1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/qapi-commands-machine.h" 24 #include "qapi/type-helpers.h" 25 #include "hw/core/tcg-cpu-ops.h" 26 #include "trace.h" 27 #include "disas/disas.h" 28 #include "exec/exec-all.h" 29 #include "tcg/tcg.h" 30 #include "qemu/atomic.h" 31 #include "qemu/compiler.h" 32 #include "qemu/timer.h" 33 #include "qemu/rcu.h" 34 #include "exec/log.h" 35 #include "qemu/main-loop.h" 36 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 37 #include "hw/i386/apic.h" 38 #endif 39 #include "sysemu/cpus.h" 40 #include "exec/cpu-all.h" 41 #include "sysemu/cpu-timers.h" 42 #include "sysemu/replay.h" 43 #include "sysemu/tcg.h" 44 #include "exec/helper-proto.h" 45 #include "tb-hash.h" 46 #include "tb-context.h" 47 #include "internal.h" 48 49 /* -icount align implementation. */ 50 51 typedef struct SyncClocks { 52 int64_t diff_clk; 53 int64_t last_cpu_icount; 54 int64_t realtime_clock; 55 } SyncClocks; 56 57 #if !defined(CONFIG_USER_ONLY) 58 /* Allow the guest to have a max 3ms advance. 59 * The difference between the 2 clocks could therefore 60 * oscillate around 0. 61 */ 62 #define VM_CLOCK_ADVANCE 3000000 63 #define THRESHOLD_REDUCE 1.5 64 #define MAX_DELAY_PRINT_RATE 2000000000LL 65 #define MAX_NB_PRINTS 100 66 67 static int64_t max_delay; 68 static int64_t max_advance; 69 70 static void align_clocks(SyncClocks *sc, CPUState *cpu) 71 { 72 int64_t cpu_icount; 73 74 if (!icount_align_option) { 75 return; 76 } 77 78 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 79 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 80 sc->last_cpu_icount = cpu_icount; 81 82 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 83 #ifndef _WIN32 84 struct timespec sleep_delay, rem_delay; 85 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 86 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 87 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 88 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 89 } else { 90 sc->diff_clk = 0; 91 } 92 #else 93 Sleep(sc->diff_clk / SCALE_MS); 94 sc->diff_clk = 0; 95 #endif 96 } 97 } 98 99 static void print_delay(const SyncClocks *sc) 100 { 101 static float threshold_delay; 102 static int64_t last_realtime_clock; 103 static int nb_prints; 104 105 if (icount_align_option && 106 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 107 nb_prints < MAX_NB_PRINTS) { 108 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 109 (-sc->diff_clk / (float)1000000000LL < 110 (threshold_delay - THRESHOLD_REDUCE))) { 111 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 112 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 113 threshold_delay - 1, 114 threshold_delay); 115 nb_prints++; 116 last_realtime_clock = sc->realtime_clock; 117 } 118 } 119 } 120 121 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 122 { 123 if (!icount_align_option) { 124 return; 125 } 126 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 127 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 128 sc->last_cpu_icount 129 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 130 if (sc->diff_clk < max_delay) { 131 max_delay = sc->diff_clk; 132 } 133 if (sc->diff_clk > max_advance) { 134 max_advance = sc->diff_clk; 135 } 136 137 /* Print every 2s max if the guest is late. We limit the number 138 of printed messages to NB_PRINT_MAX(currently 100) */ 139 print_delay(sc); 140 } 141 #else 142 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 143 { 144 } 145 146 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 147 { 148 } 149 #endif /* CONFIG USER ONLY */ 150 151 uint32_t curr_cflags(CPUState *cpu) 152 { 153 uint32_t cflags = cpu->tcg_cflags; 154 155 /* 156 * Record gdb single-step. We should be exiting the TB by raising 157 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 158 * 159 * For singlestep and -d nochain, suppress goto_tb so that 160 * we can log -d cpu,exec after every TB. 161 */ 162 if (unlikely(cpu->singlestep_enabled)) { 163 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 164 } else if (singlestep) { 165 cflags |= CF_NO_GOTO_TB | 1; 166 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 167 cflags |= CF_NO_GOTO_TB; 168 } 169 170 return cflags; 171 } 172 173 /* Might cause an exception, so have a longjmp destination ready */ 174 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc, 175 target_ulong cs_base, 176 uint32_t flags, uint32_t cflags) 177 { 178 TranslationBlock *tb; 179 uint32_t hash; 180 181 /* we should never be trying to look up an INVALID tb */ 182 tcg_debug_assert(!(cflags & CF_INVALID)); 183 184 hash = tb_jmp_cache_hash_func(pc); 185 tb = qatomic_rcu_read(&cpu->tb_jmp_cache[hash]); 186 187 if (likely(tb && 188 tb->pc == pc && 189 tb->cs_base == cs_base && 190 tb->flags == flags && 191 tb->trace_vcpu_dstate == *cpu->trace_dstate && 192 tb_cflags(tb) == cflags)) { 193 return tb; 194 } 195 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 196 if (tb == NULL) { 197 return NULL; 198 } 199 qatomic_set(&cpu->tb_jmp_cache[hash], tb); 200 return tb; 201 } 202 203 static inline void log_cpu_exec(target_ulong pc, CPUState *cpu, 204 const TranslationBlock *tb) 205 { 206 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) 207 && qemu_log_in_addr_range(pc)) { 208 209 qemu_log_mask(CPU_LOG_EXEC, 210 "Trace %d: %p [" TARGET_FMT_lx 211 "/" TARGET_FMT_lx "/%08x/%08x] %s\n", 212 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 213 tb->flags, tb->cflags, lookup_symbol(pc)); 214 215 #if defined(DEBUG_DISAS) 216 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 217 FILE *logfile = qemu_log_trylock(); 218 if (logfile) { 219 int flags = 0; 220 221 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 222 flags |= CPU_DUMP_FPU; 223 } 224 #if defined(TARGET_I386) 225 flags |= CPU_DUMP_CCOP; 226 #endif 227 cpu_dump_state(cpu, logfile, flags); 228 qemu_log_unlock(logfile); 229 } 230 } 231 #endif /* DEBUG_DISAS */ 232 } 233 } 234 235 static bool check_for_breakpoints(CPUState *cpu, target_ulong pc, 236 uint32_t *cflags) 237 { 238 CPUBreakpoint *bp; 239 bool match_page = false; 240 241 if (likely(QTAILQ_EMPTY(&cpu->breakpoints))) { 242 return false; 243 } 244 245 /* 246 * Singlestep overrides breakpoints. 247 * This requirement is visible in the record-replay tests, where 248 * we would fail to make forward progress in reverse-continue. 249 * 250 * TODO: gdb singlestep should only override gdb breakpoints, 251 * so that one could (gdb) singlestep into the guest kernel's 252 * architectural breakpoint handler. 253 */ 254 if (cpu->singlestep_enabled) { 255 return false; 256 } 257 258 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 259 /* 260 * If we have an exact pc match, trigger the breakpoint. 261 * Otherwise, note matches within the page. 262 */ 263 if (pc == bp->pc) { 264 bool match_bp = false; 265 266 if (bp->flags & BP_GDB) { 267 match_bp = true; 268 } else if (bp->flags & BP_CPU) { 269 #ifdef CONFIG_USER_ONLY 270 g_assert_not_reached(); 271 #else 272 CPUClass *cc = CPU_GET_CLASS(cpu); 273 assert(cc->tcg_ops->debug_check_breakpoint); 274 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu); 275 #endif 276 } 277 278 if (match_bp) { 279 cpu->exception_index = EXCP_DEBUG; 280 return true; 281 } 282 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 283 match_page = true; 284 } 285 } 286 287 /* 288 * Within the same page as a breakpoint, single-step, 289 * returning to helper_lookup_tb_ptr after each insn looking 290 * for the actual breakpoint. 291 * 292 * TODO: Perhaps better to record all of the TBs associated 293 * with a given virtual page that contains a breakpoint, and 294 * then invalidate them when a new overlapping breakpoint is 295 * set on the page. Non-overlapping TBs would not be 296 * invalidated, nor would any TB need to be invalidated as 297 * breakpoints are removed. 298 */ 299 if (match_page) { 300 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1; 301 } 302 return false; 303 } 304 305 /** 306 * helper_lookup_tb_ptr: quick check for next tb 307 * @env: current cpu state 308 * 309 * Look for an existing TB matching the current cpu state. 310 * If found, return the code pointer. If not found, return 311 * the tcg epilogue so that we return into cpu_tb_exec. 312 */ 313 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 314 { 315 CPUState *cpu = env_cpu(env); 316 TranslationBlock *tb; 317 target_ulong cs_base, pc; 318 uint32_t flags, cflags; 319 320 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 321 322 cflags = curr_cflags(cpu); 323 if (check_for_breakpoints(cpu, pc, &cflags)) { 324 cpu_loop_exit(cpu); 325 } 326 327 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 328 if (tb == NULL) { 329 return tcg_code_gen_epilogue; 330 } 331 332 log_cpu_exec(pc, cpu, tb); 333 334 return tb->tc.ptr; 335 } 336 337 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 338 /* 339 * Disable CFI checks. 340 * TCG creates binary blobs at runtime, with the transformed code. 341 * A TB is a blob of binary code, created at runtime and called with an 342 * indirect function call. Since such function did not exist at compile time, 343 * the CFI runtime has no way to verify its signature and would fail. 344 * TCG is not considered a security-sensitive part of QEMU so this does not 345 * affect the impact of CFI in environment with high security requirements 346 */ 347 static inline TranslationBlock * QEMU_DISABLE_CFI 348 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 349 { 350 CPUArchState *env = cpu->env_ptr; 351 uintptr_t ret; 352 TranslationBlock *last_tb; 353 const void *tb_ptr = itb->tc.ptr; 354 355 log_cpu_exec(itb->pc, cpu, itb); 356 357 qemu_thread_jit_execute(); 358 ret = tcg_qemu_tb_exec(env, tb_ptr); 359 cpu->can_do_io = 1; 360 /* 361 * TODO: Delay swapping back to the read-write region of the TB 362 * until we actually need to modify the TB. The read-only copy, 363 * coming from the rx region, shares the same host TLB entry as 364 * the code that executed the exit_tb opcode that arrived here. 365 * If we insist on touching both the RX and the RW pages, we 366 * double the host TLB pressure. 367 */ 368 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 369 *tb_exit = ret & TB_EXIT_MASK; 370 371 trace_exec_tb_exit(last_tb, *tb_exit); 372 373 if (*tb_exit > TB_EXIT_IDX1) { 374 /* We didn't start executing this TB (eg because the instruction 375 * counter hit zero); we must restore the guest PC to the address 376 * of the start of the TB. 377 */ 378 CPUClass *cc = CPU_GET_CLASS(cpu); 379 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, 380 "Stopped execution of TB chain before %p [" 381 TARGET_FMT_lx "] %s\n", 382 last_tb->tc.ptr, last_tb->pc, 383 lookup_symbol(last_tb->pc)); 384 if (cc->tcg_ops->synchronize_from_tb) { 385 cc->tcg_ops->synchronize_from_tb(cpu, last_tb); 386 } else { 387 assert(cc->set_pc); 388 cc->set_pc(cpu, last_tb->pc); 389 } 390 } 391 392 /* 393 * If gdb single-step, and we haven't raised another exception, 394 * raise a debug exception. Single-step with another exception 395 * is handled in cpu_handle_exception. 396 */ 397 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 398 cpu->exception_index = EXCP_DEBUG; 399 cpu_loop_exit(cpu); 400 } 401 402 return last_tb; 403 } 404 405 406 static void cpu_exec_enter(CPUState *cpu) 407 { 408 CPUClass *cc = CPU_GET_CLASS(cpu); 409 410 if (cc->tcg_ops->cpu_exec_enter) { 411 cc->tcg_ops->cpu_exec_enter(cpu); 412 } 413 } 414 415 static void cpu_exec_exit(CPUState *cpu) 416 { 417 CPUClass *cc = CPU_GET_CLASS(cpu); 418 419 if (cc->tcg_ops->cpu_exec_exit) { 420 cc->tcg_ops->cpu_exec_exit(cpu); 421 } 422 } 423 424 void cpu_exec_step_atomic(CPUState *cpu) 425 { 426 CPUArchState *env = cpu->env_ptr; 427 TranslationBlock *tb; 428 target_ulong cs_base, pc; 429 uint32_t flags, cflags; 430 int tb_exit; 431 432 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 433 start_exclusive(); 434 g_assert(cpu == current_cpu); 435 g_assert(!cpu->running); 436 cpu->running = true; 437 438 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 439 440 cflags = curr_cflags(cpu); 441 /* Execute in a serial context. */ 442 cflags &= ~CF_PARALLEL; 443 /* After 1 insn, return and release the exclusive lock. */ 444 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 445 /* 446 * No need to check_for_breakpoints here. 447 * We only arrive in cpu_exec_step_atomic after beginning execution 448 * of an insn that includes an atomic operation we can't handle. 449 * Any breakpoint for this insn will have been recognized earlier. 450 */ 451 452 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 453 if (tb == NULL) { 454 mmap_lock(); 455 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 456 mmap_unlock(); 457 } 458 459 cpu_exec_enter(cpu); 460 /* execute the generated code */ 461 trace_exec_tb(tb, pc); 462 cpu_tb_exec(cpu, tb, &tb_exit); 463 cpu_exec_exit(cpu); 464 } else { 465 /* 466 * The mmap_lock is dropped by tb_gen_code if it runs out of 467 * memory. 468 */ 469 #ifndef CONFIG_SOFTMMU 470 clear_helper_retaddr(); 471 tcg_debug_assert(!have_mmap_lock()); 472 #endif 473 if (qemu_mutex_iothread_locked()) { 474 qemu_mutex_unlock_iothread(); 475 } 476 assert_no_pages_locked(); 477 qemu_plugin_disable_mem_helpers(cpu); 478 } 479 480 /* 481 * As we start the exclusive region before codegen we must still 482 * be in the region if we longjump out of either the codegen or 483 * the execution. 484 */ 485 g_assert(cpu_in_exclusive_context(cpu)); 486 cpu->running = false; 487 end_exclusive(); 488 } 489 490 struct tb_desc { 491 target_ulong pc; 492 target_ulong cs_base; 493 CPUArchState *env; 494 tb_page_addr_t phys_page1; 495 uint32_t flags; 496 uint32_t cflags; 497 uint32_t trace_vcpu_dstate; 498 }; 499 500 static bool tb_lookup_cmp(const void *p, const void *d) 501 { 502 const TranslationBlock *tb = p; 503 const struct tb_desc *desc = d; 504 505 if (tb->pc == desc->pc && 506 tb->page_addr[0] == desc->phys_page1 && 507 tb->cs_base == desc->cs_base && 508 tb->flags == desc->flags && 509 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 510 tb_cflags(tb) == desc->cflags) { 511 /* check next page if needed */ 512 if (tb->page_addr[1] == -1) { 513 return true; 514 } else { 515 tb_page_addr_t phys_page2; 516 target_ulong virt_page2; 517 518 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 519 phys_page2 = get_page_addr_code(desc->env, virt_page2); 520 if (tb->page_addr[1] == phys_page2) { 521 return true; 522 } 523 } 524 } 525 return false; 526 } 527 528 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 529 target_ulong cs_base, uint32_t flags, 530 uint32_t cflags) 531 { 532 tb_page_addr_t phys_pc; 533 struct tb_desc desc; 534 uint32_t h; 535 536 desc.env = cpu->env_ptr; 537 desc.cs_base = cs_base; 538 desc.flags = flags; 539 desc.cflags = cflags; 540 desc.trace_vcpu_dstate = *cpu->trace_dstate; 541 desc.pc = pc; 542 phys_pc = get_page_addr_code(desc.env, pc); 543 if (phys_pc == -1) { 544 return NULL; 545 } 546 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; 547 h = tb_hash_func(phys_pc, pc, flags, cflags, *cpu->trace_dstate); 548 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 549 } 550 551 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 552 { 553 if (TCG_TARGET_HAS_direct_jump) { 554 uintptr_t offset = tb->jmp_target_arg[n]; 555 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; 556 uintptr_t jmp_rx = tc_ptr + offset; 557 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 558 tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr); 559 } else { 560 tb->jmp_target_arg[n] = addr; 561 } 562 } 563 564 static inline void tb_add_jump(TranslationBlock *tb, int n, 565 TranslationBlock *tb_next) 566 { 567 uintptr_t old; 568 569 qemu_thread_jit_write(); 570 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 571 qemu_spin_lock(&tb_next->jmp_lock); 572 573 /* make sure the destination TB is valid */ 574 if (tb_next->cflags & CF_INVALID) { 575 goto out_unlock_next; 576 } 577 /* Atomically claim the jump destination slot only if it was NULL */ 578 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 579 (uintptr_t)tb_next); 580 if (old) { 581 goto out_unlock_next; 582 } 583 584 /* patch the native jump address */ 585 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 586 587 /* add in TB jmp list */ 588 tb->jmp_list_next[n] = tb_next->jmp_list_head; 589 tb_next->jmp_list_head = (uintptr_t)tb | n; 590 591 qemu_spin_unlock(&tb_next->jmp_lock); 592 593 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 594 "Linking TBs %p [" TARGET_FMT_lx 595 "] index %d -> %p [" TARGET_FMT_lx "]\n", 596 tb->tc.ptr, tb->pc, n, 597 tb_next->tc.ptr, tb_next->pc); 598 return; 599 600 out_unlock_next: 601 qemu_spin_unlock(&tb_next->jmp_lock); 602 return; 603 } 604 605 static inline bool cpu_handle_halt(CPUState *cpu) 606 { 607 #ifndef CONFIG_USER_ONLY 608 if (cpu->halted) { 609 #if defined(TARGET_I386) 610 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) { 611 X86CPU *x86_cpu = X86_CPU(cpu); 612 qemu_mutex_lock_iothread(); 613 apic_poll_irq(x86_cpu->apic_state); 614 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 615 qemu_mutex_unlock_iothread(); 616 } 617 #endif /* TARGET_I386 */ 618 if (!cpu_has_work(cpu)) { 619 return true; 620 } 621 622 cpu->halted = 0; 623 } 624 #endif /* !CONFIG_USER_ONLY */ 625 626 return false; 627 } 628 629 static inline void cpu_handle_debug_exception(CPUState *cpu) 630 { 631 CPUClass *cc = CPU_GET_CLASS(cpu); 632 CPUWatchpoint *wp; 633 634 if (!cpu->watchpoint_hit) { 635 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 636 wp->flags &= ~BP_WATCHPOINT_HIT; 637 } 638 } 639 640 if (cc->tcg_ops->debug_excp_handler) { 641 cc->tcg_ops->debug_excp_handler(cpu); 642 } 643 } 644 645 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 646 { 647 if (cpu->exception_index < 0) { 648 #ifndef CONFIG_USER_ONLY 649 if (replay_has_exception() 650 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) { 651 /* Execute just one insn to trigger exception pending in the log */ 652 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 653 | CF_NOIRQ | 1; 654 } 655 #endif 656 return false; 657 } 658 if (cpu->exception_index >= EXCP_INTERRUPT) { 659 /* exit request from the cpu execution loop */ 660 *ret = cpu->exception_index; 661 if (*ret == EXCP_DEBUG) { 662 cpu_handle_debug_exception(cpu); 663 } 664 cpu->exception_index = -1; 665 return true; 666 } else { 667 #if defined(CONFIG_USER_ONLY) 668 /* if user mode only, we simulate a fake exception 669 which will be handled outside the cpu execution 670 loop */ 671 #if defined(TARGET_I386) 672 CPUClass *cc = CPU_GET_CLASS(cpu); 673 cc->tcg_ops->fake_user_interrupt(cpu); 674 #endif /* TARGET_I386 */ 675 *ret = cpu->exception_index; 676 cpu->exception_index = -1; 677 return true; 678 #else 679 if (replay_exception()) { 680 CPUClass *cc = CPU_GET_CLASS(cpu); 681 qemu_mutex_lock_iothread(); 682 cc->tcg_ops->do_interrupt(cpu); 683 qemu_mutex_unlock_iothread(); 684 cpu->exception_index = -1; 685 686 if (unlikely(cpu->singlestep_enabled)) { 687 /* 688 * After processing the exception, ensure an EXCP_DEBUG is 689 * raised when single-stepping so that GDB doesn't miss the 690 * next instruction. 691 */ 692 *ret = EXCP_DEBUG; 693 cpu_handle_debug_exception(cpu); 694 return true; 695 } 696 } else if (!replay_has_interrupt()) { 697 /* give a chance to iothread in replay mode */ 698 *ret = EXCP_INTERRUPT; 699 return true; 700 } 701 #endif 702 } 703 704 return false; 705 } 706 707 #ifndef CONFIG_USER_ONLY 708 /* 709 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a 710 * "real" interrupt event later. It does not need to be recorded for 711 * replay purposes. 712 */ 713 static inline bool need_replay_interrupt(int interrupt_request) 714 { 715 #if defined(TARGET_I386) 716 return !(interrupt_request & CPU_INTERRUPT_POLL); 717 #else 718 return true; 719 #endif 720 } 721 #endif /* !CONFIG_USER_ONLY */ 722 723 static inline bool cpu_handle_interrupt(CPUState *cpu, 724 TranslationBlock **last_tb) 725 { 726 /* 727 * If we have requested custom cflags with CF_NOIRQ we should 728 * skip checking here. Any pending interrupts will get picked up 729 * by the next TB we execute under normal cflags. 730 */ 731 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 732 return false; 733 } 734 735 /* Clear the interrupt flag now since we're processing 736 * cpu->interrupt_request and cpu->exit_request. 737 * Ensure zeroing happens before reading cpu->exit_request or 738 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 739 */ 740 qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0); 741 742 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 743 int interrupt_request; 744 qemu_mutex_lock_iothread(); 745 interrupt_request = cpu->interrupt_request; 746 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 747 /* Mask out external interrupts for this step. */ 748 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 749 } 750 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 751 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 752 cpu->exception_index = EXCP_DEBUG; 753 qemu_mutex_unlock_iothread(); 754 return true; 755 } 756 #if !defined(CONFIG_USER_ONLY) 757 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 758 /* Do nothing */ 759 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 760 replay_interrupt(); 761 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 762 cpu->halted = 1; 763 cpu->exception_index = EXCP_HLT; 764 qemu_mutex_unlock_iothread(); 765 return true; 766 } 767 #if defined(TARGET_I386) 768 else if (interrupt_request & CPU_INTERRUPT_INIT) { 769 X86CPU *x86_cpu = X86_CPU(cpu); 770 CPUArchState *env = &x86_cpu->env; 771 replay_interrupt(); 772 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 773 do_cpu_init(x86_cpu); 774 cpu->exception_index = EXCP_HALTED; 775 qemu_mutex_unlock_iothread(); 776 return true; 777 } 778 #else 779 else if (interrupt_request & CPU_INTERRUPT_RESET) { 780 replay_interrupt(); 781 cpu_reset(cpu); 782 qemu_mutex_unlock_iothread(); 783 return true; 784 } 785 #endif /* !TARGET_I386 */ 786 /* The target hook has 3 exit conditions: 787 False when the interrupt isn't processed, 788 True when it is, and we should restart on a new TB, 789 and via longjmp via cpu_loop_exit. */ 790 else { 791 CPUClass *cc = CPU_GET_CLASS(cpu); 792 793 if (cc->tcg_ops->cpu_exec_interrupt && 794 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 795 if (need_replay_interrupt(interrupt_request)) { 796 replay_interrupt(); 797 } 798 /* 799 * After processing the interrupt, ensure an EXCP_DEBUG is 800 * raised when single-stepping so that GDB doesn't miss the 801 * next instruction. 802 */ 803 if (unlikely(cpu->singlestep_enabled)) { 804 cpu->exception_index = EXCP_DEBUG; 805 qemu_mutex_unlock_iothread(); 806 return true; 807 } 808 cpu->exception_index = -1; 809 *last_tb = NULL; 810 } 811 /* The target hook may have updated the 'cpu->interrupt_request'; 812 * reload the 'interrupt_request' value */ 813 interrupt_request = cpu->interrupt_request; 814 } 815 #endif /* !CONFIG_USER_ONLY */ 816 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 817 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 818 /* ensure that no TB jump will be modified as 819 the program flow was changed */ 820 *last_tb = NULL; 821 } 822 823 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 824 qemu_mutex_unlock_iothread(); 825 } 826 827 /* Finally, check if we need to exit to the main loop. */ 828 if (unlikely(qatomic_read(&cpu->exit_request)) 829 || (icount_enabled() 830 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT) 831 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) { 832 qatomic_set(&cpu->exit_request, 0); 833 if (cpu->exception_index == -1) { 834 cpu->exception_index = EXCP_INTERRUPT; 835 } 836 return true; 837 } 838 839 return false; 840 } 841 842 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 843 TranslationBlock **last_tb, int *tb_exit) 844 { 845 int32_t insns_left; 846 847 trace_exec_tb(tb, tb->pc); 848 tb = cpu_tb_exec(cpu, tb, tb_exit); 849 if (*tb_exit != TB_EXIT_REQUESTED) { 850 *last_tb = tb; 851 return; 852 } 853 854 *last_tb = NULL; 855 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32); 856 if (insns_left < 0) { 857 /* Something asked us to stop executing chained TBs; just 858 * continue round the main loop. Whatever requested the exit 859 * will also have set something else (eg exit_request or 860 * interrupt_request) which will be handled by 861 * cpu_handle_interrupt. cpu_handle_interrupt will also 862 * clear cpu->icount_decr.u16.high. 863 */ 864 return; 865 } 866 867 /* Instruction counter expired. */ 868 assert(icount_enabled()); 869 #ifndef CONFIG_USER_ONLY 870 /* Ensure global icount has gone forward */ 871 icount_update(cpu); 872 /* Refill decrementer and continue execution. */ 873 insns_left = MIN(0xffff, cpu->icount_budget); 874 cpu_neg(cpu)->icount_decr.u16.low = insns_left; 875 cpu->icount_extra = cpu->icount_budget - insns_left; 876 877 /* 878 * If the next tb has more instructions than we have left to 879 * execute we need to ensure we find/generate a TB with exactly 880 * insns_left instructions in it. 881 */ 882 if (insns_left > 0 && insns_left < tb->icount) { 883 assert(insns_left <= CF_COUNT_MASK); 884 assert(cpu->icount_extra == 0); 885 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 886 } 887 #endif 888 } 889 890 /* main execution loop */ 891 892 int cpu_exec(CPUState *cpu) 893 { 894 int ret; 895 SyncClocks sc = { 0 }; 896 897 /* replay_interrupt may need current_cpu */ 898 current_cpu = cpu; 899 900 if (cpu_handle_halt(cpu)) { 901 return EXCP_HALTED; 902 } 903 904 rcu_read_lock(); 905 906 cpu_exec_enter(cpu); 907 908 /* Calculate difference between guest clock and host clock. 909 * This delay includes the delay of the last cycle, so 910 * what we have to do is sleep until it is 0. As for the 911 * advance/delay we gain here, we try to fix it next time. 912 */ 913 init_delay_params(&sc, cpu); 914 915 /* prepare setjmp context for exception handling */ 916 if (sigsetjmp(cpu->jmp_env, 0) != 0) { 917 #if defined(__clang__) 918 /* 919 * Some compilers wrongly smash all local variables after 920 * siglongjmp (the spec requires that only non-volatile locals 921 * which are changed between the sigsetjmp and siglongjmp are 922 * permitted to be trashed). There were bug reports for gcc 923 * 4.5.0 and clang. The bug is fixed in all versions of gcc 924 * that we support, but is still unfixed in clang: 925 * https://bugs.llvm.org/show_bug.cgi?id=21183 926 * 927 * Reload an essential local variable here for those compilers. 928 * Newer versions of gcc would complain about this code (-Wclobbered), 929 * so we only perform the workaround for clang. 930 */ 931 cpu = current_cpu; 932 #else 933 /* Non-buggy compilers preserve this; assert the correct value. */ 934 g_assert(cpu == current_cpu); 935 #endif 936 937 #ifndef CONFIG_SOFTMMU 938 clear_helper_retaddr(); 939 tcg_debug_assert(!have_mmap_lock()); 940 #endif 941 if (qemu_mutex_iothread_locked()) { 942 qemu_mutex_unlock_iothread(); 943 } 944 qemu_plugin_disable_mem_helpers(cpu); 945 946 assert_no_pages_locked(); 947 } 948 949 /* if an exception is pending, we execute it here */ 950 while (!cpu_handle_exception(cpu, &ret)) { 951 TranslationBlock *last_tb = NULL; 952 int tb_exit = 0; 953 954 while (!cpu_handle_interrupt(cpu, &last_tb)) { 955 TranslationBlock *tb; 956 target_ulong cs_base, pc; 957 uint32_t flags, cflags; 958 959 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags); 960 961 /* 962 * When requested, use an exact setting for cflags for the next 963 * execution. This is used for icount, precise smc, and stop- 964 * after-access watchpoints. Since this request should never 965 * have CF_INVALID set, -1 is a convenient invalid value that 966 * does not require tcg headers for cpu_common_reset. 967 */ 968 cflags = cpu->cflags_next_tb; 969 if (cflags == -1) { 970 cflags = curr_cflags(cpu); 971 } else { 972 cpu->cflags_next_tb = -1; 973 } 974 975 if (check_for_breakpoints(cpu, pc, &cflags)) { 976 break; 977 } 978 979 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 980 if (tb == NULL) { 981 mmap_lock(); 982 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 983 mmap_unlock(); 984 /* 985 * We add the TB in the virtual pc hash table 986 * for the fast lookup 987 */ 988 qatomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); 989 } 990 991 #ifndef CONFIG_USER_ONLY 992 /* 993 * We don't take care of direct jumps when address mapping 994 * changes in system emulation. So it's not safe to make a 995 * direct jump to a TB spanning two pages because the mapping 996 * for the second page can change. 997 */ 998 if (tb->page_addr[1] != -1) { 999 last_tb = NULL; 1000 } 1001 #endif 1002 /* See if we can patch the calling TB. */ 1003 if (last_tb) { 1004 tb_add_jump(last_tb, tb_exit, tb); 1005 } 1006 1007 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); 1008 1009 /* Try to align the host and virtual clocks 1010 if the guest is in advance */ 1011 align_clocks(&sc, cpu); 1012 } 1013 } 1014 1015 cpu_exec_exit(cpu); 1016 rcu_read_unlock(); 1017 1018 return ret; 1019 } 1020 1021 void tcg_exec_realizefn(CPUState *cpu, Error **errp) 1022 { 1023 static bool tcg_target_initialized; 1024 CPUClass *cc = CPU_GET_CLASS(cpu); 1025 1026 if (!tcg_target_initialized) { 1027 cc->tcg_ops->initialize(); 1028 tcg_target_initialized = true; 1029 } 1030 tlb_init(cpu); 1031 qemu_plugin_vcpu_init_hook(cpu); 1032 1033 #ifndef CONFIG_USER_ONLY 1034 tcg_iommu_init_notifier_list(cpu); 1035 #endif /* !CONFIG_USER_ONLY */ 1036 } 1037 1038 /* undo the initializations in reverse order */ 1039 void tcg_exec_unrealizefn(CPUState *cpu) 1040 { 1041 #ifndef CONFIG_USER_ONLY 1042 tcg_iommu_free_notifier_list(cpu); 1043 #endif /* !CONFIG_USER_ONLY */ 1044 1045 qemu_plugin_vcpu_exit_hook(cpu); 1046 tlb_destroy(cpu); 1047 } 1048 1049 #ifndef CONFIG_USER_ONLY 1050 1051 static void dump_drift_info(GString *buf) 1052 { 1053 if (!icount_enabled()) { 1054 return; 1055 } 1056 1057 g_string_append_printf(buf, "Host - Guest clock %"PRIi64" ms\n", 1058 (cpu_get_clock() - icount_get()) / SCALE_MS); 1059 if (icount_align_option) { 1060 g_string_append_printf(buf, "Max guest delay %"PRIi64" ms\n", 1061 -max_delay / SCALE_MS); 1062 g_string_append_printf(buf, "Max guest advance %"PRIi64" ms\n", 1063 max_advance / SCALE_MS); 1064 } else { 1065 g_string_append_printf(buf, "Max guest delay NA\n"); 1066 g_string_append_printf(buf, "Max guest advance NA\n"); 1067 } 1068 } 1069 1070 HumanReadableText *qmp_x_query_jit(Error **errp) 1071 { 1072 g_autoptr(GString) buf = g_string_new(""); 1073 1074 if (!tcg_enabled()) { 1075 error_setg(errp, "JIT information is only available with accel=tcg"); 1076 return NULL; 1077 } 1078 1079 dump_exec_info(buf); 1080 dump_drift_info(buf); 1081 1082 return human_readable_text_from_str(buf); 1083 } 1084 1085 HumanReadableText *qmp_x_query_opcount(Error **errp) 1086 { 1087 g_autoptr(GString) buf = g_string_new(""); 1088 1089 if (!tcg_enabled()) { 1090 error_setg(errp, "Opcode count information is only available with accel=tcg"); 1091 return NULL; 1092 } 1093 1094 tcg_dump_op_count(buf); 1095 1096 return human_readable_text_from_str(buf); 1097 } 1098 1099 #ifdef CONFIG_PROFILER 1100 1101 int64_t dev_time; 1102 1103 HumanReadableText *qmp_x_query_profile(Error **errp) 1104 { 1105 g_autoptr(GString) buf = g_string_new(""); 1106 static int64_t last_cpu_exec_time; 1107 int64_t cpu_exec_time; 1108 int64_t delta; 1109 1110 cpu_exec_time = tcg_cpu_exec_time(); 1111 delta = cpu_exec_time - last_cpu_exec_time; 1112 1113 g_string_append_printf(buf, "async time %" PRId64 " (%0.3f)\n", 1114 dev_time, dev_time / (double)NANOSECONDS_PER_SECOND); 1115 g_string_append_printf(buf, "qemu time %" PRId64 " (%0.3f)\n", 1116 delta, delta / (double)NANOSECONDS_PER_SECOND); 1117 last_cpu_exec_time = cpu_exec_time; 1118 dev_time = 0; 1119 1120 return human_readable_text_from_str(buf); 1121 } 1122 #else 1123 HumanReadableText *qmp_x_query_profile(Error **errp) 1124 { 1125 error_setg(errp, "Internal profiler not compiled"); 1126 return NULL; 1127 } 1128 #endif 1129 1130 #endif /* !CONFIG_USER_ONLY */ 1131