1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/tcg-cpu-ops.h" 25 #include "trace.h" 26 #include "disas/disas.h" 27 #include "exec/exec-all.h" 28 #include "tcg/tcg.h" 29 #include "qemu/atomic.h" 30 #include "qemu/rcu.h" 31 #include "exec/log.h" 32 #include "qemu/main-loop.h" 33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 34 #include "hw/i386/apic.h" 35 #endif 36 #include "sysemu/cpus.h" 37 #include "exec/cpu-all.h" 38 #include "sysemu/cpu-timers.h" 39 #include "exec/replay-core.h" 40 #include "sysemu/tcg.h" 41 #include "exec/helper-proto-common.h" 42 #include "tb-jmp-cache.h" 43 #include "tb-hash.h" 44 #include "tb-context.h" 45 #include "internal-common.h" 46 #include "internal-target.h" 47 48 /* -icount align implementation. */ 49 50 typedef struct SyncClocks { 51 int64_t diff_clk; 52 int64_t last_cpu_icount; 53 int64_t realtime_clock; 54 } SyncClocks; 55 56 #if !defined(CONFIG_USER_ONLY) 57 /* Allow the guest to have a max 3ms advance. 58 * The difference between the 2 clocks could therefore 59 * oscillate around 0. 60 */ 61 #define VM_CLOCK_ADVANCE 3000000 62 #define THRESHOLD_REDUCE 1.5 63 #define MAX_DELAY_PRINT_RATE 2000000000LL 64 #define MAX_NB_PRINTS 100 65 66 int64_t max_delay; 67 int64_t max_advance; 68 69 static void align_clocks(SyncClocks *sc, CPUState *cpu) 70 { 71 int64_t cpu_icount; 72 73 if (!icount_align_option) { 74 return; 75 } 76 77 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 78 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 79 sc->last_cpu_icount = cpu_icount; 80 81 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 82 #ifndef _WIN32 83 struct timespec sleep_delay, rem_delay; 84 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 85 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 86 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 87 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 88 } else { 89 sc->diff_clk = 0; 90 } 91 #else 92 Sleep(sc->diff_clk / SCALE_MS); 93 sc->diff_clk = 0; 94 #endif 95 } 96 } 97 98 static void print_delay(const SyncClocks *sc) 99 { 100 static float threshold_delay; 101 static int64_t last_realtime_clock; 102 static int nb_prints; 103 104 if (icount_align_option && 105 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 106 nb_prints < MAX_NB_PRINTS) { 107 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 108 (-sc->diff_clk / (float)1000000000LL < 109 (threshold_delay - THRESHOLD_REDUCE))) { 110 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 111 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 112 threshold_delay - 1, 113 threshold_delay); 114 nb_prints++; 115 last_realtime_clock = sc->realtime_clock; 116 } 117 } 118 } 119 120 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 121 { 122 if (!icount_align_option) { 123 return; 124 } 125 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 126 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 127 sc->last_cpu_icount 128 = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 129 if (sc->diff_clk < max_delay) { 130 max_delay = sc->diff_clk; 131 } 132 if (sc->diff_clk > max_advance) { 133 max_advance = sc->diff_clk; 134 } 135 136 /* Print every 2s max if the guest is late. We limit the number 137 of printed messages to NB_PRINT_MAX(currently 100) */ 138 print_delay(sc); 139 } 140 #else 141 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 142 { 143 } 144 145 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 146 { 147 } 148 #endif /* CONFIG USER ONLY */ 149 150 uint32_t curr_cflags(CPUState *cpu) 151 { 152 uint32_t cflags = cpu->tcg_cflags; 153 154 /* 155 * Record gdb single-step. We should be exiting the TB by raising 156 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 157 * 158 * For singlestep and -d nochain, suppress goto_tb so that 159 * we can log -d cpu,exec after every TB. 160 */ 161 if (unlikely(cpu->singlestep_enabled)) { 162 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 163 } else if (qatomic_read(&one_insn_per_tb)) { 164 cflags |= CF_NO_GOTO_TB | 1; 165 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 166 cflags |= CF_NO_GOTO_TB; 167 } 168 169 return cflags; 170 } 171 172 struct tb_desc { 173 vaddr pc; 174 uint64_t cs_base; 175 CPUArchState *env; 176 tb_page_addr_t page_addr0; 177 uint32_t flags; 178 uint32_t cflags; 179 }; 180 181 static bool tb_lookup_cmp(const void *p, const void *d) 182 { 183 const TranslationBlock *tb = p; 184 const struct tb_desc *desc = d; 185 186 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && 187 tb_page_addr0(tb) == desc->page_addr0 && 188 tb->cs_base == desc->cs_base && 189 tb->flags == desc->flags && 190 tb_cflags(tb) == desc->cflags) { 191 /* check next page if needed */ 192 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 193 if (tb_phys_page1 == -1) { 194 return true; 195 } else { 196 tb_page_addr_t phys_page1; 197 vaddr virt_page1; 198 199 /* 200 * We know that the first page matched, and an otherwise valid TB 201 * encountered an incomplete instruction at the end of that page, 202 * therefore we know that generating a new TB from the current PC 203 * must also require reading from the next page -- even if the 204 * second pages do not match, and therefore the resulting insn 205 * is different for the new TB. Therefore any exception raised 206 * here by the faulting lookup is not premature. 207 */ 208 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 209 phys_page1 = get_page_addr_code(desc->env, virt_page1); 210 if (tb_phys_page1 == phys_page1) { 211 return true; 212 } 213 } 214 } 215 return false; 216 } 217 218 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc, 219 uint64_t cs_base, uint32_t flags, 220 uint32_t cflags) 221 { 222 tb_page_addr_t phys_pc; 223 struct tb_desc desc; 224 uint32_t h; 225 226 desc.env = cpu_env(cpu); 227 desc.cs_base = cs_base; 228 desc.flags = flags; 229 desc.cflags = cflags; 230 desc.pc = pc; 231 phys_pc = get_page_addr_code(desc.env, pc); 232 if (phys_pc == -1) { 233 return NULL; 234 } 235 desc.page_addr0 = phys_pc; 236 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), 237 flags, cs_base, cflags); 238 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 239 } 240 241 /* Might cause an exception, so have a longjmp destination ready */ 242 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc, 243 uint64_t cs_base, uint32_t flags, 244 uint32_t cflags) 245 { 246 TranslationBlock *tb; 247 CPUJumpCache *jc; 248 uint32_t hash; 249 250 /* we should never be trying to look up an INVALID tb */ 251 tcg_debug_assert(!(cflags & CF_INVALID)); 252 253 hash = tb_jmp_cache_hash_func(pc); 254 jc = cpu->tb_jmp_cache; 255 256 if (cflags & CF_PCREL) { 257 /* Use acquire to ensure current load of pc from jc. */ 258 tb = qatomic_load_acquire(&jc->array[hash].tb); 259 260 if (likely(tb && 261 jc->array[hash].pc == pc && 262 tb->cs_base == cs_base && 263 tb->flags == flags && 264 tb_cflags(tb) == cflags)) { 265 return tb; 266 } 267 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 268 if (tb == NULL) { 269 return NULL; 270 } 271 jc->array[hash].pc = pc; 272 /* Ensure pc is written first. */ 273 qatomic_store_release(&jc->array[hash].tb, tb); 274 } else { 275 /* Use rcu_read to ensure current load of pc from *tb. */ 276 tb = qatomic_rcu_read(&jc->array[hash].tb); 277 278 if (likely(tb && 279 tb->pc == pc && 280 tb->cs_base == cs_base && 281 tb->flags == flags && 282 tb_cflags(tb) == cflags)) { 283 return tb; 284 } 285 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 286 if (tb == NULL) { 287 return NULL; 288 } 289 /* Use the pc value already stored in tb->pc. */ 290 qatomic_set(&jc->array[hash].tb, tb); 291 } 292 293 return tb; 294 } 295 296 static void log_cpu_exec(vaddr pc, CPUState *cpu, 297 const TranslationBlock *tb) 298 { 299 if (qemu_log_in_addr_range(pc)) { 300 qemu_log_mask(CPU_LOG_EXEC, 301 "Trace %d: %p [%08" PRIx64 302 "/%016" VADDR_PRIx "/%08x/%08x] %s\n", 303 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 304 tb->flags, tb->cflags, lookup_symbol(pc)); 305 306 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 307 FILE *logfile = qemu_log_trylock(); 308 if (logfile) { 309 int flags = 0; 310 311 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 312 flags |= CPU_DUMP_FPU; 313 } 314 #if defined(TARGET_I386) 315 flags |= CPU_DUMP_CCOP; 316 #endif 317 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { 318 flags |= CPU_DUMP_VPU; 319 } 320 cpu_dump_state(cpu, logfile, flags); 321 qemu_log_unlock(logfile); 322 } 323 } 324 } 325 } 326 327 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, 328 uint32_t *cflags) 329 { 330 CPUBreakpoint *bp; 331 bool match_page = false; 332 333 /* 334 * Singlestep overrides breakpoints. 335 * This requirement is visible in the record-replay tests, where 336 * we would fail to make forward progress in reverse-continue. 337 * 338 * TODO: gdb singlestep should only override gdb breakpoints, 339 * so that one could (gdb) singlestep into the guest kernel's 340 * architectural breakpoint handler. 341 */ 342 if (cpu->singlestep_enabled) { 343 return false; 344 } 345 346 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 347 /* 348 * If we have an exact pc match, trigger the breakpoint. 349 * Otherwise, note matches within the page. 350 */ 351 if (pc == bp->pc) { 352 bool match_bp = false; 353 354 if (bp->flags & BP_GDB) { 355 match_bp = true; 356 } else if (bp->flags & BP_CPU) { 357 #ifdef CONFIG_USER_ONLY 358 g_assert_not_reached(); 359 #else 360 CPUClass *cc = CPU_GET_CLASS(cpu); 361 assert(cc->tcg_ops->debug_check_breakpoint); 362 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu); 363 #endif 364 } 365 366 if (match_bp) { 367 cpu->exception_index = EXCP_DEBUG; 368 return true; 369 } 370 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 371 match_page = true; 372 } 373 } 374 375 /* 376 * Within the same page as a breakpoint, single-step, 377 * returning to helper_lookup_tb_ptr after each insn looking 378 * for the actual breakpoint. 379 * 380 * TODO: Perhaps better to record all of the TBs associated 381 * with a given virtual page that contains a breakpoint, and 382 * then invalidate them when a new overlapping breakpoint is 383 * set on the page. Non-overlapping TBs would not be 384 * invalidated, nor would any TB need to be invalidated as 385 * breakpoints are removed. 386 */ 387 if (match_page) { 388 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1; 389 } 390 return false; 391 } 392 393 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, 394 uint32_t *cflags) 395 { 396 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 397 check_for_breakpoints_slow(cpu, pc, cflags); 398 } 399 400 /** 401 * helper_lookup_tb_ptr: quick check for next tb 402 * @env: current cpu state 403 * 404 * Look for an existing TB matching the current cpu state. 405 * If found, return the code pointer. If not found, return 406 * the tcg epilogue so that we return into cpu_tb_exec. 407 */ 408 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 409 { 410 CPUState *cpu = env_cpu(env); 411 TranslationBlock *tb; 412 vaddr pc; 413 uint64_t cs_base; 414 uint32_t flags, cflags; 415 416 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 417 418 cflags = curr_cflags(cpu); 419 if (check_for_breakpoints(cpu, pc, &cflags)) { 420 cpu_loop_exit(cpu); 421 } 422 423 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 424 if (tb == NULL) { 425 return tcg_code_gen_epilogue; 426 } 427 428 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 429 log_cpu_exec(pc, cpu, tb); 430 } 431 432 return tb->tc.ptr; 433 } 434 435 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 436 /* 437 * Disable CFI checks. 438 * TCG creates binary blobs at runtime, with the transformed code. 439 * A TB is a blob of binary code, created at runtime and called with an 440 * indirect function call. Since such function did not exist at compile time, 441 * the CFI runtime has no way to verify its signature and would fail. 442 * TCG is not considered a security-sensitive part of QEMU so this does not 443 * affect the impact of CFI in environment with high security requirements 444 */ 445 static inline TranslationBlock * QEMU_DISABLE_CFI 446 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 447 { 448 CPUArchState *env = cpu_env(cpu); 449 uintptr_t ret; 450 TranslationBlock *last_tb; 451 const void *tb_ptr = itb->tc.ptr; 452 453 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 454 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 455 } 456 457 qemu_thread_jit_execute(); 458 ret = tcg_qemu_tb_exec(env, tb_ptr); 459 cpu->neg.can_do_io = true; 460 qemu_plugin_disable_mem_helpers(cpu); 461 /* 462 * TODO: Delay swapping back to the read-write region of the TB 463 * until we actually need to modify the TB. The read-only copy, 464 * coming from the rx region, shares the same host TLB entry as 465 * the code that executed the exit_tb opcode that arrived here. 466 * If we insist on touching both the RX and the RW pages, we 467 * double the host TLB pressure. 468 */ 469 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 470 *tb_exit = ret & TB_EXIT_MASK; 471 472 trace_exec_tb_exit(last_tb, *tb_exit); 473 474 if (*tb_exit > TB_EXIT_IDX1) { 475 /* We didn't start executing this TB (eg because the instruction 476 * counter hit zero); we must restore the guest PC to the address 477 * of the start of the TB. 478 */ 479 CPUClass *cc = CPU_GET_CLASS(cpu); 480 481 if (cc->tcg_ops->synchronize_from_tb) { 482 cc->tcg_ops->synchronize_from_tb(cpu, last_tb); 483 } else { 484 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 485 assert(cc->set_pc); 486 cc->set_pc(cpu, last_tb->pc); 487 } 488 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 489 vaddr pc = log_pc(cpu, last_tb); 490 if (qemu_log_in_addr_range(pc)) { 491 qemu_log("Stopped execution of TB chain before %p [%016" 492 VADDR_PRIx "] %s\n", 493 last_tb->tc.ptr, pc, lookup_symbol(pc)); 494 } 495 } 496 } 497 498 /* 499 * If gdb single-step, and we haven't raised another exception, 500 * raise a debug exception. Single-step with another exception 501 * is handled in cpu_handle_exception. 502 */ 503 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 504 cpu->exception_index = EXCP_DEBUG; 505 cpu_loop_exit(cpu); 506 } 507 508 return last_tb; 509 } 510 511 512 static void cpu_exec_enter(CPUState *cpu) 513 { 514 CPUClass *cc = CPU_GET_CLASS(cpu); 515 516 if (cc->tcg_ops->cpu_exec_enter) { 517 cc->tcg_ops->cpu_exec_enter(cpu); 518 } 519 } 520 521 static void cpu_exec_exit(CPUState *cpu) 522 { 523 CPUClass *cc = CPU_GET_CLASS(cpu); 524 525 if (cc->tcg_ops->cpu_exec_exit) { 526 cc->tcg_ops->cpu_exec_exit(cpu); 527 } 528 } 529 530 static void cpu_exec_longjmp_cleanup(CPUState *cpu) 531 { 532 /* Non-buggy compilers preserve this; assert the correct value. */ 533 g_assert(cpu == current_cpu); 534 535 #ifdef CONFIG_USER_ONLY 536 clear_helper_retaddr(); 537 if (have_mmap_lock()) { 538 mmap_unlock(); 539 } 540 #else 541 /* 542 * For softmmu, a tlb_fill fault during translation will land here, 543 * and we need to release any page locks held. In system mode we 544 * have one tcg_ctx per thread, so we know it was this cpu doing 545 * the translation. 546 * 547 * Alternative 1: Install a cleanup to be called via an exception 548 * handling safe longjmp. It seems plausible that all our hosts 549 * support such a thing. We'd have to properly register unwind info 550 * for the JIT for EH, rather that just for GDB. 551 * 552 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to 553 * capture the cpu_loop_exit longjmp, perform the cleanup, and 554 * jump again to arrive here. 555 */ 556 if (tcg_ctx->gen_tb) { 557 tb_unlock_pages(tcg_ctx->gen_tb); 558 tcg_ctx->gen_tb = NULL; 559 } 560 #endif 561 if (bql_locked()) { 562 bql_unlock(); 563 } 564 assert_no_pages_locked(); 565 } 566 567 void cpu_exec_step_atomic(CPUState *cpu) 568 { 569 CPUArchState *env = cpu_env(cpu); 570 TranslationBlock *tb; 571 vaddr pc; 572 uint64_t cs_base; 573 uint32_t flags, cflags; 574 int tb_exit; 575 576 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 577 start_exclusive(); 578 g_assert(cpu == current_cpu); 579 g_assert(!cpu->running); 580 cpu->running = true; 581 582 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 583 584 cflags = curr_cflags(cpu); 585 /* Execute in a serial context. */ 586 cflags &= ~CF_PARALLEL; 587 /* After 1 insn, return and release the exclusive lock. */ 588 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 589 /* 590 * No need to check_for_breakpoints here. 591 * We only arrive in cpu_exec_step_atomic after beginning execution 592 * of an insn that includes an atomic operation we can't handle. 593 * Any breakpoint for this insn will have been recognized earlier. 594 */ 595 596 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 597 if (tb == NULL) { 598 mmap_lock(); 599 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 600 mmap_unlock(); 601 } 602 603 cpu_exec_enter(cpu); 604 /* execute the generated code */ 605 trace_exec_tb(tb, pc); 606 cpu_tb_exec(cpu, tb, &tb_exit); 607 cpu_exec_exit(cpu); 608 } else { 609 cpu_exec_longjmp_cleanup(cpu); 610 } 611 612 /* 613 * As we start the exclusive region before codegen we must still 614 * be in the region if we longjump out of either the codegen or 615 * the execution. 616 */ 617 g_assert(cpu_in_exclusive_context(cpu)); 618 cpu->running = false; 619 end_exclusive(); 620 } 621 622 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 623 { 624 /* 625 * Get the rx view of the structure, from which we find the 626 * executable code address, and tb_target_set_jmp_target can 627 * produce a pc-relative displacement to jmp_target_addr[n]. 628 */ 629 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 630 uintptr_t offset = tb->jmp_insn_offset[n]; 631 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 632 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 633 634 tb->jmp_target_addr[n] = addr; 635 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 636 } 637 638 static inline void tb_add_jump(TranslationBlock *tb, int n, 639 TranslationBlock *tb_next) 640 { 641 uintptr_t old; 642 643 qemu_thread_jit_write(); 644 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 645 qemu_spin_lock(&tb_next->jmp_lock); 646 647 /* make sure the destination TB is valid */ 648 if (tb_next->cflags & CF_INVALID) { 649 goto out_unlock_next; 650 } 651 /* Atomically claim the jump destination slot only if it was NULL */ 652 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 653 (uintptr_t)tb_next); 654 if (old) { 655 goto out_unlock_next; 656 } 657 658 /* patch the native jump address */ 659 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 660 661 /* add in TB jmp list */ 662 tb->jmp_list_next[n] = tb_next->jmp_list_head; 663 tb_next->jmp_list_head = (uintptr_t)tb | n; 664 665 qemu_spin_unlock(&tb_next->jmp_lock); 666 667 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 668 tb->tc.ptr, n, tb_next->tc.ptr); 669 return; 670 671 out_unlock_next: 672 qemu_spin_unlock(&tb_next->jmp_lock); 673 return; 674 } 675 676 static inline bool cpu_handle_halt(CPUState *cpu) 677 { 678 #ifndef CONFIG_USER_ONLY 679 if (cpu->halted) { 680 #if defined(TARGET_I386) 681 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) { 682 X86CPU *x86_cpu = X86_CPU(cpu); 683 bql_lock(); 684 apic_poll_irq(x86_cpu->apic_state); 685 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 686 bql_unlock(); 687 } 688 #endif /* TARGET_I386 */ 689 if (!cpu_has_work(cpu)) { 690 return true; 691 } 692 693 cpu->halted = 0; 694 } 695 #endif /* !CONFIG_USER_ONLY */ 696 697 return false; 698 } 699 700 static inline void cpu_handle_debug_exception(CPUState *cpu) 701 { 702 CPUClass *cc = CPU_GET_CLASS(cpu); 703 CPUWatchpoint *wp; 704 705 if (!cpu->watchpoint_hit) { 706 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 707 wp->flags &= ~BP_WATCHPOINT_HIT; 708 } 709 } 710 711 if (cc->tcg_ops->debug_excp_handler) { 712 cc->tcg_ops->debug_excp_handler(cpu); 713 } 714 } 715 716 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 717 { 718 if (cpu->exception_index < 0) { 719 #ifndef CONFIG_USER_ONLY 720 if (replay_has_exception() 721 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) { 722 /* Execute just one insn to trigger exception pending in the log */ 723 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 724 | CF_NOIRQ | 1; 725 } 726 #endif 727 return false; 728 } 729 if (cpu->exception_index >= EXCP_INTERRUPT) { 730 /* exit request from the cpu execution loop */ 731 *ret = cpu->exception_index; 732 if (*ret == EXCP_DEBUG) { 733 cpu_handle_debug_exception(cpu); 734 } 735 cpu->exception_index = -1; 736 return true; 737 } else { 738 #if defined(CONFIG_USER_ONLY) 739 /* if user mode only, we simulate a fake exception 740 which will be handled outside the cpu execution 741 loop */ 742 #if defined(TARGET_I386) 743 CPUClass *cc = CPU_GET_CLASS(cpu); 744 cc->tcg_ops->fake_user_interrupt(cpu); 745 #endif /* TARGET_I386 */ 746 *ret = cpu->exception_index; 747 cpu->exception_index = -1; 748 return true; 749 #else 750 if (replay_exception()) { 751 CPUClass *cc = CPU_GET_CLASS(cpu); 752 bql_lock(); 753 cc->tcg_ops->do_interrupt(cpu); 754 bql_unlock(); 755 cpu->exception_index = -1; 756 757 if (unlikely(cpu->singlestep_enabled)) { 758 /* 759 * After processing the exception, ensure an EXCP_DEBUG is 760 * raised when single-stepping so that GDB doesn't miss the 761 * next instruction. 762 */ 763 *ret = EXCP_DEBUG; 764 cpu_handle_debug_exception(cpu); 765 return true; 766 } 767 } else if (!replay_has_interrupt()) { 768 /* give a chance to iothread in replay mode */ 769 *ret = EXCP_INTERRUPT; 770 return true; 771 } 772 #endif 773 } 774 775 return false; 776 } 777 778 #ifndef CONFIG_USER_ONLY 779 /* 780 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a 781 * "real" interrupt event later. It does not need to be recorded for 782 * replay purposes. 783 */ 784 static inline bool need_replay_interrupt(int interrupt_request) 785 { 786 #if defined(TARGET_I386) 787 return !(interrupt_request & CPU_INTERRUPT_POLL); 788 #else 789 return true; 790 #endif 791 } 792 #endif /* !CONFIG_USER_ONLY */ 793 794 static inline bool cpu_handle_interrupt(CPUState *cpu, 795 TranslationBlock **last_tb) 796 { 797 /* 798 * If we have requested custom cflags with CF_NOIRQ we should 799 * skip checking here. Any pending interrupts will get picked up 800 * by the next TB we execute under normal cflags. 801 */ 802 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 803 return false; 804 } 805 806 /* Clear the interrupt flag now since we're processing 807 * cpu->interrupt_request and cpu->exit_request. 808 * Ensure zeroing happens before reading cpu->exit_request or 809 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 810 */ 811 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0); 812 813 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 814 int interrupt_request; 815 bql_lock(); 816 interrupt_request = cpu->interrupt_request; 817 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 818 /* Mask out external interrupts for this step. */ 819 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 820 } 821 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 822 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 823 cpu->exception_index = EXCP_DEBUG; 824 bql_unlock(); 825 return true; 826 } 827 #if !defined(CONFIG_USER_ONLY) 828 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 829 /* Do nothing */ 830 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 831 replay_interrupt(); 832 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 833 cpu->halted = 1; 834 cpu->exception_index = EXCP_HLT; 835 bql_unlock(); 836 return true; 837 } 838 #if defined(TARGET_I386) 839 else if (interrupt_request & CPU_INTERRUPT_INIT) { 840 X86CPU *x86_cpu = X86_CPU(cpu); 841 CPUArchState *env = &x86_cpu->env; 842 replay_interrupt(); 843 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 844 do_cpu_init(x86_cpu); 845 cpu->exception_index = EXCP_HALTED; 846 bql_unlock(); 847 return true; 848 } 849 #else 850 else if (interrupt_request & CPU_INTERRUPT_RESET) { 851 replay_interrupt(); 852 cpu_reset(cpu); 853 bql_unlock(); 854 return true; 855 } 856 #endif /* !TARGET_I386 */ 857 /* The target hook has 3 exit conditions: 858 False when the interrupt isn't processed, 859 True when it is, and we should restart on a new TB, 860 and via longjmp via cpu_loop_exit. */ 861 else { 862 CPUClass *cc = CPU_GET_CLASS(cpu); 863 864 if (cc->tcg_ops->cpu_exec_interrupt && 865 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 866 if (need_replay_interrupt(interrupt_request)) { 867 replay_interrupt(); 868 } 869 /* 870 * After processing the interrupt, ensure an EXCP_DEBUG is 871 * raised when single-stepping so that GDB doesn't miss the 872 * next instruction. 873 */ 874 if (unlikely(cpu->singlestep_enabled)) { 875 cpu->exception_index = EXCP_DEBUG; 876 bql_unlock(); 877 return true; 878 } 879 cpu->exception_index = -1; 880 *last_tb = NULL; 881 } 882 /* The target hook may have updated the 'cpu->interrupt_request'; 883 * reload the 'interrupt_request' value */ 884 interrupt_request = cpu->interrupt_request; 885 } 886 #endif /* !CONFIG_USER_ONLY */ 887 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 888 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 889 /* ensure that no TB jump will be modified as 890 the program flow was changed */ 891 *last_tb = NULL; 892 } 893 894 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 895 bql_unlock(); 896 } 897 898 /* Finally, check if we need to exit to the main loop. */ 899 if (unlikely(qatomic_read(&cpu->exit_request)) 900 || (icount_enabled() 901 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT) 902 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0)) { 903 qatomic_set(&cpu->exit_request, 0); 904 if (cpu->exception_index == -1) { 905 cpu->exception_index = EXCP_INTERRUPT; 906 } 907 return true; 908 } 909 910 return false; 911 } 912 913 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 914 vaddr pc, TranslationBlock **last_tb, 915 int *tb_exit) 916 { 917 int32_t insns_left; 918 919 trace_exec_tb(tb, pc); 920 tb = cpu_tb_exec(cpu, tb, tb_exit); 921 if (*tb_exit != TB_EXIT_REQUESTED) { 922 *last_tb = tb; 923 return; 924 } 925 926 *last_tb = NULL; 927 insns_left = qatomic_read(&cpu->neg.icount_decr.u32); 928 if (insns_left < 0) { 929 /* Something asked us to stop executing chained TBs; just 930 * continue round the main loop. Whatever requested the exit 931 * will also have set something else (eg exit_request or 932 * interrupt_request) which will be handled by 933 * cpu_handle_interrupt. cpu_handle_interrupt will also 934 * clear cpu->icount_decr.u16.high. 935 */ 936 return; 937 } 938 939 /* Instruction counter expired. */ 940 assert(icount_enabled()); 941 #ifndef CONFIG_USER_ONLY 942 /* Ensure global icount has gone forward */ 943 icount_update(cpu); 944 /* Refill decrementer and continue execution. */ 945 insns_left = MIN(0xffff, cpu->icount_budget); 946 cpu->neg.icount_decr.u16.low = insns_left; 947 cpu->icount_extra = cpu->icount_budget - insns_left; 948 949 /* 950 * If the next tb has more instructions than we have left to 951 * execute we need to ensure we find/generate a TB with exactly 952 * insns_left instructions in it. 953 */ 954 if (insns_left > 0 && insns_left < tb->icount) { 955 assert(insns_left <= CF_COUNT_MASK); 956 assert(cpu->icount_extra == 0); 957 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 958 } 959 #endif 960 } 961 962 /* main execution loop */ 963 964 static int __attribute__((noinline)) 965 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 966 { 967 int ret; 968 969 /* if an exception is pending, we execute it here */ 970 while (!cpu_handle_exception(cpu, &ret)) { 971 TranslationBlock *last_tb = NULL; 972 int tb_exit = 0; 973 974 while (!cpu_handle_interrupt(cpu, &last_tb)) { 975 TranslationBlock *tb; 976 vaddr pc; 977 uint64_t cs_base; 978 uint32_t flags, cflags; 979 980 cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags); 981 982 /* 983 * When requested, use an exact setting for cflags for the next 984 * execution. This is used for icount, precise smc, and stop- 985 * after-access watchpoints. Since this request should never 986 * have CF_INVALID set, -1 is a convenient invalid value that 987 * does not require tcg headers for cpu_common_reset. 988 */ 989 cflags = cpu->cflags_next_tb; 990 if (cflags == -1) { 991 cflags = curr_cflags(cpu); 992 } else { 993 cpu->cflags_next_tb = -1; 994 } 995 996 if (check_for_breakpoints(cpu, pc, &cflags)) { 997 break; 998 } 999 1000 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 1001 if (tb == NULL) { 1002 CPUJumpCache *jc; 1003 uint32_t h; 1004 1005 mmap_lock(); 1006 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 1007 mmap_unlock(); 1008 1009 /* 1010 * We add the TB in the virtual pc hash table 1011 * for the fast lookup 1012 */ 1013 h = tb_jmp_cache_hash_func(pc); 1014 jc = cpu->tb_jmp_cache; 1015 if (cflags & CF_PCREL) { 1016 jc->array[h].pc = pc; 1017 /* Ensure pc is written first. */ 1018 qatomic_store_release(&jc->array[h].tb, tb); 1019 } else { 1020 /* Use the pc value already stored in tb->pc. */ 1021 qatomic_set(&jc->array[h].tb, tb); 1022 } 1023 } 1024 1025 #ifndef CONFIG_USER_ONLY 1026 /* 1027 * We don't take care of direct jumps when address mapping 1028 * changes in system emulation. So it's not safe to make a 1029 * direct jump to a TB spanning two pages because the mapping 1030 * for the second page can change. 1031 */ 1032 if (tb_page_addr1(tb) != -1) { 1033 last_tb = NULL; 1034 } 1035 #endif 1036 /* See if we can patch the calling TB. */ 1037 if (last_tb) { 1038 tb_add_jump(last_tb, tb_exit, tb); 1039 } 1040 1041 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1042 1043 /* Try to align the host and virtual clocks 1044 if the guest is in advance */ 1045 align_clocks(sc, cpu); 1046 } 1047 } 1048 return ret; 1049 } 1050 1051 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 1052 { 1053 /* Prepare setjmp context for exception handling. */ 1054 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 1055 cpu_exec_longjmp_cleanup(cpu); 1056 } 1057 1058 return cpu_exec_loop(cpu, sc); 1059 } 1060 1061 int cpu_exec(CPUState *cpu) 1062 { 1063 int ret; 1064 SyncClocks sc = { 0 }; 1065 1066 /* replay_interrupt may need current_cpu */ 1067 current_cpu = cpu; 1068 1069 if (cpu_handle_halt(cpu)) { 1070 return EXCP_HALTED; 1071 } 1072 1073 rcu_read_lock(); 1074 cpu_exec_enter(cpu); 1075 1076 /* 1077 * Calculate difference between guest clock and host clock. 1078 * This delay includes the delay of the last cycle, so 1079 * what we have to do is sleep until it is 0. As for the 1080 * advance/delay we gain here, we try to fix it next time. 1081 */ 1082 init_delay_params(&sc, cpu); 1083 1084 ret = cpu_exec_setjmp(cpu, &sc); 1085 1086 cpu_exec_exit(cpu); 1087 rcu_read_unlock(); 1088 1089 return ret; 1090 } 1091 1092 bool tcg_exec_realizefn(CPUState *cpu, Error **errp) 1093 { 1094 static bool tcg_target_initialized; 1095 CPUClass *cc = CPU_GET_CLASS(cpu); 1096 1097 if (!tcg_target_initialized) { 1098 cc->tcg_ops->initialize(); 1099 tcg_target_initialized = true; 1100 } 1101 1102 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1103 tlb_init(cpu); 1104 #ifndef CONFIG_USER_ONLY 1105 tcg_iommu_init_notifier_list(cpu); 1106 #endif /* !CONFIG_USER_ONLY */ 1107 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1108 1109 return true; 1110 } 1111 1112 /* undo the initializations in reverse order */ 1113 void tcg_exec_unrealizefn(CPUState *cpu) 1114 { 1115 #ifndef CONFIG_USER_ONLY 1116 tcg_iommu_free_notifier_list(cpu); 1117 #endif /* !CONFIG_USER_ONLY */ 1118 1119 tlb_destroy(cpu); 1120 g_free_rcu(cpu->tb_jmp_cache, rcu); 1121 } 1122