1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/tcg-cpu-ops.h" 25 #include "trace.h" 26 #include "disas/disas.h" 27 #include "exec/exec-all.h" 28 #include "tcg/tcg.h" 29 #include "qemu/atomic.h" 30 #include "qemu/rcu.h" 31 #include "exec/log.h" 32 #include "qemu/main-loop.h" 33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 34 #include "hw/i386/apic.h" 35 #endif 36 #include "sysemu/cpus.h" 37 #include "exec/cpu-all.h" 38 #include "sysemu/cpu-timers.h" 39 #include "exec/replay-core.h" 40 #include "sysemu/tcg.h" 41 #include "exec/helper-proto.h" 42 #include "tb-jmp-cache.h" 43 #include "tb-hash.h" 44 #include "tb-context.h" 45 #include "internal.h" 46 47 /* -icount align implementation. */ 48 49 typedef struct SyncClocks { 50 int64_t diff_clk; 51 int64_t last_cpu_icount; 52 int64_t realtime_clock; 53 } SyncClocks; 54 55 #if !defined(CONFIG_USER_ONLY) 56 /* Allow the guest to have a max 3ms advance. 57 * The difference between the 2 clocks could therefore 58 * oscillate around 0. 59 */ 60 #define VM_CLOCK_ADVANCE 3000000 61 #define THRESHOLD_REDUCE 1.5 62 #define MAX_DELAY_PRINT_RATE 2000000000LL 63 #define MAX_NB_PRINTS 100 64 65 int64_t max_delay; 66 int64_t max_advance; 67 68 static void align_clocks(SyncClocks *sc, CPUState *cpu) 69 { 70 int64_t cpu_icount; 71 72 if (!icount_align_option) { 73 return; 74 } 75 76 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 77 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 78 sc->last_cpu_icount = cpu_icount; 79 80 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 81 #ifndef _WIN32 82 struct timespec sleep_delay, rem_delay; 83 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 84 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 85 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 86 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 87 } else { 88 sc->diff_clk = 0; 89 } 90 #else 91 Sleep(sc->diff_clk / SCALE_MS); 92 sc->diff_clk = 0; 93 #endif 94 } 95 } 96 97 static void print_delay(const SyncClocks *sc) 98 { 99 static float threshold_delay; 100 static int64_t last_realtime_clock; 101 static int nb_prints; 102 103 if (icount_align_option && 104 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 105 nb_prints < MAX_NB_PRINTS) { 106 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 107 (-sc->diff_clk / (float)1000000000LL < 108 (threshold_delay - THRESHOLD_REDUCE))) { 109 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 110 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 111 threshold_delay - 1, 112 threshold_delay); 113 nb_prints++; 114 last_realtime_clock = sc->realtime_clock; 115 } 116 } 117 } 118 119 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 120 { 121 if (!icount_align_option) { 122 return; 123 } 124 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 125 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 126 sc->last_cpu_icount 127 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 128 if (sc->diff_clk < max_delay) { 129 max_delay = sc->diff_clk; 130 } 131 if (sc->diff_clk > max_advance) { 132 max_advance = sc->diff_clk; 133 } 134 135 /* Print every 2s max if the guest is late. We limit the number 136 of printed messages to NB_PRINT_MAX(currently 100) */ 137 print_delay(sc); 138 } 139 #else 140 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 141 { 142 } 143 144 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 145 { 146 } 147 #endif /* CONFIG USER ONLY */ 148 149 uint32_t curr_cflags(CPUState *cpu) 150 { 151 uint32_t cflags = cpu->tcg_cflags; 152 153 /* 154 * Record gdb single-step. We should be exiting the TB by raising 155 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 156 * 157 * For singlestep and -d nochain, suppress goto_tb so that 158 * we can log -d cpu,exec after every TB. 159 */ 160 if (unlikely(cpu->singlestep_enabled)) { 161 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 162 } else if (singlestep) { 163 cflags |= CF_NO_GOTO_TB | 1; 164 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 165 cflags |= CF_NO_GOTO_TB; 166 } 167 168 return cflags; 169 } 170 171 struct tb_desc { 172 target_ulong pc; 173 target_ulong cs_base; 174 CPUArchState *env; 175 tb_page_addr_t page_addr0; 176 uint32_t flags; 177 uint32_t cflags; 178 uint32_t trace_vcpu_dstate; 179 }; 180 181 static bool tb_lookup_cmp(const void *p, const void *d) 182 { 183 const TranslationBlock *tb = p; 184 const struct tb_desc *desc = d; 185 186 if ((TARGET_TB_PCREL || tb_pc(tb) == desc->pc) && 187 tb_page_addr0(tb) == desc->page_addr0 && 188 tb->cs_base == desc->cs_base && 189 tb->flags == desc->flags && 190 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 191 tb_cflags(tb) == desc->cflags) { 192 /* check next page if needed */ 193 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 194 if (tb_phys_page1 == -1) { 195 return true; 196 } else { 197 tb_page_addr_t phys_page1; 198 target_ulong virt_page1; 199 200 /* 201 * We know that the first page matched, and an otherwise valid TB 202 * encountered an incomplete instruction at the end of that page, 203 * therefore we know that generating a new TB from the current PC 204 * must also require reading from the next page -- even if the 205 * second pages do not match, and therefore the resulting insn 206 * is different for the new TB. Therefore any exception raised 207 * here by the faulting lookup is not premature. 208 */ 209 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 210 phys_page1 = get_page_addr_code(desc->env, virt_page1); 211 if (tb_phys_page1 == phys_page1) { 212 return true; 213 } 214 } 215 } 216 return false; 217 } 218 219 static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 220 target_ulong cs_base, uint32_t flags, 221 uint32_t cflags) 222 { 223 tb_page_addr_t phys_pc; 224 struct tb_desc desc; 225 uint32_t h; 226 227 desc.env = cpu->env_ptr; 228 desc.cs_base = cs_base; 229 desc.flags = flags; 230 desc.cflags = cflags; 231 desc.trace_vcpu_dstate = *cpu->trace_dstate; 232 desc.pc = pc; 233 phys_pc = get_page_addr_code(desc.env, pc); 234 if (phys_pc == -1) { 235 return NULL; 236 } 237 desc.page_addr0 = phys_pc; 238 h = tb_hash_func(phys_pc, (TARGET_TB_PCREL ? 0 : pc), 239 flags, cflags, *cpu->trace_dstate); 240 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 241 } 242 243 /* Might cause an exception, so have a longjmp destination ready */ 244 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc, 245 target_ulong cs_base, 246 uint32_t flags, uint32_t cflags) 247 { 248 TranslationBlock *tb; 249 CPUJumpCache *jc; 250 uint32_t hash; 251 252 /* we should never be trying to look up an INVALID tb */ 253 tcg_debug_assert(!(cflags & CF_INVALID)); 254 255 hash = tb_jmp_cache_hash_func(pc); 256 jc = cpu->tb_jmp_cache; 257 tb = tb_jmp_cache_get_tb(jc, hash); 258 259 if (likely(tb && 260 tb_jmp_cache_get_pc(jc, hash, tb) == pc && 261 tb->cs_base == cs_base && 262 tb->flags == flags && 263 tb->trace_vcpu_dstate == *cpu->trace_dstate && 264 tb_cflags(tb) == cflags)) { 265 return tb; 266 } 267 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 268 if (tb == NULL) { 269 return NULL; 270 } 271 tb_jmp_cache_set(jc, hash, tb, pc); 272 return tb; 273 } 274 275 static void log_cpu_exec(target_ulong pc, CPUState *cpu, 276 const TranslationBlock *tb) 277 { 278 if (qemu_log_in_addr_range(pc)) { 279 qemu_log_mask(CPU_LOG_EXEC, 280 "Trace %d: %p [" TARGET_FMT_lx 281 "/" TARGET_FMT_lx "/%08x/%08x] %s\n", 282 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 283 tb->flags, tb->cflags, lookup_symbol(pc)); 284 285 #if defined(DEBUG_DISAS) 286 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 287 FILE *logfile = qemu_log_trylock(); 288 if (logfile) { 289 int flags = 0; 290 291 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 292 flags |= CPU_DUMP_FPU; 293 } 294 #if defined(TARGET_I386) 295 flags |= CPU_DUMP_CCOP; 296 #endif 297 cpu_dump_state(cpu, logfile, flags); 298 qemu_log_unlock(logfile); 299 } 300 } 301 #endif /* DEBUG_DISAS */ 302 } 303 } 304 305 static bool check_for_breakpoints_slow(CPUState *cpu, target_ulong pc, 306 uint32_t *cflags) 307 { 308 CPUBreakpoint *bp; 309 bool match_page = false; 310 311 /* 312 * Singlestep overrides breakpoints. 313 * This requirement is visible in the record-replay tests, where 314 * we would fail to make forward progress in reverse-continue. 315 * 316 * TODO: gdb singlestep should only override gdb breakpoints, 317 * so that one could (gdb) singlestep into the guest kernel's 318 * architectural breakpoint handler. 319 */ 320 if (cpu->singlestep_enabled) { 321 return false; 322 } 323 324 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 325 /* 326 * If we have an exact pc match, trigger the breakpoint. 327 * Otherwise, note matches within the page. 328 */ 329 if (pc == bp->pc) { 330 bool match_bp = false; 331 332 if (bp->flags & BP_GDB) { 333 match_bp = true; 334 } else if (bp->flags & BP_CPU) { 335 #ifdef CONFIG_USER_ONLY 336 g_assert_not_reached(); 337 #else 338 CPUClass *cc = CPU_GET_CLASS(cpu); 339 assert(cc->tcg_ops->debug_check_breakpoint); 340 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu); 341 #endif 342 } 343 344 if (match_bp) { 345 cpu->exception_index = EXCP_DEBUG; 346 return true; 347 } 348 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 349 match_page = true; 350 } 351 } 352 353 /* 354 * Within the same page as a breakpoint, single-step, 355 * returning to helper_lookup_tb_ptr after each insn looking 356 * for the actual breakpoint. 357 * 358 * TODO: Perhaps better to record all of the TBs associated 359 * with a given virtual page that contains a breakpoint, and 360 * then invalidate them when a new overlapping breakpoint is 361 * set on the page. Non-overlapping TBs would not be 362 * invalidated, nor would any TB need to be invalidated as 363 * breakpoints are removed. 364 */ 365 if (match_page) { 366 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1; 367 } 368 return false; 369 } 370 371 static inline bool check_for_breakpoints(CPUState *cpu, target_ulong pc, 372 uint32_t *cflags) 373 { 374 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 375 check_for_breakpoints_slow(cpu, pc, cflags); 376 } 377 378 /** 379 * helper_lookup_tb_ptr: quick check for next tb 380 * @env: current cpu state 381 * 382 * Look for an existing TB matching the current cpu state. 383 * If found, return the code pointer. If not found, return 384 * the tcg epilogue so that we return into cpu_tb_exec. 385 */ 386 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 387 { 388 CPUState *cpu = env_cpu(env); 389 TranslationBlock *tb; 390 target_ulong cs_base, pc; 391 uint32_t flags, cflags; 392 393 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 394 395 cflags = curr_cflags(cpu); 396 if (check_for_breakpoints(cpu, pc, &cflags)) { 397 cpu_loop_exit(cpu); 398 } 399 400 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 401 if (tb == NULL) { 402 return tcg_code_gen_epilogue; 403 } 404 405 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 406 log_cpu_exec(pc, cpu, tb); 407 } 408 409 return tb->tc.ptr; 410 } 411 412 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 413 /* 414 * Disable CFI checks. 415 * TCG creates binary blobs at runtime, with the transformed code. 416 * A TB is a blob of binary code, created at runtime and called with an 417 * indirect function call. Since such function did not exist at compile time, 418 * the CFI runtime has no way to verify its signature and would fail. 419 * TCG is not considered a security-sensitive part of QEMU so this does not 420 * affect the impact of CFI in environment with high security requirements 421 */ 422 static inline TranslationBlock * QEMU_DISABLE_CFI 423 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 424 { 425 CPUArchState *env = cpu->env_ptr; 426 uintptr_t ret; 427 TranslationBlock *last_tb; 428 const void *tb_ptr = itb->tc.ptr; 429 430 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 431 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 432 } 433 434 qemu_thread_jit_execute(); 435 ret = tcg_qemu_tb_exec(env, tb_ptr); 436 cpu->can_do_io = 1; 437 /* 438 * TODO: Delay swapping back to the read-write region of the TB 439 * until we actually need to modify the TB. The read-only copy, 440 * coming from the rx region, shares the same host TLB entry as 441 * the code that executed the exit_tb opcode that arrived here. 442 * If we insist on touching both the RX and the RW pages, we 443 * double the host TLB pressure. 444 */ 445 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 446 *tb_exit = ret & TB_EXIT_MASK; 447 448 trace_exec_tb_exit(last_tb, *tb_exit); 449 450 if (*tb_exit > TB_EXIT_IDX1) { 451 /* We didn't start executing this TB (eg because the instruction 452 * counter hit zero); we must restore the guest PC to the address 453 * of the start of the TB. 454 */ 455 CPUClass *cc = CPU_GET_CLASS(cpu); 456 457 if (cc->tcg_ops->synchronize_from_tb) { 458 cc->tcg_ops->synchronize_from_tb(cpu, last_tb); 459 } else { 460 assert(!TARGET_TB_PCREL); 461 assert(cc->set_pc); 462 cc->set_pc(cpu, tb_pc(last_tb)); 463 } 464 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 465 target_ulong pc = log_pc(cpu, last_tb); 466 if (qemu_log_in_addr_range(pc)) { 467 qemu_log("Stopped execution of TB chain before %p [" 468 TARGET_FMT_lx "] %s\n", 469 last_tb->tc.ptr, pc, lookup_symbol(pc)); 470 } 471 } 472 } 473 474 /* 475 * If gdb single-step, and we haven't raised another exception, 476 * raise a debug exception. Single-step with another exception 477 * is handled in cpu_handle_exception. 478 */ 479 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 480 cpu->exception_index = EXCP_DEBUG; 481 cpu_loop_exit(cpu); 482 } 483 484 return last_tb; 485 } 486 487 488 static void cpu_exec_enter(CPUState *cpu) 489 { 490 CPUClass *cc = CPU_GET_CLASS(cpu); 491 492 if (cc->tcg_ops->cpu_exec_enter) { 493 cc->tcg_ops->cpu_exec_enter(cpu); 494 } 495 } 496 497 static void cpu_exec_exit(CPUState *cpu) 498 { 499 CPUClass *cc = CPU_GET_CLASS(cpu); 500 501 if (cc->tcg_ops->cpu_exec_exit) { 502 cc->tcg_ops->cpu_exec_exit(cpu); 503 } 504 QEMU_PLUGIN_ASSERT(cpu->plugin_mem_cbs == NULL); 505 } 506 507 void cpu_exec_step_atomic(CPUState *cpu) 508 { 509 CPUArchState *env = cpu->env_ptr; 510 TranslationBlock *tb; 511 target_ulong cs_base, pc; 512 uint32_t flags, cflags; 513 int tb_exit; 514 515 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 516 start_exclusive(); 517 g_assert(cpu == current_cpu); 518 g_assert(!cpu->running); 519 cpu->running = true; 520 521 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 522 523 cflags = curr_cflags(cpu); 524 /* Execute in a serial context. */ 525 cflags &= ~CF_PARALLEL; 526 /* After 1 insn, return and release the exclusive lock. */ 527 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 528 /* 529 * No need to check_for_breakpoints here. 530 * We only arrive in cpu_exec_step_atomic after beginning execution 531 * of an insn that includes an atomic operation we can't handle. 532 * Any breakpoint for this insn will have been recognized earlier. 533 */ 534 535 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 536 if (tb == NULL) { 537 mmap_lock(); 538 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 539 mmap_unlock(); 540 } 541 542 cpu_exec_enter(cpu); 543 /* execute the generated code */ 544 trace_exec_tb(tb, pc); 545 cpu_tb_exec(cpu, tb, &tb_exit); 546 cpu_exec_exit(cpu); 547 } else { 548 #ifndef CONFIG_SOFTMMU 549 clear_helper_retaddr(); 550 if (have_mmap_lock()) { 551 mmap_unlock(); 552 } 553 #endif 554 if (qemu_mutex_iothread_locked()) { 555 qemu_mutex_unlock_iothread(); 556 } 557 assert_no_pages_locked(); 558 qemu_plugin_disable_mem_helpers(cpu); 559 } 560 561 /* 562 * As we start the exclusive region before codegen we must still 563 * be in the region if we longjump out of either the codegen or 564 * the execution. 565 */ 566 g_assert(cpu_in_exclusive_context(cpu)); 567 cpu->running = false; 568 end_exclusive(); 569 } 570 571 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 572 { 573 /* 574 * Get the rx view of the structure, from which we find the 575 * executable code address, and tb_target_set_jmp_target can 576 * produce a pc-relative displacement to jmp_target_addr[n]. 577 */ 578 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 579 uintptr_t offset = tb->jmp_insn_offset[n]; 580 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 581 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 582 583 tb->jmp_target_addr[n] = addr; 584 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 585 } 586 587 static inline void tb_add_jump(TranslationBlock *tb, int n, 588 TranslationBlock *tb_next) 589 { 590 uintptr_t old; 591 592 qemu_thread_jit_write(); 593 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 594 qemu_spin_lock(&tb_next->jmp_lock); 595 596 /* make sure the destination TB is valid */ 597 if (tb_next->cflags & CF_INVALID) { 598 goto out_unlock_next; 599 } 600 /* Atomically claim the jump destination slot only if it was NULL */ 601 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 602 (uintptr_t)tb_next); 603 if (old) { 604 goto out_unlock_next; 605 } 606 607 /* patch the native jump address */ 608 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 609 610 /* add in TB jmp list */ 611 tb->jmp_list_next[n] = tb_next->jmp_list_head; 612 tb_next->jmp_list_head = (uintptr_t)tb | n; 613 614 qemu_spin_unlock(&tb_next->jmp_lock); 615 616 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 617 tb->tc.ptr, n, tb_next->tc.ptr); 618 return; 619 620 out_unlock_next: 621 qemu_spin_unlock(&tb_next->jmp_lock); 622 return; 623 } 624 625 static inline bool cpu_handle_halt(CPUState *cpu) 626 { 627 #ifndef CONFIG_USER_ONLY 628 if (cpu->halted) { 629 #if defined(TARGET_I386) 630 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) { 631 X86CPU *x86_cpu = X86_CPU(cpu); 632 qemu_mutex_lock_iothread(); 633 apic_poll_irq(x86_cpu->apic_state); 634 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 635 qemu_mutex_unlock_iothread(); 636 } 637 #endif /* TARGET_I386 */ 638 if (!cpu_has_work(cpu)) { 639 return true; 640 } 641 642 cpu->halted = 0; 643 } 644 #endif /* !CONFIG_USER_ONLY */ 645 646 return false; 647 } 648 649 static inline void cpu_handle_debug_exception(CPUState *cpu) 650 { 651 CPUClass *cc = CPU_GET_CLASS(cpu); 652 CPUWatchpoint *wp; 653 654 if (!cpu->watchpoint_hit) { 655 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 656 wp->flags &= ~BP_WATCHPOINT_HIT; 657 } 658 } 659 660 if (cc->tcg_ops->debug_excp_handler) { 661 cc->tcg_ops->debug_excp_handler(cpu); 662 } 663 } 664 665 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 666 { 667 if (cpu->exception_index < 0) { 668 #ifndef CONFIG_USER_ONLY 669 if (replay_has_exception() 670 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) { 671 /* Execute just one insn to trigger exception pending in the log */ 672 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 673 | CF_NOIRQ | 1; 674 } 675 #endif 676 return false; 677 } 678 if (cpu->exception_index >= EXCP_INTERRUPT) { 679 /* exit request from the cpu execution loop */ 680 *ret = cpu->exception_index; 681 if (*ret == EXCP_DEBUG) { 682 cpu_handle_debug_exception(cpu); 683 } 684 cpu->exception_index = -1; 685 return true; 686 } else { 687 #if defined(CONFIG_USER_ONLY) 688 /* if user mode only, we simulate a fake exception 689 which will be handled outside the cpu execution 690 loop */ 691 #if defined(TARGET_I386) 692 CPUClass *cc = CPU_GET_CLASS(cpu); 693 cc->tcg_ops->fake_user_interrupt(cpu); 694 #endif /* TARGET_I386 */ 695 *ret = cpu->exception_index; 696 cpu->exception_index = -1; 697 return true; 698 #else 699 if (replay_exception()) { 700 CPUClass *cc = CPU_GET_CLASS(cpu); 701 qemu_mutex_lock_iothread(); 702 cc->tcg_ops->do_interrupt(cpu); 703 qemu_mutex_unlock_iothread(); 704 cpu->exception_index = -1; 705 706 if (unlikely(cpu->singlestep_enabled)) { 707 /* 708 * After processing the exception, ensure an EXCP_DEBUG is 709 * raised when single-stepping so that GDB doesn't miss the 710 * next instruction. 711 */ 712 *ret = EXCP_DEBUG; 713 cpu_handle_debug_exception(cpu); 714 return true; 715 } 716 } else if (!replay_has_interrupt()) { 717 /* give a chance to iothread in replay mode */ 718 *ret = EXCP_INTERRUPT; 719 return true; 720 } 721 #endif 722 } 723 724 return false; 725 } 726 727 #ifndef CONFIG_USER_ONLY 728 /* 729 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a 730 * "real" interrupt event later. It does not need to be recorded for 731 * replay purposes. 732 */ 733 static inline bool need_replay_interrupt(int interrupt_request) 734 { 735 #if defined(TARGET_I386) 736 return !(interrupt_request & CPU_INTERRUPT_POLL); 737 #else 738 return true; 739 #endif 740 } 741 #endif /* !CONFIG_USER_ONLY */ 742 743 static inline bool cpu_handle_interrupt(CPUState *cpu, 744 TranslationBlock **last_tb) 745 { 746 /* 747 * If we have requested custom cflags with CF_NOIRQ we should 748 * skip checking here. Any pending interrupts will get picked up 749 * by the next TB we execute under normal cflags. 750 */ 751 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 752 return false; 753 } 754 755 /* Clear the interrupt flag now since we're processing 756 * cpu->interrupt_request and cpu->exit_request. 757 * Ensure zeroing happens before reading cpu->exit_request or 758 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 759 */ 760 qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0); 761 762 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 763 int interrupt_request; 764 qemu_mutex_lock_iothread(); 765 interrupt_request = cpu->interrupt_request; 766 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 767 /* Mask out external interrupts for this step. */ 768 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 769 } 770 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 771 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 772 cpu->exception_index = EXCP_DEBUG; 773 qemu_mutex_unlock_iothread(); 774 return true; 775 } 776 #if !defined(CONFIG_USER_ONLY) 777 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 778 /* Do nothing */ 779 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 780 replay_interrupt(); 781 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 782 cpu->halted = 1; 783 cpu->exception_index = EXCP_HLT; 784 qemu_mutex_unlock_iothread(); 785 return true; 786 } 787 #if defined(TARGET_I386) 788 else if (interrupt_request & CPU_INTERRUPT_INIT) { 789 X86CPU *x86_cpu = X86_CPU(cpu); 790 CPUArchState *env = &x86_cpu->env; 791 replay_interrupt(); 792 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 793 do_cpu_init(x86_cpu); 794 cpu->exception_index = EXCP_HALTED; 795 qemu_mutex_unlock_iothread(); 796 return true; 797 } 798 #else 799 else if (interrupt_request & CPU_INTERRUPT_RESET) { 800 replay_interrupt(); 801 cpu_reset(cpu); 802 qemu_mutex_unlock_iothread(); 803 return true; 804 } 805 #endif /* !TARGET_I386 */ 806 /* The target hook has 3 exit conditions: 807 False when the interrupt isn't processed, 808 True when it is, and we should restart on a new TB, 809 and via longjmp via cpu_loop_exit. */ 810 else { 811 CPUClass *cc = CPU_GET_CLASS(cpu); 812 813 if (cc->tcg_ops->cpu_exec_interrupt && 814 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 815 if (need_replay_interrupt(interrupt_request)) { 816 replay_interrupt(); 817 } 818 /* 819 * After processing the interrupt, ensure an EXCP_DEBUG is 820 * raised when single-stepping so that GDB doesn't miss the 821 * next instruction. 822 */ 823 if (unlikely(cpu->singlestep_enabled)) { 824 cpu->exception_index = EXCP_DEBUG; 825 qemu_mutex_unlock_iothread(); 826 return true; 827 } 828 cpu->exception_index = -1; 829 *last_tb = NULL; 830 } 831 /* The target hook may have updated the 'cpu->interrupt_request'; 832 * reload the 'interrupt_request' value */ 833 interrupt_request = cpu->interrupt_request; 834 } 835 #endif /* !CONFIG_USER_ONLY */ 836 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 837 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 838 /* ensure that no TB jump will be modified as 839 the program flow was changed */ 840 *last_tb = NULL; 841 } 842 843 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 844 qemu_mutex_unlock_iothread(); 845 } 846 847 /* Finally, check if we need to exit to the main loop. */ 848 if (unlikely(qatomic_read(&cpu->exit_request)) 849 || (icount_enabled() 850 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT) 851 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) { 852 qatomic_set(&cpu->exit_request, 0); 853 if (cpu->exception_index == -1) { 854 cpu->exception_index = EXCP_INTERRUPT; 855 } 856 return true; 857 } 858 859 return false; 860 } 861 862 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 863 target_ulong pc, 864 TranslationBlock **last_tb, int *tb_exit) 865 { 866 int32_t insns_left; 867 868 trace_exec_tb(tb, pc); 869 tb = cpu_tb_exec(cpu, tb, tb_exit); 870 if (*tb_exit != TB_EXIT_REQUESTED) { 871 *last_tb = tb; 872 return; 873 } 874 875 *last_tb = NULL; 876 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32); 877 if (insns_left < 0) { 878 /* Something asked us to stop executing chained TBs; just 879 * continue round the main loop. Whatever requested the exit 880 * will also have set something else (eg exit_request or 881 * interrupt_request) which will be handled by 882 * cpu_handle_interrupt. cpu_handle_interrupt will also 883 * clear cpu->icount_decr.u16.high. 884 */ 885 return; 886 } 887 888 /* Instruction counter expired. */ 889 assert(icount_enabled()); 890 #ifndef CONFIG_USER_ONLY 891 /* Ensure global icount has gone forward */ 892 icount_update(cpu); 893 /* Refill decrementer and continue execution. */ 894 insns_left = MIN(0xffff, cpu->icount_budget); 895 cpu_neg(cpu)->icount_decr.u16.low = insns_left; 896 cpu->icount_extra = cpu->icount_budget - insns_left; 897 898 /* 899 * If the next tb has more instructions than we have left to 900 * execute we need to ensure we find/generate a TB with exactly 901 * insns_left instructions in it. 902 */ 903 if (insns_left > 0 && insns_left < tb->icount) { 904 assert(insns_left <= CF_COUNT_MASK); 905 assert(cpu->icount_extra == 0); 906 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 907 } 908 #endif 909 } 910 911 /* main execution loop */ 912 913 static int __attribute__((noinline)) 914 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 915 { 916 int ret; 917 918 /* if an exception is pending, we execute it here */ 919 while (!cpu_handle_exception(cpu, &ret)) { 920 TranslationBlock *last_tb = NULL; 921 int tb_exit = 0; 922 923 while (!cpu_handle_interrupt(cpu, &last_tb)) { 924 TranslationBlock *tb; 925 target_ulong cs_base, pc; 926 uint32_t flags, cflags; 927 928 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags); 929 930 /* 931 * When requested, use an exact setting for cflags for the next 932 * execution. This is used for icount, precise smc, and stop- 933 * after-access watchpoints. Since this request should never 934 * have CF_INVALID set, -1 is a convenient invalid value that 935 * does not require tcg headers for cpu_common_reset. 936 */ 937 cflags = cpu->cflags_next_tb; 938 if (cflags == -1) { 939 cflags = curr_cflags(cpu); 940 } else { 941 cpu->cflags_next_tb = -1; 942 } 943 944 if (check_for_breakpoints(cpu, pc, &cflags)) { 945 break; 946 } 947 948 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 949 if (tb == NULL) { 950 uint32_t h; 951 952 mmap_lock(); 953 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 954 mmap_unlock(); 955 /* 956 * We add the TB in the virtual pc hash table 957 * for the fast lookup 958 */ 959 h = tb_jmp_cache_hash_func(pc); 960 tb_jmp_cache_set(cpu->tb_jmp_cache, h, tb, pc); 961 } 962 963 #ifndef CONFIG_USER_ONLY 964 /* 965 * We don't take care of direct jumps when address mapping 966 * changes in system emulation. So it's not safe to make a 967 * direct jump to a TB spanning two pages because the mapping 968 * for the second page can change. 969 */ 970 if (tb_page_addr1(tb) != -1) { 971 last_tb = NULL; 972 } 973 #endif 974 /* See if we can patch the calling TB. */ 975 if (last_tb) { 976 tb_add_jump(last_tb, tb_exit, tb); 977 } 978 979 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 980 981 QEMU_PLUGIN_ASSERT(cpu->plugin_mem_cbs == NULL); 982 /* Try to align the host and virtual clocks 983 if the guest is in advance */ 984 align_clocks(sc, cpu); 985 } 986 } 987 return ret; 988 } 989 990 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 991 { 992 /* Prepare setjmp context for exception handling. */ 993 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 994 /* Non-buggy compilers preserve this; assert the correct value. */ 995 g_assert(cpu == current_cpu); 996 997 #ifndef CONFIG_SOFTMMU 998 clear_helper_retaddr(); 999 if (have_mmap_lock()) { 1000 mmap_unlock(); 1001 } 1002 #endif 1003 if (qemu_mutex_iothread_locked()) { 1004 qemu_mutex_unlock_iothread(); 1005 } 1006 qemu_plugin_disable_mem_helpers(cpu); 1007 1008 assert_no_pages_locked(); 1009 } 1010 1011 return cpu_exec_loop(cpu, sc); 1012 } 1013 1014 int cpu_exec(CPUState *cpu) 1015 { 1016 int ret; 1017 SyncClocks sc = { 0 }; 1018 1019 /* replay_interrupt may need current_cpu */ 1020 current_cpu = cpu; 1021 1022 if (cpu_handle_halt(cpu)) { 1023 return EXCP_HALTED; 1024 } 1025 1026 rcu_read_lock(); 1027 cpu_exec_enter(cpu); 1028 1029 /* 1030 * Calculate difference between guest clock and host clock. 1031 * This delay includes the delay of the last cycle, so 1032 * what we have to do is sleep until it is 0. As for the 1033 * advance/delay we gain here, we try to fix it next time. 1034 */ 1035 init_delay_params(&sc, cpu); 1036 1037 ret = cpu_exec_setjmp(cpu, &sc); 1038 1039 cpu_exec_exit(cpu); 1040 rcu_read_unlock(); 1041 1042 return ret; 1043 } 1044 1045 void tcg_exec_realizefn(CPUState *cpu, Error **errp) 1046 { 1047 static bool tcg_target_initialized; 1048 CPUClass *cc = CPU_GET_CLASS(cpu); 1049 1050 if (!tcg_target_initialized) { 1051 cc->tcg_ops->initialize(); 1052 tcg_target_initialized = true; 1053 } 1054 1055 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1056 tlb_init(cpu); 1057 #ifndef CONFIG_USER_ONLY 1058 tcg_iommu_init_notifier_list(cpu); 1059 #endif /* !CONFIG_USER_ONLY */ 1060 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1061 } 1062 1063 /* undo the initializations in reverse order */ 1064 void tcg_exec_unrealizefn(CPUState *cpu) 1065 { 1066 #ifndef CONFIG_USER_ONLY 1067 tcg_iommu_free_notifier_list(cpu); 1068 #endif /* !CONFIG_USER_ONLY */ 1069 1070 tlb_destroy(cpu); 1071 g_free_rcu(cpu->tb_jmp_cache, rcu); 1072 } 1073