xref: /openbmc/qemu/accel/tcg/cpu-exec.c (revision e3f7c801f1b21b01066c5293f7659f1054c4d63b)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/qemu-print.h"
23 #include "hw/core/tcg-cpu-ops.h"
24 #include "trace.h"
25 #include "disas/disas.h"
26 #include "exec/exec-all.h"
27 #include "tcg/tcg.h"
28 #include "qemu/atomic.h"
29 #include "qemu/compiler.h"
30 #include "qemu/timer.h"
31 #include "qemu/rcu.h"
32 #include "exec/log.h"
33 #include "qemu/main-loop.h"
34 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
35 #include "hw/i386/apic.h"
36 #endif
37 #include "sysemu/cpus.h"
38 #include "exec/cpu-all.h"
39 #include "sysemu/cpu-timers.h"
40 #include "sysemu/replay.h"
41 #include "exec/helper-proto.h"
42 #include "tb-hash.h"
43 #include "tb-context.h"
44 #include "internal.h"
45 
46 /* -icount align implementation. */
47 
48 typedef struct SyncClocks {
49     int64_t diff_clk;
50     int64_t last_cpu_icount;
51     int64_t realtime_clock;
52 } SyncClocks;
53 
54 #if !defined(CONFIG_USER_ONLY)
55 /* Allow the guest to have a max 3ms advance.
56  * The difference between the 2 clocks could therefore
57  * oscillate around 0.
58  */
59 #define VM_CLOCK_ADVANCE 3000000
60 #define THRESHOLD_REDUCE 1.5
61 #define MAX_DELAY_PRINT_RATE 2000000000LL
62 #define MAX_NB_PRINTS 100
63 
64 static int64_t max_delay;
65 static int64_t max_advance;
66 
67 static void align_clocks(SyncClocks *sc, CPUState *cpu)
68 {
69     int64_t cpu_icount;
70 
71     if (!icount_align_option) {
72         return;
73     }
74 
75     cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
76     sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
77     sc->last_cpu_icount = cpu_icount;
78 
79     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
80 #ifndef _WIN32
81         struct timespec sleep_delay, rem_delay;
82         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
83         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
84         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
85             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
86         } else {
87             sc->diff_clk = 0;
88         }
89 #else
90         Sleep(sc->diff_clk / SCALE_MS);
91         sc->diff_clk = 0;
92 #endif
93     }
94 }
95 
96 static void print_delay(const SyncClocks *sc)
97 {
98     static float threshold_delay;
99     static int64_t last_realtime_clock;
100     static int nb_prints;
101 
102     if (icount_align_option &&
103         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
104         nb_prints < MAX_NB_PRINTS) {
105         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
106             (-sc->diff_clk / (float)1000000000LL <
107              (threshold_delay - THRESHOLD_REDUCE))) {
108             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
109             qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
110                         threshold_delay - 1,
111                         threshold_delay);
112             nb_prints++;
113             last_realtime_clock = sc->realtime_clock;
114         }
115     }
116 }
117 
118 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
119 {
120     if (!icount_align_option) {
121         return;
122     }
123     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
124     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
125     sc->last_cpu_icount
126         = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
127     if (sc->diff_clk < max_delay) {
128         max_delay = sc->diff_clk;
129     }
130     if (sc->diff_clk > max_advance) {
131         max_advance = sc->diff_clk;
132     }
133 
134     /* Print every 2s max if the guest is late. We limit the number
135        of printed messages to NB_PRINT_MAX(currently 100) */
136     print_delay(sc);
137 }
138 #else
139 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
140 {
141 }
142 
143 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
144 {
145 }
146 #endif /* CONFIG USER ONLY */
147 
148 uint32_t curr_cflags(CPUState *cpu)
149 {
150     uint32_t cflags = cpu->tcg_cflags;
151 
152     /*
153      * For singlestep and -d nochain, suppress goto_tb so that
154      * we can log -d cpu,exec after every TB.
155      */
156     if (singlestep) {
157         cflags |= CF_NO_GOTO_TB | 1;
158     } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
159         cflags |= CF_NO_GOTO_TB;
160     }
161 
162     return cflags;
163 }
164 
165 /* Might cause an exception, so have a longjmp destination ready */
166 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
167                                           target_ulong cs_base,
168                                           uint32_t flags, uint32_t cflags)
169 {
170     TranslationBlock *tb;
171     uint32_t hash;
172 
173     /* we should never be trying to look up an INVALID tb */
174     tcg_debug_assert(!(cflags & CF_INVALID));
175 
176     hash = tb_jmp_cache_hash_func(pc);
177     tb = qatomic_rcu_read(&cpu->tb_jmp_cache[hash]);
178 
179     if (likely(tb &&
180                tb->pc == pc &&
181                tb->cs_base == cs_base &&
182                tb->flags == flags &&
183                tb->trace_vcpu_dstate == *cpu->trace_dstate &&
184                tb_cflags(tb) == cflags)) {
185         return tb;
186     }
187     tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
188     if (tb == NULL) {
189         return NULL;
190     }
191     qatomic_set(&cpu->tb_jmp_cache[hash], tb);
192     return tb;
193 }
194 
195 static inline void log_cpu_exec(target_ulong pc, CPUState *cpu,
196                                 const TranslationBlock *tb)
197 {
198     if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC))
199         && qemu_log_in_addr_range(pc)) {
200 
201         qemu_log_mask(CPU_LOG_EXEC,
202                       "Trace %d: %p [" TARGET_FMT_lx
203                       "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
204                       cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
205                       tb->flags, tb->cflags, lookup_symbol(pc));
206 
207 #if defined(DEBUG_DISAS)
208         if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
209             FILE *logfile = qemu_log_lock();
210             int flags = 0;
211 
212             if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
213                 flags |= CPU_DUMP_FPU;
214             }
215 #if defined(TARGET_I386)
216             flags |= CPU_DUMP_CCOP;
217 #endif
218             log_cpu_state(cpu, flags);
219             qemu_log_unlock(logfile);
220         }
221 #endif /* DEBUG_DISAS */
222     }
223 }
224 
225 /**
226  * helper_lookup_tb_ptr: quick check for next tb
227  * @env: current cpu state
228  *
229  * Look for an existing TB matching the current cpu state.
230  * If found, return the code pointer.  If not found, return
231  * the tcg epilogue so that we return into cpu_tb_exec.
232  */
233 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
234 {
235     CPUState *cpu = env_cpu(env);
236     TranslationBlock *tb;
237     target_ulong cs_base, pc;
238     uint32_t flags;
239 
240     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
241 
242     tb = tb_lookup(cpu, pc, cs_base, flags, curr_cflags(cpu));
243     if (tb == NULL) {
244         return tcg_code_gen_epilogue;
245     }
246 
247     log_cpu_exec(pc, cpu, tb);
248 
249     return tb->tc.ptr;
250 }
251 
252 /* Execute a TB, and fix up the CPU state afterwards if necessary */
253 /*
254  * Disable CFI checks.
255  * TCG creates binary blobs at runtime, with the transformed code.
256  * A TB is a blob of binary code, created at runtime and called with an
257  * indirect function call. Since such function did not exist at compile time,
258  * the CFI runtime has no way to verify its signature and would fail.
259  * TCG is not considered a security-sensitive part of QEMU so this does not
260  * affect the impact of CFI in environment with high security requirements
261  */
262 static inline TranslationBlock * QEMU_DISABLE_CFI
263 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
264 {
265     CPUArchState *env = cpu->env_ptr;
266     uintptr_t ret;
267     TranslationBlock *last_tb;
268     const void *tb_ptr = itb->tc.ptr;
269 
270     log_cpu_exec(itb->pc, cpu, itb);
271 
272     qemu_thread_jit_execute();
273     ret = tcg_qemu_tb_exec(env, tb_ptr);
274     cpu->can_do_io = 1;
275     /*
276      * TODO: Delay swapping back to the read-write region of the TB
277      * until we actually need to modify the TB.  The read-only copy,
278      * coming from the rx region, shares the same host TLB entry as
279      * the code that executed the exit_tb opcode that arrived here.
280      * If we insist on touching both the RX and the RW pages, we
281      * double the host TLB pressure.
282      */
283     last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
284     *tb_exit = ret & TB_EXIT_MASK;
285 
286     trace_exec_tb_exit(last_tb, *tb_exit);
287 
288     if (*tb_exit > TB_EXIT_IDX1) {
289         /* We didn't start executing this TB (eg because the instruction
290          * counter hit zero); we must restore the guest PC to the address
291          * of the start of the TB.
292          */
293         CPUClass *cc = CPU_GET_CLASS(cpu);
294         qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
295                                "Stopped execution of TB chain before %p ["
296                                TARGET_FMT_lx "] %s\n",
297                                last_tb->tc.ptr, last_tb->pc,
298                                lookup_symbol(last_tb->pc));
299         if (cc->tcg_ops->synchronize_from_tb) {
300             cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
301         } else {
302             assert(cc->set_pc);
303             cc->set_pc(cpu, last_tb->pc);
304         }
305     }
306     return last_tb;
307 }
308 
309 
310 static void cpu_exec_enter(CPUState *cpu)
311 {
312     CPUClass *cc = CPU_GET_CLASS(cpu);
313 
314     if (cc->tcg_ops->cpu_exec_enter) {
315         cc->tcg_ops->cpu_exec_enter(cpu);
316     }
317 }
318 
319 static void cpu_exec_exit(CPUState *cpu)
320 {
321     CPUClass *cc = CPU_GET_CLASS(cpu);
322 
323     if (cc->tcg_ops->cpu_exec_exit) {
324         cc->tcg_ops->cpu_exec_exit(cpu);
325     }
326 }
327 
328 void cpu_exec_step_atomic(CPUState *cpu)
329 {
330     CPUArchState *env = (CPUArchState *)cpu->env_ptr;
331     TranslationBlock *tb;
332     target_ulong cs_base, pc;
333     uint32_t flags, cflags;
334     int tb_exit;
335 
336     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
337         start_exclusive();
338         g_assert(cpu == current_cpu);
339         g_assert(!cpu->running);
340         cpu->running = true;
341 
342         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
343 
344         cflags = curr_cflags(cpu);
345         /* Execute in a serial context. */
346         cflags &= ~CF_PARALLEL;
347         /* After 1 insn, return and release the exclusive lock. */
348         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
349 
350         tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
351         if (tb == NULL) {
352             mmap_lock();
353             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
354             mmap_unlock();
355         }
356 
357         cpu_exec_enter(cpu);
358         /* execute the generated code */
359         trace_exec_tb(tb, pc);
360         cpu_tb_exec(cpu, tb, &tb_exit);
361         cpu_exec_exit(cpu);
362     } else {
363         /*
364          * The mmap_lock is dropped by tb_gen_code if it runs out of
365          * memory.
366          */
367 #ifndef CONFIG_SOFTMMU
368         tcg_debug_assert(!have_mmap_lock());
369 #endif
370         if (qemu_mutex_iothread_locked()) {
371             qemu_mutex_unlock_iothread();
372         }
373         assert_no_pages_locked();
374         qemu_plugin_disable_mem_helpers(cpu);
375     }
376 
377 
378     /*
379      * As we start the exclusive region before codegen we must still
380      * be in the region if we longjump out of either the codegen or
381      * the execution.
382      */
383     g_assert(cpu_in_exclusive_context(cpu));
384     cpu->running = false;
385     end_exclusive();
386 }
387 
388 struct tb_desc {
389     target_ulong pc;
390     target_ulong cs_base;
391     CPUArchState *env;
392     tb_page_addr_t phys_page1;
393     uint32_t flags;
394     uint32_t cflags;
395     uint32_t trace_vcpu_dstate;
396 };
397 
398 static bool tb_lookup_cmp(const void *p, const void *d)
399 {
400     const TranslationBlock *tb = p;
401     const struct tb_desc *desc = d;
402 
403     if (tb->pc == desc->pc &&
404         tb->page_addr[0] == desc->phys_page1 &&
405         tb->cs_base == desc->cs_base &&
406         tb->flags == desc->flags &&
407         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
408         tb_cflags(tb) == desc->cflags) {
409         /* check next page if needed */
410         if (tb->page_addr[1] == -1) {
411             return true;
412         } else {
413             tb_page_addr_t phys_page2;
414             target_ulong virt_page2;
415 
416             virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
417             phys_page2 = get_page_addr_code(desc->env, virt_page2);
418             if (tb->page_addr[1] == phys_page2) {
419                 return true;
420             }
421         }
422     }
423     return false;
424 }
425 
426 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
427                                    target_ulong cs_base, uint32_t flags,
428                                    uint32_t cflags)
429 {
430     tb_page_addr_t phys_pc;
431     struct tb_desc desc;
432     uint32_t h;
433 
434     desc.env = (CPUArchState *)cpu->env_ptr;
435     desc.cs_base = cs_base;
436     desc.flags = flags;
437     desc.cflags = cflags;
438     desc.trace_vcpu_dstate = *cpu->trace_dstate;
439     desc.pc = pc;
440     phys_pc = get_page_addr_code(desc.env, pc);
441     if (phys_pc == -1) {
442         return NULL;
443     }
444     desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
445     h = tb_hash_func(phys_pc, pc, flags, cflags, *cpu->trace_dstate);
446     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
447 }
448 
449 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
450 {
451     if (TCG_TARGET_HAS_direct_jump) {
452         uintptr_t offset = tb->jmp_target_arg[n];
453         uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
454         uintptr_t jmp_rx = tc_ptr + offset;
455         uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
456         tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr);
457     } else {
458         tb->jmp_target_arg[n] = addr;
459     }
460 }
461 
462 static inline void tb_add_jump(TranslationBlock *tb, int n,
463                                TranslationBlock *tb_next)
464 {
465     uintptr_t old;
466 
467     qemu_thread_jit_write();
468     assert(n < ARRAY_SIZE(tb->jmp_list_next));
469     qemu_spin_lock(&tb_next->jmp_lock);
470 
471     /* make sure the destination TB is valid */
472     if (tb_next->cflags & CF_INVALID) {
473         goto out_unlock_next;
474     }
475     /* Atomically claim the jump destination slot only if it was NULL */
476     old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
477                           (uintptr_t)tb_next);
478     if (old) {
479         goto out_unlock_next;
480     }
481 
482     /* patch the native jump address */
483     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
484 
485     /* add in TB jmp list */
486     tb->jmp_list_next[n] = tb_next->jmp_list_head;
487     tb_next->jmp_list_head = (uintptr_t)tb | n;
488 
489     qemu_spin_unlock(&tb_next->jmp_lock);
490 
491     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
492                            "Linking TBs %p [" TARGET_FMT_lx
493                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
494                            tb->tc.ptr, tb->pc, n,
495                            tb_next->tc.ptr, tb_next->pc);
496     return;
497 
498  out_unlock_next:
499     qemu_spin_unlock(&tb_next->jmp_lock);
500     return;
501 }
502 
503 static inline TranslationBlock *tb_find(CPUState *cpu,
504                                         TranslationBlock *last_tb,
505                                         int tb_exit, uint32_t cflags)
506 {
507     CPUArchState *env = (CPUArchState *)cpu->env_ptr;
508     TranslationBlock *tb;
509     target_ulong cs_base, pc;
510     uint32_t flags;
511 
512     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
513 
514     tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
515     if (tb == NULL) {
516         mmap_lock();
517         tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
518         mmap_unlock();
519         /* We add the TB in the virtual pc hash table for the fast lookup */
520         qatomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
521     }
522 #ifndef CONFIG_USER_ONLY
523     /* We don't take care of direct jumps when address mapping changes in
524      * system emulation. So it's not safe to make a direct jump to a TB
525      * spanning two pages because the mapping for the second page can change.
526      */
527     if (tb->page_addr[1] != -1) {
528         last_tb = NULL;
529     }
530 #endif
531     /* See if we can patch the calling TB. */
532     if (last_tb) {
533         tb_add_jump(last_tb, tb_exit, tb);
534     }
535     return tb;
536 }
537 
538 static inline bool cpu_handle_halt(CPUState *cpu)
539 {
540     if (cpu->halted) {
541 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
542         if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
543             X86CPU *x86_cpu = X86_CPU(cpu);
544             qemu_mutex_lock_iothread();
545             apic_poll_irq(x86_cpu->apic_state);
546             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
547             qemu_mutex_unlock_iothread();
548         }
549 #endif
550         if (!cpu_has_work(cpu)) {
551             return true;
552         }
553 
554         cpu->halted = 0;
555     }
556 
557     return false;
558 }
559 
560 static inline void cpu_handle_debug_exception(CPUState *cpu)
561 {
562     CPUClass *cc = CPU_GET_CLASS(cpu);
563     CPUWatchpoint *wp;
564 
565     if (!cpu->watchpoint_hit) {
566         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
567             wp->flags &= ~BP_WATCHPOINT_HIT;
568         }
569     }
570 
571     if (cc->tcg_ops->debug_excp_handler) {
572         cc->tcg_ops->debug_excp_handler(cpu);
573     }
574 }
575 
576 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
577 {
578     if (cpu->exception_index < 0) {
579 #ifndef CONFIG_USER_ONLY
580         if (replay_has_exception()
581             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
582             /* Execute just one insn to trigger exception pending in the log */
583             cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) | 1;
584         }
585 #endif
586         return false;
587     }
588     if (cpu->exception_index >= EXCP_INTERRUPT) {
589         /* exit request from the cpu execution loop */
590         *ret = cpu->exception_index;
591         if (*ret == EXCP_DEBUG) {
592             cpu_handle_debug_exception(cpu);
593         }
594         cpu->exception_index = -1;
595         return true;
596     } else {
597 #if defined(CONFIG_USER_ONLY)
598         /* if user mode only, we simulate a fake exception
599            which will be handled outside the cpu execution
600            loop */
601 #if defined(TARGET_I386)
602         CPUClass *cc = CPU_GET_CLASS(cpu);
603         cc->tcg_ops->do_interrupt(cpu);
604 #endif
605         *ret = cpu->exception_index;
606         cpu->exception_index = -1;
607         return true;
608 #else
609         if (replay_exception()) {
610             CPUClass *cc = CPU_GET_CLASS(cpu);
611             qemu_mutex_lock_iothread();
612             cc->tcg_ops->do_interrupt(cpu);
613             qemu_mutex_unlock_iothread();
614             cpu->exception_index = -1;
615 
616             if (unlikely(cpu->singlestep_enabled)) {
617                 /*
618                  * After processing the exception, ensure an EXCP_DEBUG is
619                  * raised when single-stepping so that GDB doesn't miss the
620                  * next instruction.
621                  */
622                 *ret = EXCP_DEBUG;
623                 cpu_handle_debug_exception(cpu);
624                 return true;
625             }
626         } else if (!replay_has_interrupt()) {
627             /* give a chance to iothread in replay mode */
628             *ret = EXCP_INTERRUPT;
629             return true;
630         }
631 #endif
632     }
633 
634     return false;
635 }
636 
637 /*
638  * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
639  * "real" interrupt event later. It does not need to be recorded for
640  * replay purposes.
641  */
642 static inline bool need_replay_interrupt(int interrupt_request)
643 {
644 #if defined(TARGET_I386)
645     return !(interrupt_request & CPU_INTERRUPT_POLL);
646 #else
647     return true;
648 #endif
649 }
650 
651 static inline bool cpu_handle_interrupt(CPUState *cpu,
652                                         TranslationBlock **last_tb)
653 {
654     CPUClass *cc = CPU_GET_CLASS(cpu);
655 
656     /* Clear the interrupt flag now since we're processing
657      * cpu->interrupt_request and cpu->exit_request.
658      * Ensure zeroing happens before reading cpu->exit_request or
659      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
660      */
661     qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
662 
663     if (unlikely(qatomic_read(&cpu->interrupt_request))) {
664         int interrupt_request;
665         qemu_mutex_lock_iothread();
666         interrupt_request = cpu->interrupt_request;
667         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
668             /* Mask out external interrupts for this step. */
669             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
670         }
671         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
672             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
673             cpu->exception_index = EXCP_DEBUG;
674             qemu_mutex_unlock_iothread();
675             return true;
676         }
677         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
678             /* Do nothing */
679         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
680             replay_interrupt();
681             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
682             cpu->halted = 1;
683             cpu->exception_index = EXCP_HLT;
684             qemu_mutex_unlock_iothread();
685             return true;
686         }
687 #if defined(TARGET_I386)
688         else if (interrupt_request & CPU_INTERRUPT_INIT) {
689             X86CPU *x86_cpu = X86_CPU(cpu);
690             CPUArchState *env = &x86_cpu->env;
691             replay_interrupt();
692             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
693             do_cpu_init(x86_cpu);
694             cpu->exception_index = EXCP_HALTED;
695             qemu_mutex_unlock_iothread();
696             return true;
697         }
698 #else
699         else if (interrupt_request & CPU_INTERRUPT_RESET) {
700             replay_interrupt();
701             cpu_reset(cpu);
702             qemu_mutex_unlock_iothread();
703             return true;
704         }
705 #endif
706         /* The target hook has 3 exit conditions:
707            False when the interrupt isn't processed,
708            True when it is, and we should restart on a new TB,
709            and via longjmp via cpu_loop_exit.  */
710         else {
711             if (cc->tcg_ops->cpu_exec_interrupt &&
712                 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
713                 if (need_replay_interrupt(interrupt_request)) {
714                     replay_interrupt();
715                 }
716                 /*
717                  * After processing the interrupt, ensure an EXCP_DEBUG is
718                  * raised when single-stepping so that GDB doesn't miss the
719                  * next instruction.
720                  */
721                 cpu->exception_index =
722                     (cpu->singlestep_enabled ? EXCP_DEBUG : -1);
723                 *last_tb = NULL;
724             }
725             /* The target hook may have updated the 'cpu->interrupt_request';
726              * reload the 'interrupt_request' value */
727             interrupt_request = cpu->interrupt_request;
728         }
729         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
730             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
731             /* ensure that no TB jump will be modified as
732                the program flow was changed */
733             *last_tb = NULL;
734         }
735 
736         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
737         qemu_mutex_unlock_iothread();
738     }
739 
740     /* Finally, check if we need to exit to the main loop.  */
741     if (unlikely(qatomic_read(&cpu->exit_request))
742         || (icount_enabled()
743             && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
744             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
745         qatomic_set(&cpu->exit_request, 0);
746         if (cpu->exception_index == -1) {
747             cpu->exception_index = EXCP_INTERRUPT;
748         }
749         return true;
750     }
751 
752     return false;
753 }
754 
755 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
756                                     TranslationBlock **last_tb, int *tb_exit)
757 {
758     int32_t insns_left;
759 
760     trace_exec_tb(tb, tb->pc);
761     tb = cpu_tb_exec(cpu, tb, tb_exit);
762     if (*tb_exit != TB_EXIT_REQUESTED) {
763         *last_tb = tb;
764         return;
765     }
766 
767     *last_tb = NULL;
768     insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
769     if (insns_left < 0) {
770         /* Something asked us to stop executing chained TBs; just
771          * continue round the main loop. Whatever requested the exit
772          * will also have set something else (eg exit_request or
773          * interrupt_request) which will be handled by
774          * cpu_handle_interrupt.  cpu_handle_interrupt will also
775          * clear cpu->icount_decr.u16.high.
776          */
777         return;
778     }
779 
780     /* Instruction counter expired.  */
781     assert(icount_enabled());
782 #ifndef CONFIG_USER_ONLY
783     /* Ensure global icount has gone forward */
784     icount_update(cpu);
785     /* Refill decrementer and continue execution.  */
786     insns_left = MIN(CF_COUNT_MASK, cpu->icount_budget);
787     cpu_neg(cpu)->icount_decr.u16.low = insns_left;
788     cpu->icount_extra = cpu->icount_budget - insns_left;
789 
790     /*
791      * If the next tb has more instructions than we have left to
792      * execute we need to ensure we find/generate a TB with exactly
793      * insns_left instructions in it.
794      */
795     if (!cpu->icount_extra && insns_left > 0 && insns_left < tb->icount)  {
796         cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
797     }
798 #endif
799 }
800 
801 /* main execution loop */
802 
803 int cpu_exec(CPUState *cpu)
804 {
805     CPUClass *cc = CPU_GET_CLASS(cpu);
806     int ret;
807     SyncClocks sc = { 0 };
808 
809     /* replay_interrupt may need current_cpu */
810     current_cpu = cpu;
811 
812     if (cpu_handle_halt(cpu)) {
813         return EXCP_HALTED;
814     }
815 
816     rcu_read_lock();
817 
818     cpu_exec_enter(cpu);
819 
820     /* Calculate difference between guest clock and host clock.
821      * This delay includes the delay of the last cycle, so
822      * what we have to do is sleep until it is 0. As for the
823      * advance/delay we gain here, we try to fix it next time.
824      */
825     init_delay_params(&sc, cpu);
826 
827     /* prepare setjmp context for exception handling */
828     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
829 #if defined(__clang__)
830         /*
831          * Some compilers wrongly smash all local variables after
832          * siglongjmp (the spec requires that only non-volatile locals
833          * which are changed between the sigsetjmp and siglongjmp are
834          * permitted to be trashed). There were bug reports for gcc
835          * 4.5.0 and clang.  The bug is fixed in all versions of gcc
836          * that we support, but is still unfixed in clang:
837          *   https://bugs.llvm.org/show_bug.cgi?id=21183
838          *
839          * Reload essential local variables here for those compilers.
840          * Newer versions of gcc would complain about this code (-Wclobbered),
841          * so we only perform the workaround for clang.
842          */
843         cpu = current_cpu;
844         cc = CPU_GET_CLASS(cpu);
845 #else
846         /*
847          * Non-buggy compilers preserve these locals; assert that
848          * they have the correct value.
849          */
850         g_assert(cpu == current_cpu);
851         g_assert(cc == CPU_GET_CLASS(cpu));
852 #endif
853 
854 #ifndef CONFIG_SOFTMMU
855         tcg_debug_assert(!have_mmap_lock());
856 #endif
857         if (qemu_mutex_iothread_locked()) {
858             qemu_mutex_unlock_iothread();
859         }
860         qemu_plugin_disable_mem_helpers(cpu);
861 
862         assert_no_pages_locked();
863     }
864 
865     /* if an exception is pending, we execute it here */
866     while (!cpu_handle_exception(cpu, &ret)) {
867         TranslationBlock *last_tb = NULL;
868         int tb_exit = 0;
869 
870         while (!cpu_handle_interrupt(cpu, &last_tb)) {
871             uint32_t cflags = cpu->cflags_next_tb;
872             TranslationBlock *tb;
873 
874             /* When requested, use an exact setting for cflags for the next
875                execution.  This is used for icount, precise smc, and stop-
876                after-access watchpoints.  Since this request should never
877                have CF_INVALID set, -1 is a convenient invalid value that
878                does not require tcg headers for cpu_common_reset.  */
879             if (cflags == -1) {
880                 cflags = curr_cflags(cpu);
881             } else {
882                 cpu->cflags_next_tb = -1;
883             }
884 
885             tb = tb_find(cpu, last_tb, tb_exit, cflags);
886             cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
887             /* Try to align the host and virtual clocks
888                if the guest is in advance */
889             align_clocks(&sc, cpu);
890         }
891     }
892 
893     cpu_exec_exit(cpu);
894     rcu_read_unlock();
895 
896     return ret;
897 }
898 
899 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
900 {
901     static bool tcg_target_initialized;
902     CPUClass *cc = CPU_GET_CLASS(cpu);
903 
904     if (!tcg_target_initialized) {
905         cc->tcg_ops->initialize();
906         tcg_target_initialized = true;
907     }
908     tlb_init(cpu);
909     qemu_plugin_vcpu_init_hook(cpu);
910 
911 #ifndef CONFIG_USER_ONLY
912     tcg_iommu_init_notifier_list(cpu);
913 #endif /* !CONFIG_USER_ONLY */
914 }
915 
916 /* undo the initializations in reverse order */
917 void tcg_exec_unrealizefn(CPUState *cpu)
918 {
919 #ifndef CONFIG_USER_ONLY
920     tcg_iommu_free_notifier_list(cpu);
921 #endif /* !CONFIG_USER_ONLY */
922 
923     qemu_plugin_vcpu_exit_hook(cpu);
924     tlb_destroy(cpu);
925 }
926 
927 #ifndef CONFIG_USER_ONLY
928 
929 void dump_drift_info(void)
930 {
931     if (!icount_enabled()) {
932         return;
933     }
934 
935     qemu_printf("Host - Guest clock  %"PRIi64" ms\n",
936                 (cpu_get_clock() - icount_get()) / SCALE_MS);
937     if (icount_align_option) {
938         qemu_printf("Max guest delay     %"PRIi64" ms\n",
939                     -max_delay / SCALE_MS);
940         qemu_printf("Max guest advance   %"PRIi64" ms\n",
941                     max_advance / SCALE_MS);
942     } else {
943         qemu_printf("Max guest delay     NA\n");
944         qemu_printf("Max guest advance   NA\n");
945     }
946 }
947 
948 #endif /* !CONFIG_USER_ONLY */
949