1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/tcg-cpu-ops.h" 25 #include "trace.h" 26 #include "disas/disas.h" 27 #include "exec/exec-all.h" 28 #include "tcg/tcg.h" 29 #include "qemu/atomic.h" 30 #include "qemu/rcu.h" 31 #include "exec/log.h" 32 #include "qemu/main-loop.h" 33 #include "sysemu/cpus.h" 34 #include "exec/cpu-all.h" 35 #include "sysemu/cpu-timers.h" 36 #include "exec/replay-core.h" 37 #include "sysemu/tcg.h" 38 #include "exec/helper-proto-common.h" 39 #include "tb-jmp-cache.h" 40 #include "tb-hash.h" 41 #include "tb-context.h" 42 #include "internal-common.h" 43 #include "internal-target.h" 44 45 /* -icount align implementation. */ 46 47 typedef struct SyncClocks { 48 int64_t diff_clk; 49 int64_t last_cpu_icount; 50 int64_t realtime_clock; 51 } SyncClocks; 52 53 #if !defined(CONFIG_USER_ONLY) 54 /* Allow the guest to have a max 3ms advance. 55 * The difference between the 2 clocks could therefore 56 * oscillate around 0. 57 */ 58 #define VM_CLOCK_ADVANCE 3000000 59 #define THRESHOLD_REDUCE 1.5 60 #define MAX_DELAY_PRINT_RATE 2000000000LL 61 #define MAX_NB_PRINTS 100 62 63 int64_t max_delay; 64 int64_t max_advance; 65 66 static void align_clocks(SyncClocks *sc, CPUState *cpu) 67 { 68 int64_t cpu_icount; 69 70 if (!icount_align_option) { 71 return; 72 } 73 74 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 75 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 76 sc->last_cpu_icount = cpu_icount; 77 78 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 79 #ifndef _WIN32 80 struct timespec sleep_delay, rem_delay; 81 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 82 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 83 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 84 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 85 } else { 86 sc->diff_clk = 0; 87 } 88 #else 89 Sleep(sc->diff_clk / SCALE_MS); 90 sc->diff_clk = 0; 91 #endif 92 } 93 } 94 95 static void print_delay(const SyncClocks *sc) 96 { 97 static float threshold_delay; 98 static int64_t last_realtime_clock; 99 static int nb_prints; 100 101 if (icount_align_option && 102 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 103 nb_prints < MAX_NB_PRINTS) { 104 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 105 (-sc->diff_clk / (float)1000000000LL < 106 (threshold_delay - THRESHOLD_REDUCE))) { 107 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 108 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 109 threshold_delay - 1, 110 threshold_delay); 111 nb_prints++; 112 last_realtime_clock = sc->realtime_clock; 113 } 114 } 115 } 116 117 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 118 { 119 if (!icount_align_option) { 120 return; 121 } 122 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 123 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 124 sc->last_cpu_icount 125 = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 126 if (sc->diff_clk < max_delay) { 127 max_delay = sc->diff_clk; 128 } 129 if (sc->diff_clk > max_advance) { 130 max_advance = sc->diff_clk; 131 } 132 133 /* Print every 2s max if the guest is late. We limit the number 134 of printed messages to NB_PRINT_MAX(currently 100) */ 135 print_delay(sc); 136 } 137 #else 138 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 139 { 140 } 141 142 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 143 { 144 } 145 #endif /* CONFIG USER ONLY */ 146 147 uint32_t curr_cflags(CPUState *cpu) 148 { 149 uint32_t cflags = cpu->tcg_cflags; 150 151 /* 152 * Record gdb single-step. We should be exiting the TB by raising 153 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 154 * 155 * For singlestep and -d nochain, suppress goto_tb so that 156 * we can log -d cpu,exec after every TB. 157 */ 158 if (unlikely(cpu->singlestep_enabled)) { 159 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 160 } else if (qatomic_read(&one_insn_per_tb)) { 161 cflags |= CF_NO_GOTO_TB | 1; 162 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 163 cflags |= CF_NO_GOTO_TB; 164 } 165 166 return cflags; 167 } 168 169 struct tb_desc { 170 vaddr pc; 171 uint64_t cs_base; 172 CPUArchState *env; 173 tb_page_addr_t page_addr0; 174 uint32_t flags; 175 uint32_t cflags; 176 }; 177 178 static bool tb_lookup_cmp(const void *p, const void *d) 179 { 180 const TranslationBlock *tb = p; 181 const struct tb_desc *desc = d; 182 183 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && 184 tb_page_addr0(tb) == desc->page_addr0 && 185 tb->cs_base == desc->cs_base && 186 tb->flags == desc->flags && 187 tb_cflags(tb) == desc->cflags) { 188 /* check next page if needed */ 189 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 190 if (tb_phys_page1 == -1) { 191 return true; 192 } else { 193 tb_page_addr_t phys_page1; 194 vaddr virt_page1; 195 196 /* 197 * We know that the first page matched, and an otherwise valid TB 198 * encountered an incomplete instruction at the end of that page, 199 * therefore we know that generating a new TB from the current PC 200 * must also require reading from the next page -- even if the 201 * second pages do not match, and therefore the resulting insn 202 * is different for the new TB. Therefore any exception raised 203 * here by the faulting lookup is not premature. 204 */ 205 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 206 phys_page1 = get_page_addr_code(desc->env, virt_page1); 207 if (tb_phys_page1 == phys_page1) { 208 return true; 209 } 210 } 211 } 212 return false; 213 } 214 215 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc, 216 uint64_t cs_base, uint32_t flags, 217 uint32_t cflags) 218 { 219 tb_page_addr_t phys_pc; 220 struct tb_desc desc; 221 uint32_t h; 222 223 desc.env = cpu_env(cpu); 224 desc.cs_base = cs_base; 225 desc.flags = flags; 226 desc.cflags = cflags; 227 desc.pc = pc; 228 phys_pc = get_page_addr_code(desc.env, pc); 229 if (phys_pc == -1) { 230 return NULL; 231 } 232 desc.page_addr0 = phys_pc; 233 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), 234 flags, cs_base, cflags); 235 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 236 } 237 238 /* Might cause an exception, so have a longjmp destination ready */ 239 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc, 240 uint64_t cs_base, uint32_t flags, 241 uint32_t cflags) 242 { 243 TranslationBlock *tb; 244 CPUJumpCache *jc; 245 uint32_t hash; 246 247 /* we should never be trying to look up an INVALID tb */ 248 tcg_debug_assert(!(cflags & CF_INVALID)); 249 250 hash = tb_jmp_cache_hash_func(pc); 251 jc = cpu->tb_jmp_cache; 252 253 tb = qatomic_read(&jc->array[hash].tb); 254 if (likely(tb && 255 jc->array[hash].pc == pc && 256 tb->cs_base == cs_base && 257 tb->flags == flags && 258 tb_cflags(tb) == cflags)) { 259 goto hit; 260 } 261 262 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 263 if (tb == NULL) { 264 return NULL; 265 } 266 267 jc->array[hash].pc = pc; 268 qatomic_set(&jc->array[hash].tb, tb); 269 270 hit: 271 /* 272 * As long as tb is not NULL, the contents are consistent. Therefore, 273 * the virtual PC has to match for non-CF_PCREL translations. 274 */ 275 assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc); 276 return tb; 277 } 278 279 static void log_cpu_exec(vaddr pc, CPUState *cpu, 280 const TranslationBlock *tb) 281 { 282 if (qemu_log_in_addr_range(pc)) { 283 qemu_log_mask(CPU_LOG_EXEC, 284 "Trace %d: %p [%08" PRIx64 285 "/%016" VADDR_PRIx "/%08x/%08x] %s\n", 286 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 287 tb->flags, tb->cflags, lookup_symbol(pc)); 288 289 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 290 FILE *logfile = qemu_log_trylock(); 291 if (logfile) { 292 int flags = 0; 293 294 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 295 flags |= CPU_DUMP_FPU; 296 } 297 #if defined(TARGET_I386) 298 flags |= CPU_DUMP_CCOP; 299 #endif 300 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { 301 flags |= CPU_DUMP_VPU; 302 } 303 cpu_dump_state(cpu, logfile, flags); 304 qemu_log_unlock(logfile); 305 } 306 } 307 } 308 } 309 310 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, 311 uint32_t *cflags) 312 { 313 CPUBreakpoint *bp; 314 bool match_page = false; 315 316 /* 317 * Singlestep overrides breakpoints. 318 * This requirement is visible in the record-replay tests, where 319 * we would fail to make forward progress in reverse-continue. 320 * 321 * TODO: gdb singlestep should only override gdb breakpoints, 322 * so that one could (gdb) singlestep into the guest kernel's 323 * architectural breakpoint handler. 324 */ 325 if (cpu->singlestep_enabled) { 326 return false; 327 } 328 329 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 330 /* 331 * If we have an exact pc match, trigger the breakpoint. 332 * Otherwise, note matches within the page. 333 */ 334 if (pc == bp->pc) { 335 bool match_bp = false; 336 337 if (bp->flags & BP_GDB) { 338 match_bp = true; 339 } else if (bp->flags & BP_CPU) { 340 #ifdef CONFIG_USER_ONLY 341 g_assert_not_reached(); 342 #else 343 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 344 assert(tcg_ops->debug_check_breakpoint); 345 match_bp = tcg_ops->debug_check_breakpoint(cpu); 346 #endif 347 } 348 349 if (match_bp) { 350 cpu->exception_index = EXCP_DEBUG; 351 return true; 352 } 353 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 354 match_page = true; 355 } 356 } 357 358 /* 359 * Within the same page as a breakpoint, single-step, 360 * returning to helper_lookup_tb_ptr after each insn looking 361 * for the actual breakpoint. 362 * 363 * TODO: Perhaps better to record all of the TBs associated 364 * with a given virtual page that contains a breakpoint, and 365 * then invalidate them when a new overlapping breakpoint is 366 * set on the page. Non-overlapping TBs would not be 367 * invalidated, nor would any TB need to be invalidated as 368 * breakpoints are removed. 369 */ 370 if (match_page) { 371 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1; 372 } 373 return false; 374 } 375 376 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, 377 uint32_t *cflags) 378 { 379 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 380 check_for_breakpoints_slow(cpu, pc, cflags); 381 } 382 383 /** 384 * helper_lookup_tb_ptr: quick check for next tb 385 * @env: current cpu state 386 * 387 * Look for an existing TB matching the current cpu state. 388 * If found, return the code pointer. If not found, return 389 * the tcg epilogue so that we return into cpu_tb_exec. 390 */ 391 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 392 { 393 CPUState *cpu = env_cpu(env); 394 TranslationBlock *tb; 395 vaddr pc; 396 uint64_t cs_base; 397 uint32_t flags, cflags; 398 399 /* 400 * By definition we've just finished a TB, so I/O is OK. 401 * Avoid the possibility of calling cpu_io_recompile() if 402 * a page table walk triggered by tb_lookup() calling 403 * probe_access_internal() happens to touch an MMIO device. 404 * The next TB, if we chain to it, will clear the flag again. 405 */ 406 cpu->neg.can_do_io = true; 407 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 408 409 cflags = curr_cflags(cpu); 410 if (check_for_breakpoints(cpu, pc, &cflags)) { 411 cpu_loop_exit(cpu); 412 } 413 414 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 415 if (tb == NULL) { 416 return tcg_code_gen_epilogue; 417 } 418 419 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 420 log_cpu_exec(pc, cpu, tb); 421 } 422 423 return tb->tc.ptr; 424 } 425 426 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 427 /* 428 * Disable CFI checks. 429 * TCG creates binary blobs at runtime, with the transformed code. 430 * A TB is a blob of binary code, created at runtime and called with an 431 * indirect function call. Since such function did not exist at compile time, 432 * the CFI runtime has no way to verify its signature and would fail. 433 * TCG is not considered a security-sensitive part of QEMU so this does not 434 * affect the impact of CFI in environment with high security requirements 435 */ 436 static inline TranslationBlock * QEMU_DISABLE_CFI 437 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 438 { 439 CPUArchState *env = cpu_env(cpu); 440 uintptr_t ret; 441 TranslationBlock *last_tb; 442 const void *tb_ptr = itb->tc.ptr; 443 444 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 445 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 446 } 447 448 qemu_thread_jit_execute(); 449 ret = tcg_qemu_tb_exec(env, tb_ptr); 450 cpu->neg.can_do_io = true; 451 qemu_plugin_disable_mem_helpers(cpu); 452 /* 453 * TODO: Delay swapping back to the read-write region of the TB 454 * until we actually need to modify the TB. The read-only copy, 455 * coming from the rx region, shares the same host TLB entry as 456 * the code that executed the exit_tb opcode that arrived here. 457 * If we insist on touching both the RX and the RW pages, we 458 * double the host TLB pressure. 459 */ 460 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 461 *tb_exit = ret & TB_EXIT_MASK; 462 463 trace_exec_tb_exit(last_tb, *tb_exit); 464 465 if (*tb_exit > TB_EXIT_IDX1) { 466 /* We didn't start executing this TB (eg because the instruction 467 * counter hit zero); we must restore the guest PC to the address 468 * of the start of the TB. 469 */ 470 CPUClass *cc = cpu->cc; 471 const TCGCPUOps *tcg_ops = cc->tcg_ops; 472 473 if (tcg_ops->synchronize_from_tb) { 474 tcg_ops->synchronize_from_tb(cpu, last_tb); 475 } else { 476 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 477 assert(cc->set_pc); 478 cc->set_pc(cpu, last_tb->pc); 479 } 480 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 481 vaddr pc = log_pc(cpu, last_tb); 482 if (qemu_log_in_addr_range(pc)) { 483 qemu_log("Stopped execution of TB chain before %p [%016" 484 VADDR_PRIx "] %s\n", 485 last_tb->tc.ptr, pc, lookup_symbol(pc)); 486 } 487 } 488 } 489 490 /* 491 * If gdb single-step, and we haven't raised another exception, 492 * raise a debug exception. Single-step with another exception 493 * is handled in cpu_handle_exception. 494 */ 495 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 496 cpu->exception_index = EXCP_DEBUG; 497 cpu_loop_exit(cpu); 498 } 499 500 return last_tb; 501 } 502 503 504 static void cpu_exec_enter(CPUState *cpu) 505 { 506 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 507 508 if (tcg_ops->cpu_exec_enter) { 509 tcg_ops->cpu_exec_enter(cpu); 510 } 511 } 512 513 static void cpu_exec_exit(CPUState *cpu) 514 { 515 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 516 517 if (tcg_ops->cpu_exec_exit) { 518 tcg_ops->cpu_exec_exit(cpu); 519 } 520 } 521 522 static void cpu_exec_longjmp_cleanup(CPUState *cpu) 523 { 524 /* Non-buggy compilers preserve this; assert the correct value. */ 525 g_assert(cpu == current_cpu); 526 527 #ifdef CONFIG_USER_ONLY 528 clear_helper_retaddr(); 529 if (have_mmap_lock()) { 530 mmap_unlock(); 531 } 532 #else 533 /* 534 * For softmmu, a tlb_fill fault during translation will land here, 535 * and we need to release any page locks held. In system mode we 536 * have one tcg_ctx per thread, so we know it was this cpu doing 537 * the translation. 538 * 539 * Alternative 1: Install a cleanup to be called via an exception 540 * handling safe longjmp. It seems plausible that all our hosts 541 * support such a thing. We'd have to properly register unwind info 542 * for the JIT for EH, rather that just for GDB. 543 * 544 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to 545 * capture the cpu_loop_exit longjmp, perform the cleanup, and 546 * jump again to arrive here. 547 */ 548 if (tcg_ctx->gen_tb) { 549 tb_unlock_pages(tcg_ctx->gen_tb); 550 tcg_ctx->gen_tb = NULL; 551 } 552 #endif 553 if (bql_locked()) { 554 bql_unlock(); 555 } 556 assert_no_pages_locked(); 557 } 558 559 void cpu_exec_step_atomic(CPUState *cpu) 560 { 561 CPUArchState *env = cpu_env(cpu); 562 TranslationBlock *tb; 563 vaddr pc; 564 uint64_t cs_base; 565 uint32_t flags, cflags; 566 int tb_exit; 567 568 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 569 start_exclusive(); 570 g_assert(cpu == current_cpu); 571 g_assert(!cpu->running); 572 cpu->running = true; 573 574 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 575 576 cflags = curr_cflags(cpu); 577 /* Execute in a serial context. */ 578 cflags &= ~CF_PARALLEL; 579 /* After 1 insn, return and release the exclusive lock. */ 580 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 581 /* 582 * No need to check_for_breakpoints here. 583 * We only arrive in cpu_exec_step_atomic after beginning execution 584 * of an insn that includes an atomic operation we can't handle. 585 * Any breakpoint for this insn will have been recognized earlier. 586 */ 587 588 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 589 if (tb == NULL) { 590 mmap_lock(); 591 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 592 mmap_unlock(); 593 } 594 595 cpu_exec_enter(cpu); 596 /* execute the generated code */ 597 trace_exec_tb(tb, pc); 598 cpu_tb_exec(cpu, tb, &tb_exit); 599 cpu_exec_exit(cpu); 600 } else { 601 cpu_exec_longjmp_cleanup(cpu); 602 } 603 604 /* 605 * As we start the exclusive region before codegen we must still 606 * be in the region if we longjump out of either the codegen or 607 * the execution. 608 */ 609 g_assert(cpu_in_exclusive_context(cpu)); 610 cpu->running = false; 611 end_exclusive(); 612 } 613 614 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 615 { 616 /* 617 * Get the rx view of the structure, from which we find the 618 * executable code address, and tb_target_set_jmp_target can 619 * produce a pc-relative displacement to jmp_target_addr[n]. 620 */ 621 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 622 uintptr_t offset = tb->jmp_insn_offset[n]; 623 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 624 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 625 626 tb->jmp_target_addr[n] = addr; 627 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 628 } 629 630 static inline void tb_add_jump(TranslationBlock *tb, int n, 631 TranslationBlock *tb_next) 632 { 633 uintptr_t old; 634 635 qemu_thread_jit_write(); 636 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 637 qemu_spin_lock(&tb_next->jmp_lock); 638 639 /* make sure the destination TB is valid */ 640 if (tb_next->cflags & CF_INVALID) { 641 goto out_unlock_next; 642 } 643 /* Atomically claim the jump destination slot only if it was NULL */ 644 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 645 (uintptr_t)tb_next); 646 if (old) { 647 goto out_unlock_next; 648 } 649 650 /* patch the native jump address */ 651 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 652 653 /* add in TB jmp list */ 654 tb->jmp_list_next[n] = tb_next->jmp_list_head; 655 tb_next->jmp_list_head = (uintptr_t)tb | n; 656 657 qemu_spin_unlock(&tb_next->jmp_lock); 658 659 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 660 tb->tc.ptr, n, tb_next->tc.ptr); 661 return; 662 663 out_unlock_next: 664 qemu_spin_unlock(&tb_next->jmp_lock); 665 return; 666 } 667 668 static inline bool cpu_handle_halt(CPUState *cpu) 669 { 670 #ifndef CONFIG_USER_ONLY 671 if (cpu->halted) { 672 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 673 674 if (tcg_ops->cpu_exec_halt) { 675 tcg_ops->cpu_exec_halt(cpu); 676 } 677 if (!cpu_has_work(cpu)) { 678 return true; 679 } 680 681 cpu->halted = 0; 682 } 683 #endif /* !CONFIG_USER_ONLY */ 684 685 return false; 686 } 687 688 static inline void cpu_handle_debug_exception(CPUState *cpu) 689 { 690 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 691 CPUWatchpoint *wp; 692 693 if (!cpu->watchpoint_hit) { 694 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 695 wp->flags &= ~BP_WATCHPOINT_HIT; 696 } 697 } 698 699 if (tcg_ops->debug_excp_handler) { 700 tcg_ops->debug_excp_handler(cpu); 701 } 702 } 703 704 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 705 { 706 if (cpu->exception_index < 0) { 707 #ifndef CONFIG_USER_ONLY 708 if (replay_has_exception() 709 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) { 710 /* Execute just one insn to trigger exception pending in the log */ 711 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 712 | CF_NOIRQ | 1; 713 } 714 #endif 715 return false; 716 } 717 718 if (cpu->exception_index >= EXCP_INTERRUPT) { 719 /* exit request from the cpu execution loop */ 720 *ret = cpu->exception_index; 721 if (*ret == EXCP_DEBUG) { 722 cpu_handle_debug_exception(cpu); 723 } 724 cpu->exception_index = -1; 725 return true; 726 } 727 728 #if defined(CONFIG_USER_ONLY) 729 /* 730 * If user mode only, we simulate a fake exception which will be 731 * handled outside the cpu execution loop. 732 */ 733 #if defined(TARGET_I386) 734 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 735 tcg_ops->fake_user_interrupt(cpu); 736 #endif /* TARGET_I386 */ 737 *ret = cpu->exception_index; 738 cpu->exception_index = -1; 739 return true; 740 #else 741 if (replay_exception()) { 742 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 743 744 bql_lock(); 745 tcg_ops->do_interrupt(cpu); 746 bql_unlock(); 747 cpu->exception_index = -1; 748 749 if (unlikely(cpu->singlestep_enabled)) { 750 /* 751 * After processing the exception, ensure an EXCP_DEBUG is 752 * raised when single-stepping so that GDB doesn't miss the 753 * next instruction. 754 */ 755 *ret = EXCP_DEBUG; 756 cpu_handle_debug_exception(cpu); 757 return true; 758 } 759 } else if (!replay_has_interrupt()) { 760 /* give a chance to iothread in replay mode */ 761 *ret = EXCP_INTERRUPT; 762 return true; 763 } 764 #endif 765 766 return false; 767 } 768 769 static inline bool icount_exit_request(CPUState *cpu) 770 { 771 if (!icount_enabled()) { 772 return false; 773 } 774 if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) { 775 return false; 776 } 777 return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0; 778 } 779 780 static inline bool cpu_handle_interrupt(CPUState *cpu, 781 TranslationBlock **last_tb) 782 { 783 /* 784 * If we have requested custom cflags with CF_NOIRQ we should 785 * skip checking here. Any pending interrupts will get picked up 786 * by the next TB we execute under normal cflags. 787 */ 788 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 789 return false; 790 } 791 792 /* Clear the interrupt flag now since we're processing 793 * cpu->interrupt_request and cpu->exit_request. 794 * Ensure zeroing happens before reading cpu->exit_request or 795 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 796 */ 797 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0); 798 799 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 800 int interrupt_request; 801 bql_lock(); 802 interrupt_request = cpu->interrupt_request; 803 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 804 /* Mask out external interrupts for this step. */ 805 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 806 } 807 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 808 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 809 cpu->exception_index = EXCP_DEBUG; 810 bql_unlock(); 811 return true; 812 } 813 #if !defined(CONFIG_USER_ONLY) 814 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 815 /* Do nothing */ 816 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 817 replay_interrupt(); 818 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 819 cpu->halted = 1; 820 cpu->exception_index = EXCP_HLT; 821 bql_unlock(); 822 return true; 823 } 824 #if defined(TARGET_I386) 825 else if (interrupt_request & CPU_INTERRUPT_INIT) { 826 X86CPU *x86_cpu = X86_CPU(cpu); 827 CPUArchState *env = &x86_cpu->env; 828 replay_interrupt(); 829 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 830 do_cpu_init(x86_cpu); 831 cpu->exception_index = EXCP_HALTED; 832 bql_unlock(); 833 return true; 834 } 835 #else 836 else if (interrupt_request & CPU_INTERRUPT_RESET) { 837 replay_interrupt(); 838 cpu_reset(cpu); 839 bql_unlock(); 840 return true; 841 } 842 #endif /* !TARGET_I386 */ 843 /* The target hook has 3 exit conditions: 844 False when the interrupt isn't processed, 845 True when it is, and we should restart on a new TB, 846 and via longjmp via cpu_loop_exit. */ 847 else { 848 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 849 850 if (tcg_ops->cpu_exec_interrupt && 851 tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 852 if (!tcg_ops->need_replay_interrupt || 853 tcg_ops->need_replay_interrupt(interrupt_request)) { 854 replay_interrupt(); 855 } 856 /* 857 * After processing the interrupt, ensure an EXCP_DEBUG is 858 * raised when single-stepping so that GDB doesn't miss the 859 * next instruction. 860 */ 861 if (unlikely(cpu->singlestep_enabled)) { 862 cpu->exception_index = EXCP_DEBUG; 863 bql_unlock(); 864 return true; 865 } 866 cpu->exception_index = -1; 867 *last_tb = NULL; 868 } 869 /* The target hook may have updated the 'cpu->interrupt_request'; 870 * reload the 'interrupt_request' value */ 871 interrupt_request = cpu->interrupt_request; 872 } 873 #endif /* !CONFIG_USER_ONLY */ 874 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 875 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 876 /* ensure that no TB jump will be modified as 877 the program flow was changed */ 878 *last_tb = NULL; 879 } 880 881 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 882 bql_unlock(); 883 } 884 885 /* Finally, check if we need to exit to the main loop. */ 886 if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) { 887 qatomic_set(&cpu->exit_request, 0); 888 if (cpu->exception_index == -1) { 889 cpu->exception_index = EXCP_INTERRUPT; 890 } 891 return true; 892 } 893 894 return false; 895 } 896 897 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 898 vaddr pc, TranslationBlock **last_tb, 899 int *tb_exit) 900 { 901 int32_t insns_left; 902 903 trace_exec_tb(tb, pc); 904 tb = cpu_tb_exec(cpu, tb, tb_exit); 905 if (*tb_exit != TB_EXIT_REQUESTED) { 906 *last_tb = tb; 907 return; 908 } 909 910 *last_tb = NULL; 911 insns_left = qatomic_read(&cpu->neg.icount_decr.u32); 912 if (insns_left < 0) { 913 /* Something asked us to stop executing chained TBs; just 914 * continue round the main loop. Whatever requested the exit 915 * will also have set something else (eg exit_request or 916 * interrupt_request) which will be handled by 917 * cpu_handle_interrupt. cpu_handle_interrupt will also 918 * clear cpu->icount_decr.u16.high. 919 */ 920 return; 921 } 922 923 /* Instruction counter expired. */ 924 assert(icount_enabled()); 925 #ifndef CONFIG_USER_ONLY 926 /* Ensure global icount has gone forward */ 927 icount_update(cpu); 928 /* Refill decrementer and continue execution. */ 929 insns_left = MIN(0xffff, cpu->icount_budget); 930 cpu->neg.icount_decr.u16.low = insns_left; 931 cpu->icount_extra = cpu->icount_budget - insns_left; 932 933 /* 934 * If the next tb has more instructions than we have left to 935 * execute we need to ensure we find/generate a TB with exactly 936 * insns_left instructions in it. 937 */ 938 if (insns_left > 0 && insns_left < tb->icount) { 939 assert(insns_left <= CF_COUNT_MASK); 940 assert(cpu->icount_extra == 0); 941 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 942 } 943 #endif 944 } 945 946 /* main execution loop */ 947 948 static int __attribute__((noinline)) 949 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 950 { 951 int ret; 952 953 /* if an exception is pending, we execute it here */ 954 while (!cpu_handle_exception(cpu, &ret)) { 955 TranslationBlock *last_tb = NULL; 956 int tb_exit = 0; 957 958 while (!cpu_handle_interrupt(cpu, &last_tb)) { 959 TranslationBlock *tb; 960 vaddr pc; 961 uint64_t cs_base; 962 uint32_t flags, cflags; 963 964 cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags); 965 966 /* 967 * When requested, use an exact setting for cflags for the next 968 * execution. This is used for icount, precise smc, and stop- 969 * after-access watchpoints. Since this request should never 970 * have CF_INVALID set, -1 is a convenient invalid value that 971 * does not require tcg headers for cpu_common_reset. 972 */ 973 cflags = cpu->cflags_next_tb; 974 if (cflags == -1) { 975 cflags = curr_cflags(cpu); 976 } else { 977 cpu->cflags_next_tb = -1; 978 } 979 980 if (check_for_breakpoints(cpu, pc, &cflags)) { 981 break; 982 } 983 984 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 985 if (tb == NULL) { 986 CPUJumpCache *jc; 987 uint32_t h; 988 989 mmap_lock(); 990 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 991 mmap_unlock(); 992 993 /* 994 * We add the TB in the virtual pc hash table 995 * for the fast lookup 996 */ 997 h = tb_jmp_cache_hash_func(pc); 998 jc = cpu->tb_jmp_cache; 999 jc->array[h].pc = pc; 1000 qatomic_set(&jc->array[h].tb, tb); 1001 } 1002 1003 #ifndef CONFIG_USER_ONLY 1004 /* 1005 * We don't take care of direct jumps when address mapping 1006 * changes in system emulation. So it's not safe to make a 1007 * direct jump to a TB spanning two pages because the mapping 1008 * for the second page can change. 1009 */ 1010 if (tb_page_addr1(tb) != -1) { 1011 last_tb = NULL; 1012 } 1013 #endif 1014 /* See if we can patch the calling TB. */ 1015 if (last_tb) { 1016 tb_add_jump(last_tb, tb_exit, tb); 1017 } 1018 1019 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1020 1021 /* Try to align the host and virtual clocks 1022 if the guest is in advance */ 1023 align_clocks(sc, cpu); 1024 } 1025 } 1026 return ret; 1027 } 1028 1029 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 1030 { 1031 /* Prepare setjmp context for exception handling. */ 1032 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 1033 cpu_exec_longjmp_cleanup(cpu); 1034 } 1035 1036 return cpu_exec_loop(cpu, sc); 1037 } 1038 1039 int cpu_exec(CPUState *cpu) 1040 { 1041 int ret; 1042 SyncClocks sc = { 0 }; 1043 1044 /* replay_interrupt may need current_cpu */ 1045 current_cpu = cpu; 1046 1047 if (cpu_handle_halt(cpu)) { 1048 return EXCP_HALTED; 1049 } 1050 1051 RCU_READ_LOCK_GUARD(); 1052 cpu_exec_enter(cpu); 1053 1054 /* 1055 * Calculate difference between guest clock and host clock. 1056 * This delay includes the delay of the last cycle, so 1057 * what we have to do is sleep until it is 0. As for the 1058 * advance/delay we gain here, we try to fix it next time. 1059 */ 1060 init_delay_params(&sc, cpu); 1061 1062 ret = cpu_exec_setjmp(cpu, &sc); 1063 1064 cpu_exec_exit(cpu); 1065 return ret; 1066 } 1067 1068 bool tcg_exec_realizefn(CPUState *cpu, Error **errp) 1069 { 1070 static bool tcg_target_initialized; 1071 1072 if (!tcg_target_initialized) { 1073 cpu->cc->tcg_ops->initialize(); 1074 tcg_target_initialized = true; 1075 } 1076 1077 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1078 tlb_init(cpu); 1079 #ifndef CONFIG_USER_ONLY 1080 tcg_iommu_init_notifier_list(cpu); 1081 #endif /* !CONFIG_USER_ONLY */ 1082 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1083 1084 return true; 1085 } 1086 1087 /* undo the initializations in reverse order */ 1088 void tcg_exec_unrealizefn(CPUState *cpu) 1089 { 1090 #ifndef CONFIG_USER_ONLY 1091 tcg_iommu_free_notifier_list(cpu); 1092 #endif /* !CONFIG_USER_ONLY */ 1093 1094 tlb_destroy(cpu); 1095 g_free_rcu(cpu->tb_jmp_cache, rcu); 1096 } 1097