1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/tcg-cpu-ops.h" 25 #include "trace.h" 26 #include "disas/disas.h" 27 #include "exec/exec-all.h" 28 #include "tcg/tcg.h" 29 #include "qemu/atomic.h" 30 #include "qemu/rcu.h" 31 #include "exec/log.h" 32 #include "qemu/main-loop.h" 33 #include "sysemu/cpus.h" 34 #include "exec/cpu-all.h" 35 #include "sysemu/cpu-timers.h" 36 #include "exec/replay-core.h" 37 #include "sysemu/tcg.h" 38 #include "exec/helper-proto-common.h" 39 #include "tb-jmp-cache.h" 40 #include "tb-hash.h" 41 #include "tb-context.h" 42 #include "internal-common.h" 43 #include "internal-target.h" 44 #if defined(CONFIG_USER_ONLY) 45 #include "user-retaddr.h" 46 #endif 47 48 /* -icount align implementation. */ 49 50 typedef struct SyncClocks { 51 int64_t diff_clk; 52 int64_t last_cpu_icount; 53 int64_t realtime_clock; 54 } SyncClocks; 55 56 #if !defined(CONFIG_USER_ONLY) 57 /* Allow the guest to have a max 3ms advance. 58 * The difference between the 2 clocks could therefore 59 * oscillate around 0. 60 */ 61 #define VM_CLOCK_ADVANCE 3000000 62 #define THRESHOLD_REDUCE 1.5 63 #define MAX_DELAY_PRINT_RATE 2000000000LL 64 #define MAX_NB_PRINTS 100 65 66 int64_t max_delay; 67 int64_t max_advance; 68 69 static void align_clocks(SyncClocks *sc, CPUState *cpu) 70 { 71 int64_t cpu_icount; 72 73 if (!icount_align_option) { 74 return; 75 } 76 77 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 78 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 79 sc->last_cpu_icount = cpu_icount; 80 81 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 82 #ifndef _WIN32 83 struct timespec sleep_delay, rem_delay; 84 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 85 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 86 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 87 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 88 } else { 89 sc->diff_clk = 0; 90 } 91 #else 92 Sleep(sc->diff_clk / SCALE_MS); 93 sc->diff_clk = 0; 94 #endif 95 } 96 } 97 98 static void print_delay(const SyncClocks *sc) 99 { 100 static float threshold_delay; 101 static int64_t last_realtime_clock; 102 static int nb_prints; 103 104 if (icount_align_option && 105 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 106 nb_prints < MAX_NB_PRINTS) { 107 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 108 (-sc->diff_clk / (float)1000000000LL < 109 (threshold_delay - THRESHOLD_REDUCE))) { 110 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 111 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 112 threshold_delay - 1, 113 threshold_delay); 114 nb_prints++; 115 last_realtime_clock = sc->realtime_clock; 116 } 117 } 118 } 119 120 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 121 { 122 if (!icount_align_option) { 123 return; 124 } 125 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 126 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 127 sc->last_cpu_icount 128 = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 129 if (sc->diff_clk < max_delay) { 130 max_delay = sc->diff_clk; 131 } 132 if (sc->diff_clk > max_advance) { 133 max_advance = sc->diff_clk; 134 } 135 136 /* Print every 2s max if the guest is late. We limit the number 137 of printed messages to NB_PRINT_MAX(currently 100) */ 138 print_delay(sc); 139 } 140 #else 141 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 142 { 143 } 144 145 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 146 { 147 } 148 #endif /* CONFIG USER ONLY */ 149 150 bool tcg_cflags_has(CPUState *cpu, uint32_t flags) 151 { 152 return cpu->tcg_cflags & flags; 153 } 154 155 void tcg_cflags_set(CPUState *cpu, uint32_t flags) 156 { 157 cpu->tcg_cflags |= flags; 158 } 159 160 uint32_t curr_cflags(CPUState *cpu) 161 { 162 uint32_t cflags = cpu->tcg_cflags; 163 164 /* 165 * Record gdb single-step. We should be exiting the TB by raising 166 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 167 * 168 * For singlestep and -d nochain, suppress goto_tb so that 169 * we can log -d cpu,exec after every TB. 170 */ 171 if (unlikely(cpu->singlestep_enabled)) { 172 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 173 } else if (qatomic_read(&one_insn_per_tb)) { 174 cflags |= CF_NO_GOTO_TB | 1; 175 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 176 cflags |= CF_NO_GOTO_TB; 177 } 178 179 return cflags; 180 } 181 182 struct tb_desc { 183 vaddr pc; 184 uint64_t cs_base; 185 CPUArchState *env; 186 tb_page_addr_t page_addr0; 187 uint32_t flags; 188 uint32_t cflags; 189 }; 190 191 static bool tb_lookup_cmp(const void *p, const void *d) 192 { 193 const TranslationBlock *tb = p; 194 const struct tb_desc *desc = d; 195 196 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && 197 tb_page_addr0(tb) == desc->page_addr0 && 198 tb->cs_base == desc->cs_base && 199 tb->flags == desc->flags && 200 tb_cflags(tb) == desc->cflags) { 201 /* check next page if needed */ 202 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 203 if (tb_phys_page1 == -1) { 204 return true; 205 } else { 206 tb_page_addr_t phys_page1; 207 vaddr virt_page1; 208 209 /* 210 * We know that the first page matched, and an otherwise valid TB 211 * encountered an incomplete instruction at the end of that page, 212 * therefore we know that generating a new TB from the current PC 213 * must also require reading from the next page -- even if the 214 * second pages do not match, and therefore the resulting insn 215 * is different for the new TB. Therefore any exception raised 216 * here by the faulting lookup is not premature. 217 */ 218 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 219 phys_page1 = get_page_addr_code(desc->env, virt_page1); 220 if (tb_phys_page1 == phys_page1) { 221 return true; 222 } 223 } 224 } 225 return false; 226 } 227 228 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc, 229 uint64_t cs_base, uint32_t flags, 230 uint32_t cflags) 231 { 232 tb_page_addr_t phys_pc; 233 struct tb_desc desc; 234 uint32_t h; 235 236 desc.env = cpu_env(cpu); 237 desc.cs_base = cs_base; 238 desc.flags = flags; 239 desc.cflags = cflags; 240 desc.pc = pc; 241 phys_pc = get_page_addr_code(desc.env, pc); 242 if (phys_pc == -1) { 243 return NULL; 244 } 245 desc.page_addr0 = phys_pc; 246 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), 247 flags, cs_base, cflags); 248 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 249 } 250 251 /* Might cause an exception, so have a longjmp destination ready */ 252 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc, 253 uint64_t cs_base, uint32_t flags, 254 uint32_t cflags) 255 { 256 TranslationBlock *tb; 257 CPUJumpCache *jc; 258 uint32_t hash; 259 260 /* we should never be trying to look up an INVALID tb */ 261 tcg_debug_assert(!(cflags & CF_INVALID)); 262 263 hash = tb_jmp_cache_hash_func(pc); 264 jc = cpu->tb_jmp_cache; 265 266 tb = qatomic_read(&jc->array[hash].tb); 267 if (likely(tb && 268 jc->array[hash].pc == pc && 269 tb->cs_base == cs_base && 270 tb->flags == flags && 271 tb_cflags(tb) == cflags)) { 272 goto hit; 273 } 274 275 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 276 if (tb == NULL) { 277 return NULL; 278 } 279 280 jc->array[hash].pc = pc; 281 qatomic_set(&jc->array[hash].tb, tb); 282 283 hit: 284 /* 285 * As long as tb is not NULL, the contents are consistent. Therefore, 286 * the virtual PC has to match for non-CF_PCREL translations. 287 */ 288 assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc); 289 return tb; 290 } 291 292 static void log_cpu_exec(vaddr pc, CPUState *cpu, 293 const TranslationBlock *tb) 294 { 295 if (qemu_log_in_addr_range(pc)) { 296 qemu_log_mask(CPU_LOG_EXEC, 297 "Trace %d: %p [%08" PRIx64 298 "/%016" VADDR_PRIx "/%08x/%08x] %s\n", 299 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 300 tb->flags, tb->cflags, lookup_symbol(pc)); 301 302 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 303 FILE *logfile = qemu_log_trylock(); 304 if (logfile) { 305 int flags = 0; 306 307 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 308 flags |= CPU_DUMP_FPU; 309 } 310 #if defined(TARGET_I386) 311 flags |= CPU_DUMP_CCOP; 312 #endif 313 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { 314 flags |= CPU_DUMP_VPU; 315 } 316 cpu_dump_state(cpu, logfile, flags); 317 qemu_log_unlock(logfile); 318 } 319 } 320 } 321 } 322 323 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, 324 uint32_t *cflags) 325 { 326 CPUBreakpoint *bp; 327 bool match_page = false; 328 329 /* 330 * Singlestep overrides breakpoints. 331 * This requirement is visible in the record-replay tests, where 332 * we would fail to make forward progress in reverse-continue. 333 * 334 * TODO: gdb singlestep should only override gdb breakpoints, 335 * so that one could (gdb) singlestep into the guest kernel's 336 * architectural breakpoint handler. 337 */ 338 if (cpu->singlestep_enabled) { 339 return false; 340 } 341 342 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 343 /* 344 * If we have an exact pc match, trigger the breakpoint. 345 * Otherwise, note matches within the page. 346 */ 347 if (pc == bp->pc) { 348 bool match_bp = false; 349 350 if (bp->flags & BP_GDB) { 351 match_bp = true; 352 } else if (bp->flags & BP_CPU) { 353 #ifdef CONFIG_USER_ONLY 354 g_assert_not_reached(); 355 #else 356 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 357 assert(tcg_ops->debug_check_breakpoint); 358 match_bp = tcg_ops->debug_check_breakpoint(cpu); 359 #endif 360 } 361 362 if (match_bp) { 363 cpu->exception_index = EXCP_DEBUG; 364 return true; 365 } 366 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 367 match_page = true; 368 } 369 } 370 371 /* 372 * Within the same page as a breakpoint, single-step, 373 * returning to helper_lookup_tb_ptr after each insn looking 374 * for the actual breakpoint. 375 * 376 * TODO: Perhaps better to record all of the TBs associated 377 * with a given virtual page that contains a breakpoint, and 378 * then invalidate them when a new overlapping breakpoint is 379 * set on the page. Non-overlapping TBs would not be 380 * invalidated, nor would any TB need to be invalidated as 381 * breakpoints are removed. 382 */ 383 if (match_page) { 384 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | CF_BP_PAGE | 1; 385 } 386 return false; 387 } 388 389 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, 390 uint32_t *cflags) 391 { 392 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 393 check_for_breakpoints_slow(cpu, pc, cflags); 394 } 395 396 /** 397 * helper_lookup_tb_ptr: quick check for next tb 398 * @env: current cpu state 399 * 400 * Look for an existing TB matching the current cpu state. 401 * If found, return the code pointer. If not found, return 402 * the tcg epilogue so that we return into cpu_tb_exec. 403 */ 404 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 405 { 406 CPUState *cpu = env_cpu(env); 407 TranslationBlock *tb; 408 vaddr pc; 409 uint64_t cs_base; 410 uint32_t flags, cflags; 411 412 /* 413 * By definition we've just finished a TB, so I/O is OK. 414 * Avoid the possibility of calling cpu_io_recompile() if 415 * a page table walk triggered by tb_lookup() calling 416 * probe_access_internal() happens to touch an MMIO device. 417 * The next TB, if we chain to it, will clear the flag again. 418 */ 419 cpu->neg.can_do_io = true; 420 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 421 422 cflags = curr_cflags(cpu); 423 if (check_for_breakpoints(cpu, pc, &cflags)) { 424 cpu_loop_exit(cpu); 425 } 426 427 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 428 if (tb == NULL) { 429 return tcg_code_gen_epilogue; 430 } 431 432 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 433 log_cpu_exec(pc, cpu, tb); 434 } 435 436 return tb->tc.ptr; 437 } 438 439 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 440 /* 441 * Disable CFI checks. 442 * TCG creates binary blobs at runtime, with the transformed code. 443 * A TB is a blob of binary code, created at runtime and called with an 444 * indirect function call. Since such function did not exist at compile time, 445 * the CFI runtime has no way to verify its signature and would fail. 446 * TCG is not considered a security-sensitive part of QEMU so this does not 447 * affect the impact of CFI in environment with high security requirements 448 */ 449 static inline TranslationBlock * QEMU_DISABLE_CFI 450 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 451 { 452 uintptr_t ret; 453 TranslationBlock *last_tb; 454 const void *tb_ptr = itb->tc.ptr; 455 456 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 457 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 458 } 459 460 qemu_thread_jit_execute(); 461 ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr); 462 cpu->neg.can_do_io = true; 463 qemu_plugin_disable_mem_helpers(cpu); 464 /* 465 * TODO: Delay swapping back to the read-write region of the TB 466 * until we actually need to modify the TB. The read-only copy, 467 * coming from the rx region, shares the same host TLB entry as 468 * the code that executed the exit_tb opcode that arrived here. 469 * If we insist on touching both the RX and the RW pages, we 470 * double the host TLB pressure. 471 */ 472 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 473 *tb_exit = ret & TB_EXIT_MASK; 474 475 trace_exec_tb_exit(last_tb, *tb_exit); 476 477 if (*tb_exit > TB_EXIT_IDX1) { 478 /* We didn't start executing this TB (eg because the instruction 479 * counter hit zero); we must restore the guest PC to the address 480 * of the start of the TB. 481 */ 482 CPUClass *cc = cpu->cc; 483 const TCGCPUOps *tcg_ops = cc->tcg_ops; 484 485 if (tcg_ops->synchronize_from_tb) { 486 tcg_ops->synchronize_from_tb(cpu, last_tb); 487 } else { 488 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 489 assert(cc->set_pc); 490 cc->set_pc(cpu, last_tb->pc); 491 } 492 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 493 vaddr pc = log_pc(cpu, last_tb); 494 if (qemu_log_in_addr_range(pc)) { 495 qemu_log("Stopped execution of TB chain before %p [%016" 496 VADDR_PRIx "] %s\n", 497 last_tb->tc.ptr, pc, lookup_symbol(pc)); 498 } 499 } 500 } 501 502 /* 503 * If gdb single-step, and we haven't raised another exception, 504 * raise a debug exception. Single-step with another exception 505 * is handled in cpu_handle_exception. 506 */ 507 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 508 cpu->exception_index = EXCP_DEBUG; 509 cpu_loop_exit(cpu); 510 } 511 512 return last_tb; 513 } 514 515 516 static void cpu_exec_enter(CPUState *cpu) 517 { 518 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 519 520 if (tcg_ops->cpu_exec_enter) { 521 tcg_ops->cpu_exec_enter(cpu); 522 } 523 } 524 525 static void cpu_exec_exit(CPUState *cpu) 526 { 527 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 528 529 if (tcg_ops->cpu_exec_exit) { 530 tcg_ops->cpu_exec_exit(cpu); 531 } 532 } 533 534 static void cpu_exec_longjmp_cleanup(CPUState *cpu) 535 { 536 /* Non-buggy compilers preserve this; assert the correct value. */ 537 g_assert(cpu == current_cpu); 538 539 #ifdef CONFIG_USER_ONLY 540 clear_helper_retaddr(); 541 if (have_mmap_lock()) { 542 mmap_unlock(); 543 } 544 #else 545 /* 546 * For softmmu, a tlb_fill fault during translation will land here, 547 * and we need to release any page locks held. In system mode we 548 * have one tcg_ctx per thread, so we know it was this cpu doing 549 * the translation. 550 * 551 * Alternative 1: Install a cleanup to be called via an exception 552 * handling safe longjmp. It seems plausible that all our hosts 553 * support such a thing. We'd have to properly register unwind info 554 * for the JIT for EH, rather that just for GDB. 555 * 556 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to 557 * capture the cpu_loop_exit longjmp, perform the cleanup, and 558 * jump again to arrive here. 559 */ 560 if (tcg_ctx->gen_tb) { 561 tb_unlock_pages(tcg_ctx->gen_tb); 562 tcg_ctx->gen_tb = NULL; 563 } 564 #endif 565 if (bql_locked()) { 566 bql_unlock(); 567 } 568 assert_no_pages_locked(); 569 } 570 571 void cpu_exec_step_atomic(CPUState *cpu) 572 { 573 CPUArchState *env = cpu_env(cpu); 574 TranslationBlock *tb; 575 vaddr pc; 576 uint64_t cs_base; 577 uint32_t flags, cflags; 578 int tb_exit; 579 580 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 581 start_exclusive(); 582 g_assert(cpu == current_cpu); 583 g_assert(!cpu->running); 584 cpu->running = true; 585 586 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 587 588 cflags = curr_cflags(cpu); 589 /* Execute in a serial context. */ 590 cflags &= ~CF_PARALLEL; 591 /* After 1 insn, return and release the exclusive lock. */ 592 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 593 /* 594 * No need to check_for_breakpoints here. 595 * We only arrive in cpu_exec_step_atomic after beginning execution 596 * of an insn that includes an atomic operation we can't handle. 597 * Any breakpoint for this insn will have been recognized earlier. 598 */ 599 600 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 601 if (tb == NULL) { 602 mmap_lock(); 603 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 604 mmap_unlock(); 605 } 606 607 cpu_exec_enter(cpu); 608 /* execute the generated code */ 609 trace_exec_tb(tb, pc); 610 cpu_tb_exec(cpu, tb, &tb_exit); 611 cpu_exec_exit(cpu); 612 } else { 613 cpu_exec_longjmp_cleanup(cpu); 614 } 615 616 /* 617 * As we start the exclusive region before codegen we must still 618 * be in the region if we longjump out of either the codegen or 619 * the execution. 620 */ 621 g_assert(cpu_in_exclusive_context(cpu)); 622 cpu->running = false; 623 end_exclusive(); 624 } 625 626 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 627 { 628 /* 629 * Get the rx view of the structure, from which we find the 630 * executable code address, and tb_target_set_jmp_target can 631 * produce a pc-relative displacement to jmp_target_addr[n]. 632 */ 633 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 634 uintptr_t offset = tb->jmp_insn_offset[n]; 635 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 636 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 637 638 tb->jmp_target_addr[n] = addr; 639 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 640 } 641 642 static inline void tb_add_jump(TranslationBlock *tb, int n, 643 TranslationBlock *tb_next) 644 { 645 uintptr_t old; 646 647 qemu_thread_jit_write(); 648 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 649 qemu_spin_lock(&tb_next->jmp_lock); 650 651 /* make sure the destination TB is valid */ 652 if (tb_next->cflags & CF_INVALID) { 653 goto out_unlock_next; 654 } 655 /* Atomically claim the jump destination slot only if it was NULL */ 656 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 657 (uintptr_t)tb_next); 658 if (old) { 659 goto out_unlock_next; 660 } 661 662 /* patch the native jump address */ 663 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 664 665 /* add in TB jmp list */ 666 tb->jmp_list_next[n] = tb_next->jmp_list_head; 667 tb_next->jmp_list_head = (uintptr_t)tb | n; 668 669 qemu_spin_unlock(&tb_next->jmp_lock); 670 671 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 672 tb->tc.ptr, n, tb_next->tc.ptr); 673 return; 674 675 out_unlock_next: 676 qemu_spin_unlock(&tb_next->jmp_lock); 677 return; 678 } 679 680 static inline bool cpu_handle_halt(CPUState *cpu) 681 { 682 #ifndef CONFIG_USER_ONLY 683 if (cpu->halted) { 684 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 685 bool leave_halt = tcg_ops->cpu_exec_halt(cpu); 686 687 if (!leave_halt) { 688 return true; 689 } 690 691 cpu->halted = 0; 692 } 693 #endif /* !CONFIG_USER_ONLY */ 694 695 return false; 696 } 697 698 static inline void cpu_handle_debug_exception(CPUState *cpu) 699 { 700 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 701 CPUWatchpoint *wp; 702 703 if (!cpu->watchpoint_hit) { 704 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 705 wp->flags &= ~BP_WATCHPOINT_HIT; 706 } 707 } 708 709 if (tcg_ops->debug_excp_handler) { 710 tcg_ops->debug_excp_handler(cpu); 711 } 712 } 713 714 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 715 { 716 if (cpu->exception_index < 0) { 717 #ifndef CONFIG_USER_ONLY 718 if (replay_has_exception() 719 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) { 720 /* Execute just one insn to trigger exception pending in the log */ 721 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 722 | CF_NOIRQ | 1; 723 } 724 #endif 725 return false; 726 } 727 728 if (cpu->exception_index >= EXCP_INTERRUPT) { 729 /* exit request from the cpu execution loop */ 730 *ret = cpu->exception_index; 731 if (*ret == EXCP_DEBUG) { 732 cpu_handle_debug_exception(cpu); 733 } 734 cpu->exception_index = -1; 735 return true; 736 } 737 738 #if defined(CONFIG_USER_ONLY) 739 /* 740 * If user mode only, we simulate a fake exception which will be 741 * handled outside the cpu execution loop. 742 */ 743 #if defined(TARGET_I386) 744 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 745 tcg_ops->fake_user_interrupt(cpu); 746 #endif /* TARGET_I386 */ 747 *ret = cpu->exception_index; 748 cpu->exception_index = -1; 749 return true; 750 #else 751 if (replay_exception()) { 752 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 753 754 bql_lock(); 755 tcg_ops->do_interrupt(cpu); 756 bql_unlock(); 757 cpu->exception_index = -1; 758 759 if (unlikely(cpu->singlestep_enabled)) { 760 /* 761 * After processing the exception, ensure an EXCP_DEBUG is 762 * raised when single-stepping so that GDB doesn't miss the 763 * next instruction. 764 */ 765 *ret = EXCP_DEBUG; 766 cpu_handle_debug_exception(cpu); 767 return true; 768 } 769 } else if (!replay_has_interrupt()) { 770 /* give a chance to iothread in replay mode */ 771 *ret = EXCP_INTERRUPT; 772 return true; 773 } 774 #endif 775 776 return false; 777 } 778 779 static inline bool icount_exit_request(CPUState *cpu) 780 { 781 if (!icount_enabled()) { 782 return false; 783 } 784 if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) { 785 return false; 786 } 787 return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0; 788 } 789 790 static inline bool cpu_handle_interrupt(CPUState *cpu, 791 TranslationBlock **last_tb) 792 { 793 /* 794 * If we have requested custom cflags with CF_NOIRQ we should 795 * skip checking here. Any pending interrupts will get picked up 796 * by the next TB we execute under normal cflags. 797 */ 798 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 799 return false; 800 } 801 802 /* Clear the interrupt flag now since we're processing 803 * cpu->interrupt_request and cpu->exit_request. 804 * Ensure zeroing happens before reading cpu->exit_request or 805 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 806 */ 807 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0); 808 809 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 810 int interrupt_request; 811 bql_lock(); 812 interrupt_request = cpu->interrupt_request; 813 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 814 /* Mask out external interrupts for this step. */ 815 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 816 } 817 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 818 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 819 cpu->exception_index = EXCP_DEBUG; 820 bql_unlock(); 821 return true; 822 } 823 #if !defined(CONFIG_USER_ONLY) 824 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 825 /* Do nothing */ 826 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 827 replay_interrupt(); 828 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 829 cpu->halted = 1; 830 cpu->exception_index = EXCP_HLT; 831 bql_unlock(); 832 return true; 833 } 834 #if defined(TARGET_I386) 835 else if (interrupt_request & CPU_INTERRUPT_INIT) { 836 X86CPU *x86_cpu = X86_CPU(cpu); 837 CPUArchState *env = &x86_cpu->env; 838 replay_interrupt(); 839 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 840 do_cpu_init(x86_cpu); 841 cpu->exception_index = EXCP_HALTED; 842 bql_unlock(); 843 return true; 844 } 845 #else 846 else if (interrupt_request & CPU_INTERRUPT_RESET) { 847 replay_interrupt(); 848 cpu_reset(cpu); 849 bql_unlock(); 850 return true; 851 } 852 #endif /* !TARGET_I386 */ 853 /* The target hook has 3 exit conditions: 854 False when the interrupt isn't processed, 855 True when it is, and we should restart on a new TB, 856 and via longjmp via cpu_loop_exit. */ 857 else { 858 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 859 860 if (tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 861 if (!tcg_ops->need_replay_interrupt || 862 tcg_ops->need_replay_interrupt(interrupt_request)) { 863 replay_interrupt(); 864 } 865 /* 866 * After processing the interrupt, ensure an EXCP_DEBUG is 867 * raised when single-stepping so that GDB doesn't miss the 868 * next instruction. 869 */ 870 if (unlikely(cpu->singlestep_enabled)) { 871 cpu->exception_index = EXCP_DEBUG; 872 bql_unlock(); 873 return true; 874 } 875 cpu->exception_index = -1; 876 *last_tb = NULL; 877 } 878 /* The target hook may have updated the 'cpu->interrupt_request'; 879 * reload the 'interrupt_request' value */ 880 interrupt_request = cpu->interrupt_request; 881 } 882 #endif /* !CONFIG_USER_ONLY */ 883 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 884 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 885 /* ensure that no TB jump will be modified as 886 the program flow was changed */ 887 *last_tb = NULL; 888 } 889 890 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 891 bql_unlock(); 892 } 893 894 /* Finally, check if we need to exit to the main loop. */ 895 if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) { 896 qatomic_set(&cpu->exit_request, 0); 897 if (cpu->exception_index == -1) { 898 cpu->exception_index = EXCP_INTERRUPT; 899 } 900 return true; 901 } 902 903 return false; 904 } 905 906 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 907 vaddr pc, TranslationBlock **last_tb, 908 int *tb_exit) 909 { 910 trace_exec_tb(tb, pc); 911 tb = cpu_tb_exec(cpu, tb, tb_exit); 912 if (*tb_exit != TB_EXIT_REQUESTED) { 913 *last_tb = tb; 914 return; 915 } 916 917 *last_tb = NULL; 918 if (cpu_loop_exit_requested(cpu)) { 919 /* Something asked us to stop executing chained TBs; just 920 * continue round the main loop. Whatever requested the exit 921 * will also have set something else (eg exit_request or 922 * interrupt_request) which will be handled by 923 * cpu_handle_interrupt. cpu_handle_interrupt will also 924 * clear cpu->icount_decr.u16.high. 925 */ 926 return; 927 } 928 929 /* Instruction counter expired. */ 930 assert(icount_enabled()); 931 #ifndef CONFIG_USER_ONLY 932 /* Ensure global icount has gone forward */ 933 icount_update(cpu); 934 /* Refill decrementer and continue execution. */ 935 int32_t insns_left = MIN(0xffff, cpu->icount_budget); 936 cpu->neg.icount_decr.u16.low = insns_left; 937 cpu->icount_extra = cpu->icount_budget - insns_left; 938 939 /* 940 * If the next tb has more instructions than we have left to 941 * execute we need to ensure we find/generate a TB with exactly 942 * insns_left instructions in it. 943 */ 944 if (insns_left > 0 && insns_left < tb->icount) { 945 assert(insns_left <= CF_COUNT_MASK); 946 assert(cpu->icount_extra == 0); 947 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 948 } 949 #endif 950 } 951 952 /* main execution loop */ 953 954 static int __attribute__((noinline)) 955 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 956 { 957 int ret; 958 959 /* if an exception is pending, we execute it here */ 960 while (!cpu_handle_exception(cpu, &ret)) { 961 TranslationBlock *last_tb = NULL; 962 int tb_exit = 0; 963 964 while (!cpu_handle_interrupt(cpu, &last_tb)) { 965 TranslationBlock *tb; 966 vaddr pc; 967 uint64_t cs_base; 968 uint32_t flags, cflags; 969 970 cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags); 971 972 /* 973 * When requested, use an exact setting for cflags for the next 974 * execution. This is used for icount, precise smc, and stop- 975 * after-access watchpoints. Since this request should never 976 * have CF_INVALID set, -1 is a convenient invalid value that 977 * does not require tcg headers for cpu_common_reset. 978 */ 979 cflags = cpu->cflags_next_tb; 980 if (cflags == -1) { 981 cflags = curr_cflags(cpu); 982 } else { 983 cpu->cflags_next_tb = -1; 984 } 985 986 if (check_for_breakpoints(cpu, pc, &cflags)) { 987 break; 988 } 989 990 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 991 if (tb == NULL) { 992 CPUJumpCache *jc; 993 uint32_t h; 994 995 mmap_lock(); 996 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 997 mmap_unlock(); 998 999 /* 1000 * We add the TB in the virtual pc hash table 1001 * for the fast lookup 1002 */ 1003 h = tb_jmp_cache_hash_func(pc); 1004 jc = cpu->tb_jmp_cache; 1005 jc->array[h].pc = pc; 1006 qatomic_set(&jc->array[h].tb, tb); 1007 } 1008 1009 #ifndef CONFIG_USER_ONLY 1010 /* 1011 * We don't take care of direct jumps when address mapping 1012 * changes in system emulation. So it's not safe to make a 1013 * direct jump to a TB spanning two pages because the mapping 1014 * for the second page can change. 1015 */ 1016 if (tb_page_addr1(tb) != -1) { 1017 last_tb = NULL; 1018 } 1019 #endif 1020 /* See if we can patch the calling TB. */ 1021 if (last_tb) { 1022 tb_add_jump(last_tb, tb_exit, tb); 1023 } 1024 1025 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1026 1027 /* Try to align the host and virtual clocks 1028 if the guest is in advance */ 1029 align_clocks(sc, cpu); 1030 } 1031 } 1032 return ret; 1033 } 1034 1035 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 1036 { 1037 /* Prepare setjmp context for exception handling. */ 1038 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 1039 cpu_exec_longjmp_cleanup(cpu); 1040 } 1041 1042 return cpu_exec_loop(cpu, sc); 1043 } 1044 1045 int cpu_exec(CPUState *cpu) 1046 { 1047 int ret; 1048 SyncClocks sc = { 0 }; 1049 1050 /* replay_interrupt may need current_cpu */ 1051 current_cpu = cpu; 1052 1053 if (cpu_handle_halt(cpu)) { 1054 return EXCP_HALTED; 1055 } 1056 1057 RCU_READ_LOCK_GUARD(); 1058 cpu_exec_enter(cpu); 1059 1060 /* 1061 * Calculate difference between guest clock and host clock. 1062 * This delay includes the delay of the last cycle, so 1063 * what we have to do is sleep until it is 0. As for the 1064 * advance/delay we gain here, we try to fix it next time. 1065 */ 1066 init_delay_params(&sc, cpu); 1067 1068 ret = cpu_exec_setjmp(cpu, &sc); 1069 1070 cpu_exec_exit(cpu); 1071 return ret; 1072 } 1073 1074 bool tcg_exec_realizefn(CPUState *cpu, Error **errp) 1075 { 1076 static bool tcg_target_initialized; 1077 1078 if (!tcg_target_initialized) { 1079 /* Check mandatory TCGCPUOps handlers */ 1080 #ifndef CONFIG_USER_ONLY 1081 assert(cpu->cc->tcg_ops->cpu_exec_halt); 1082 assert(cpu->cc->tcg_ops->cpu_exec_interrupt); 1083 #endif /* !CONFIG_USER_ONLY */ 1084 cpu->cc->tcg_ops->initialize(); 1085 tcg_target_initialized = true; 1086 } 1087 1088 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1089 tlb_init(cpu); 1090 #ifndef CONFIG_USER_ONLY 1091 tcg_iommu_init_notifier_list(cpu); 1092 #endif /* !CONFIG_USER_ONLY */ 1093 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1094 1095 return true; 1096 } 1097 1098 /* undo the initializations in reverse order */ 1099 void tcg_exec_unrealizefn(CPUState *cpu) 1100 { 1101 #ifndef CONFIG_USER_ONLY 1102 tcg_iommu_free_notifier_list(cpu); 1103 #endif /* !CONFIG_USER_ONLY */ 1104 1105 tlb_destroy(cpu); 1106 g_free_rcu(cpu->tb_jmp_cache, rcu); 1107 } 1108