /* patch the native jump address */ 375 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 376 377 /* add in TB jmp circular list */ 378 tb->jmp_list_next[n] = tb_next->jmp_list_first; 379 tb_next->jmp_list_first = (uintptr_t)tb | n; 380 } 381 382 static inline TranslationBlock *tb_find(CPUState *cpu, 383 TranslationBlock *last_tb, 384 int tb_exit, uint32_t cf_mask) 385 { 386 TranslationBlock *tb; 387 target_ulong cs_base, pc; 388 uint32_t flags; 389 bool acquired_tb_lock = false; 390 391 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 392 if (tb == NULL) { 393 /* mmap_lock is needed by tb_gen_code, and mmap_lock must be 394 * taken outside tb_lock. As system emulation is currently 395 * single threaded the locks are NOPs. 396 */ 397 mmap_lock(); 398 tb_lock(); 399 acquired_tb_lock = true; 400 401 /* There's a chance that our desired tb has been translated while 402 * taking the locks so we check again inside the lock. 403 */ 404 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask); 405 if (likely(tb == NULL)) { 406 /* if no translated code available, then translate it now */ 407 tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask); 408 } 409 410 mmap_unlock(); 411 /* We add the TB in the virtual pc hash table for the fast lookup */ 412 atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); 413 } 414 #ifndef CONFIG_USER_ONLY 415 /* We don't take care of direct jumps when address mapping changes in 416 * system emulation. So it's not safe to make a direct jump to a TB 417 * spanning two pages because the mapping for the second page can change. 418 */ 419 if (tb->page_addr[1] != -1) { 420 last_tb = NULL; 421 } 422 #endif 423 /* See if we can patch the calling TB. */ 424 if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 425 if (!acquired_tb_lock) { 426 tb_lock(); 427 acquired_tb_lock = true; 428 } 429 if (!(tb->cflags & CF_INVALID)) { 430 tb_add_jump(last_tb, tb_exit, tb); 431 } 432 } 433 if (acquired_tb_lock) { 434 tb_unlock(); 435 } 436 return tb; 437 } 438 439 static inline bool cpu_handle_halt(CPUState *cpu) 440 { 441 if (cpu->halted) { 442 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 443 if ((cpu->interrupt_request & CPU_INTERRUPT_POLL) 444 && replay_interrupt()) { 445 X86CPU *x86_cpu = X86_CPU(cpu); 446 qemu_mutex_lock_iothread(); 447 apic_poll_irq(x86_cpu->apic_state); 448 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 449 qemu_mutex_unlock_iothread(); 450 } 451 #endif 452 if (!cpu_has_work(cpu)) { 453 return true; 454 } 455 456 cpu->halted = 0; 457 } 458 459 return false; 460 } 461 462 static inline void cpu_handle_debug_exception(CPUState *cpu) 463 { 464 CPUClass *cc = CPU_GET_CLASS(cpu); 465 CPUWatchpoint *wp; 466 467 if (!cpu->watchpoint_hit) { 468 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 469 wp->flags &= ~BP_WATCHPOINT_HIT; 470 } 471 } 472 473 cc->debug_excp_handler(cpu); 474 } 475 476 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 477 { 478 if (cpu->exception_index < 0) { 479 #ifndef CONFIG_USER_ONLY 480 if (replay_has_exception() 481 && cpu->icount_decr.u16.low + cpu->icount_extra == 0) { 482 /* try to cause an exception pending in the log */ 483 cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true); 484 } 485 #endif 486 if (cpu->exception_index < 0) { 487 return false; 488 } 489 } 490 491 if (cpu->exception_index >= EXCP_INTERRUPT) { 492 /* exit request from the cpu execution loop */ 493 *ret = cpu->exception_index; 494 if (*ret == EXCP_DEBUG) { 495 cpu_handle_debug_exception(cpu); 496 } 497 cpu->exception_index = -1; 498 return true; 499 } else { 500 #if defined(CONFIG_USER_ONLY) 501 /* if user mode only, we simulate a fake exception 502 which will be handled outside the cpu execution 503 loop */ 504 #if defined(TARGET_I386) 505 CPUClass *cc = CPU_GET_CLASS(cpu); 506 cc->do_interrupt(cpu); 507 #endif 508 *ret = cpu->exception_index; 509 cpu->exception_index = -1; 510 return true; 511 #else 512 if (replay_exception()) { 513 CPUClass *cc = CPU_GET_CLASS(cpu); 514 qemu_mutex_lock_iothread(); 515 cc->do_interrupt(cpu); 516 qemu_mutex_unlock_iothread(); 517 cpu->exception_index = -1; 518 } else if (!replay_has_interrupt()) { 519 /* give a chance to iothread in replay mode */ 520 *ret = EXCP_INTERRUPT; 521 return true; 522 } 523 #endif 524 } 525 526 return false; 527 } 528 529 static inline bool cpu_handle_interrupt(CPUState *cpu, 530 TranslationBlock **last_tb) 531 { 532 CPUClass *cc = CPU_GET_CLASS(cpu); 533 534 /* Clear the interrupt flag now since we're processing 535 * cpu->interrupt_request and cpu->exit_request. 536 * Ensure zeroing happens before reading cpu->exit_request or 537 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 538 */ 539 atomic_mb_set(&cpu->icount_decr.u16.high, 0); 540 541 if (unlikely(atomic_read(&cpu->interrupt_request))) { 542 int interrupt_request; 543 qemu_mutex_lock_iothread(); 544 interrupt_request = cpu->interrupt_request; 545 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 546 /* Mask out external interrupts for this step. */ 547 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 548 } 549 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 550 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 551 cpu->exception_index = EXCP_DEBUG; 552 qemu_mutex_unlock_iothread(); 553 return true; 554 } 555 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 556 /* Do nothing */ 557 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 558 replay_interrupt(); 559 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 560 cpu->halted = 1; 561 cpu->exception_index = EXCP_HLT; 562 qemu_mutex_unlock_iothread(); 563 return true; 564 } 565 #if defined(TARGET_I386) 566 else if (interrupt_request & CPU_INTERRUPT_INIT) { 567 X86CPU *x86_cpu = X86_CPU(cpu); 568 CPUArchState *env = &x86_cpu->env; 569 replay_interrupt(); 570 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 571 do_cpu_init(x86_cpu); 572 cpu->exception_index = EXCP_HALTED; 573 qemu_mutex_unlock_iothread(); 574 return true; 575 } 576 #else 577 else if (interrupt_request & CPU_INTERRUPT_RESET) { 578 replay_interrupt(); 579 cpu_reset(cpu); 580 qemu_mutex_unlock_iothread(); 581 return true; 582 } 583 #endif 584 /* The target hook has 3 exit conditions: 585 False when the interrupt isn't processed, 586 True when it is, and we should restart on a new TB, 587 and via longjmp via cpu_loop_exit. */ 588 else { 589 if (cc->cpu_exec_interrupt(cpu, interrupt_request)) { 590 replay_interrupt(); 591 cpu->exception_index = -1; 592 *last_tb = NULL; 593 } 594 /* The target hook may have updated the 'cpu->interrupt_request'; 595 * reload the 'interrupt_request' value */ 596 interrupt_request = cpu->interrupt_request; 597 } 598 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 599 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 600 /* ensure that no TB jump will be modified as 601 the program flow was changed */ 602 *last_tb = NULL; 603 } 604 605 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 606 qemu_mutex_unlock_iothread(); 607 } 608 609 /* Finally, check if we need to exit to the main loop. */ 610 if (unlikely(atomic_read(&cpu->exit_request) 611 || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) { 612 atomic_set(&cpu->exit_request, 0); 613 if (cpu->exception_index == -1) { 614 cpu->exception_index = EXCP_INTERRUPT; 615 } 616 return true; 617 } 618 619 return false; 620 } 621 622 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 623 TranslationBlock **last_tb, int *tb_exit) 624 { 625 uintptr_t ret; 626 int32_t insns_left; 627 628 trace_exec_tb(tb, tb->pc); 629 ret = cpu_tb_exec(cpu, tb); 630 tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 631 *tb_exit = ret & TB_EXIT_MASK; 632 if (*tb_exit != TB_EXIT_REQUESTED) { 633 *last_tb = tb; 634 return; 635 } 636 637 *last_tb = NULL; 638 insns_left = atomic_read(&cpu->icount_decr.u32); 639 if (insns_left < 0) { 640 /* Something asked us to stop executing chained TBs; just 641 * continue round the main loop. Whatever requested the exit 642 * will also have set something else (eg exit_request or 643 * interrupt_request) which will be handled by 644 * cpu_handle_interrupt. cpu_handle_interrupt will also 645 * clear cpu->icount_decr.u16.high. 646 */ 647 return; 648 } 649 650 /* Instruction counter expired. */ 651 assert(use_icount); 652 #ifndef CONFIG_USER_ONLY 653 /* Ensure global icount has gone forward */ 654 cpu_update_icount(cpu); 655 /* Refill decrementer and continue execution. */ 656 insns_left = MIN(0xffff, cpu->icount_budget); 657 cpu->icount_decr.u16.low = insns_left; 658 cpu->icount_extra = cpu->icount_budget - insns_left; 659 if (!cpu->icount_extra) { 660 /* Execute any remaining instructions, then let the main loop 661 * handle the next event. 662 */ 663 if (insns_left > 0) { 664 cpu_exec_nocache(cpu, insns_left, tb, false); 665 } 666 } 667 #endif 668 } 669 670 /* main execution loop */ 671 672 int cpu_exec(CPUState *cpu) 673 { 674 CPUClass *cc = CPU_GET_CLASS(cpu); 675 int ret; 676 SyncClocks sc = { 0 }; 677 678 /* replay_interrupt may need current_cpu */ 679 current_cpu = cpu; 680 681 if (cpu_handle_halt(cpu)) { 682 return EXCP_HALTED; 683 } 684 685 rcu_read_lock(); 686 687 cc->cpu_exec_enter(cpu); 688 689 /* Calculate difference between guest clock and host clock. 690 * This delay includes the delay of the last cycle, so 691 * what we have to do is sleep until it is 0. As for the 692 * advance/delay we gain here, we try to fix it next time. 693 */ 694 init_delay_params(&sc, cpu); 695 696 /* prepare setjmp context for exception handling */ 697 if (sigsetjmp(cpu->jmp_env, 0) != 0) { 698 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6) 699 /* Some compilers wrongly smash all local variables after 700 * siglongjmp. There were bug reports for gcc 4.5.0 and clang. 701 * Reload essential local variables here for those compilers. 702 * Newer versions of gcc would complain about this code (-Wclobbered). */ 703 cpu = current_cpu; 704 cc = CPU_GET_CLASS(cpu); 705 #else /* buggy compiler */ 706 /* Assert that the compiler does not smash local variables. */ 707 g_assert(cpu == current_cpu); 708 g_assert(cc == CPU_GET_CLASS(cpu)); 709 #endif /* buggy compiler */ 710 tb_lock_reset(); 711 if (qemu_mutex_iothread_locked()) { 712 qemu_mutex_unlock_iothread(); 713 } 714 } 715 716 /* if an exception is pending, we execute it here */ 717 while (!cpu_handle_exception(cpu, &ret)) { 718 TranslationBlock *last_tb = NULL; 719 int tb_exit = 0; 720 721 while (!cpu_handle_interrupt(cpu, &last_tb)) { 722 uint32_t cflags = cpu->cflags_next_tb; 723 TranslationBlock *tb; 724 725 /* When requested, use an exact setting for cflags for the next 726 execution. This is used for icount, precise smc, and stop- 727 after-access watchpoints. Since this request should never 728 have CF_INVALID set, -1 is a convenient invalid value that 729 does not require tcg headers for cpu_common_reset. */ 730 if (cflags == -1) { 731 cflags = curr_cflags(); 732 } else { 733 cpu->cflags_next_tb = -1; 734 } 735 736 tb = tb_find(cpu, last_tb, tb_exit, cflags); 737 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); 738 /* Try to align the host and virtual clocks 739 if the guest is in advance */ 740 align_clocks(&sc, cpu); 741 } 742 } 743 744 cc->cpu_exec_exit(cpu); 745 rcu_read_unlock(); 746 747 return ret; 748 } 749