xref: /openbmc/qemu/accel/tcg/cpu-exec.c (revision cba42d61)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/qemu-print.h"
23 #include "cpu.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 #include "qemu/atomic.h"
30 #include "qemu/compiler.h"
31 #include "sysemu/qtest.h"
32 #include "qemu/timer.h"
33 #include "qemu/rcu.h"
34 #include "exec/tb-hash.h"
35 #include "exec/tb-lookup.h"
36 #include "exec/log.h"
37 #include "qemu/main-loop.h"
38 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
39 #include "hw/i386/apic.h"
40 #endif
41 #include "sysemu/cpus.h"
42 #include "exec/cpu-all.h"
43 #include "sysemu/cpu-timers.h"
44 #include "sysemu/replay.h"
45 #include "internal.h"
46 
47 /* -icount align implementation. */
48 
49 typedef struct SyncClocks {
50     int64_t diff_clk;
51     int64_t last_cpu_icount;
52     int64_t realtime_clock;
53 } SyncClocks;
54 
55 #if !defined(CONFIG_USER_ONLY)
56 /* Allow the guest to have a max 3ms advance.
57  * The difference between the 2 clocks could therefore
58  * oscillate around 0.
59  */
60 #define VM_CLOCK_ADVANCE 3000000
61 #define THRESHOLD_REDUCE 1.5
62 #define MAX_DELAY_PRINT_RATE 2000000000LL
63 #define MAX_NB_PRINTS 100
64 
65 static int64_t max_delay;
66 static int64_t max_advance;
67 
68 static void align_clocks(SyncClocks *sc, CPUState *cpu)
69 {
70     int64_t cpu_icount;
71 
72     if (!icount_align_option) {
73         return;
74     }
75 
76     cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
77     sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
78     sc->last_cpu_icount = cpu_icount;
79 
80     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
81 #ifndef _WIN32
82         struct timespec sleep_delay, rem_delay;
83         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
84         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
85         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
86             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
87         } else {
88             sc->diff_clk = 0;
89         }
90 #else
91         Sleep(sc->diff_clk / SCALE_MS);
92         sc->diff_clk = 0;
93 #endif
94     }
95 }
96 
97 static void print_delay(const SyncClocks *sc)
98 {
99     static float threshold_delay;
100     static int64_t last_realtime_clock;
101     static int nb_prints;
102 
103     if (icount_align_option &&
104         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
105         nb_prints < MAX_NB_PRINTS) {
106         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
107             (-sc->diff_clk / (float)1000000000LL <
108              (threshold_delay - THRESHOLD_REDUCE))) {
109             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
110             qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
111                         threshold_delay - 1,
112                         threshold_delay);
113             nb_prints++;
114             last_realtime_clock = sc->realtime_clock;
115         }
116     }
117 }
118 
119 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
120 {
121     if (!icount_align_option) {
122         return;
123     }
124     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
125     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
126     sc->last_cpu_icount
127         = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
128     if (sc->diff_clk < max_delay) {
129         max_delay = sc->diff_clk;
130     }
131     if (sc->diff_clk > max_advance) {
132         max_advance = sc->diff_clk;
133     }
134 
135     /* Print every 2s max if the guest is late. We limit the number
136        of printed messages to NB_PRINT_MAX(currently 100) */
137     print_delay(sc);
138 }
139 #else
140 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
141 {
142 }
143 
144 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
145 {
146 }
147 #endif /* CONFIG USER ONLY */
148 
149 /* Execute a TB, and fix up the CPU state afterwards if necessary */
150 /*
151  * Disable CFI checks.
152  * TCG creates binary blobs at runtime, with the transformed code.
153  * A TB is a blob of binary code, created at runtime and called with an
154  * indirect function call. Since such function did not exist at compile time,
155  * the CFI runtime has no way to verify its signature and would fail.
156  * TCG is not considered a security-sensitive part of QEMU so this does not
157  * affect the impact of CFI in environment with high security requirements
158  */
159 static inline TranslationBlock * QEMU_DISABLE_CFI
160 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
161 {
162     CPUArchState *env = cpu->env_ptr;
163     uintptr_t ret;
164     TranslationBlock *last_tb;
165     const void *tb_ptr = itb->tc.ptr;
166 
167     qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
168                            "Trace %d: %p ["
169                            TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n",
170                            cpu->cpu_index, itb->tc.ptr,
171                            itb->cs_base, itb->pc, itb->flags,
172                            lookup_symbol(itb->pc));
173 
174 #if defined(DEBUG_DISAS)
175     if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
176         && qemu_log_in_addr_range(itb->pc)) {
177         FILE *logfile = qemu_log_lock();
178         int flags = 0;
179         if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
180             flags |= CPU_DUMP_FPU;
181         }
182 #if defined(TARGET_I386)
183         flags |= CPU_DUMP_CCOP;
184 #endif
185         log_cpu_state(cpu, flags);
186         qemu_log_unlock(logfile);
187     }
188 #endif /* DEBUG_DISAS */
189 
190     qemu_thread_jit_execute();
191     ret = tcg_qemu_tb_exec(env, tb_ptr);
192     cpu->can_do_io = 1;
193     /*
194      * TODO: Delay swapping back to the read-write region of the TB
195      * until we actually need to modify the TB.  The read-only copy,
196      * coming from the rx region, shares the same host TLB entry as
197      * the code that executed the exit_tb opcode that arrived here.
198      * If we insist on touching both the RX and the RW pages, we
199      * double the host TLB pressure.
200      */
201     last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
202     *tb_exit = ret & TB_EXIT_MASK;
203 
204     trace_exec_tb_exit(last_tb, *tb_exit);
205 
206     if (*tb_exit > TB_EXIT_IDX1) {
207         /* We didn't start executing this TB (eg because the instruction
208          * counter hit zero); we must restore the guest PC to the address
209          * of the start of the TB.
210          */
211         CPUClass *cc = CPU_GET_CLASS(cpu);
212         qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
213                                "Stopped execution of TB chain before %p ["
214                                TARGET_FMT_lx "] %s\n",
215                                last_tb->tc.ptr, last_tb->pc,
216                                lookup_symbol(last_tb->pc));
217         if (cc->tcg_ops->synchronize_from_tb) {
218             cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
219         } else {
220             assert(cc->set_pc);
221             cc->set_pc(cpu, last_tb->pc);
222         }
223     }
224     return last_tb;
225 }
226 
227 
228 static void cpu_exec_enter(CPUState *cpu)
229 {
230     CPUClass *cc = CPU_GET_CLASS(cpu);
231 
232     if (cc->tcg_ops->cpu_exec_enter) {
233         cc->tcg_ops->cpu_exec_enter(cpu);
234     }
235 }
236 
237 static void cpu_exec_exit(CPUState *cpu)
238 {
239     CPUClass *cc = CPU_GET_CLASS(cpu);
240 
241     if (cc->tcg_ops->cpu_exec_exit) {
242         cc->tcg_ops->cpu_exec_exit(cpu);
243     }
244 }
245 
246 void cpu_exec_step_atomic(CPUState *cpu)
247 {
248     CPUArchState *env = (CPUArchState *)cpu->env_ptr;
249     TranslationBlock *tb;
250     target_ulong cs_base, pc;
251     uint32_t flags;
252     uint32_t cflags = (curr_cflags(cpu) & ~CF_PARALLEL) | 1;
253     int tb_exit;
254 
255     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
256         start_exclusive();
257         g_assert(cpu == current_cpu);
258         g_assert(!cpu->running);
259         cpu->running = true;
260 
261         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
262         tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
263 
264         if (tb == NULL) {
265             mmap_lock();
266             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
267             mmap_unlock();
268         }
269 
270         cpu_exec_enter(cpu);
271         /* execute the generated code */
272         trace_exec_tb(tb, pc);
273         cpu_tb_exec(cpu, tb, &tb_exit);
274         cpu_exec_exit(cpu);
275     } else {
276         /*
277          * The mmap_lock is dropped by tb_gen_code if it runs out of
278          * memory.
279          */
280 #ifndef CONFIG_SOFTMMU
281         tcg_debug_assert(!have_mmap_lock());
282 #endif
283         if (qemu_mutex_iothread_locked()) {
284             qemu_mutex_unlock_iothread();
285         }
286         assert_no_pages_locked();
287         qemu_plugin_disable_mem_helpers(cpu);
288     }
289 
290 
291     /*
292      * As we start the exclusive region before codegen we must still
293      * be in the region if we longjump out of either the codegen or
294      * the execution.
295      */
296     g_assert(cpu_in_exclusive_context(cpu));
297     cpu->running = false;
298     end_exclusive();
299 }
300 
301 struct tb_desc {
302     target_ulong pc;
303     target_ulong cs_base;
304     CPUArchState *env;
305     tb_page_addr_t phys_page1;
306     uint32_t flags;
307     uint32_t cflags;
308     uint32_t trace_vcpu_dstate;
309 };
310 
311 static bool tb_lookup_cmp(const void *p, const void *d)
312 {
313     const TranslationBlock *tb = p;
314     const struct tb_desc *desc = d;
315 
316     if (tb->pc == desc->pc &&
317         tb->page_addr[0] == desc->phys_page1 &&
318         tb->cs_base == desc->cs_base &&
319         tb->flags == desc->flags &&
320         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
321         tb_cflags(tb) == desc->cflags) {
322         /* check next page if needed */
323         if (tb->page_addr[1] == -1) {
324             return true;
325         } else {
326             tb_page_addr_t phys_page2;
327             target_ulong virt_page2;
328 
329             virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
330             phys_page2 = get_page_addr_code(desc->env, virt_page2);
331             if (tb->page_addr[1] == phys_page2) {
332                 return true;
333             }
334         }
335     }
336     return false;
337 }
338 
339 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
340                                    target_ulong cs_base, uint32_t flags,
341                                    uint32_t cflags)
342 {
343     tb_page_addr_t phys_pc;
344     struct tb_desc desc;
345     uint32_t h;
346 
347     desc.env = (CPUArchState *)cpu->env_ptr;
348     desc.cs_base = cs_base;
349     desc.flags = flags;
350     desc.cflags = cflags;
351     desc.trace_vcpu_dstate = *cpu->trace_dstate;
352     desc.pc = pc;
353     phys_pc = get_page_addr_code(desc.env, pc);
354     if (phys_pc == -1) {
355         return NULL;
356     }
357     desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
358     h = tb_hash_func(phys_pc, pc, flags, cflags, *cpu->trace_dstate);
359     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
360 }
361 
362 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
363 {
364     if (TCG_TARGET_HAS_direct_jump) {
365         uintptr_t offset = tb->jmp_target_arg[n];
366         uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
367         uintptr_t jmp_rx = tc_ptr + offset;
368         uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
369         tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr);
370     } else {
371         tb->jmp_target_arg[n] = addr;
372     }
373 }
374 
375 static inline void tb_add_jump(TranslationBlock *tb, int n,
376                                TranslationBlock *tb_next)
377 {
378     uintptr_t old;
379 
380     qemu_thread_jit_write();
381     assert(n < ARRAY_SIZE(tb->jmp_list_next));
382     qemu_spin_lock(&tb_next->jmp_lock);
383 
384     /* make sure the destination TB is valid */
385     if (tb_next->cflags & CF_INVALID) {
386         goto out_unlock_next;
387     }
388     /* Atomically claim the jump destination slot only if it was NULL */
389     old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
390                           (uintptr_t)tb_next);
391     if (old) {
392         goto out_unlock_next;
393     }
394 
395     /* patch the native jump address */
396     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
397 
398     /* add in TB jmp list */
399     tb->jmp_list_next[n] = tb_next->jmp_list_head;
400     tb_next->jmp_list_head = (uintptr_t)tb | n;
401 
402     qemu_spin_unlock(&tb_next->jmp_lock);
403 
404     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
405                            "Linking TBs %p [" TARGET_FMT_lx
406                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
407                            tb->tc.ptr, tb->pc, n,
408                            tb_next->tc.ptr, tb_next->pc);
409     return;
410 
411  out_unlock_next:
412     qemu_spin_unlock(&tb_next->jmp_lock);
413     return;
414 }
415 
416 static inline TranslationBlock *tb_find(CPUState *cpu,
417                                         TranslationBlock *last_tb,
418                                         int tb_exit, uint32_t cflags)
419 {
420     CPUArchState *env = (CPUArchState *)cpu->env_ptr;
421     TranslationBlock *tb;
422     target_ulong cs_base, pc;
423     uint32_t flags;
424 
425     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
426 
427     tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
428     if (tb == NULL) {
429         mmap_lock();
430         tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
431         mmap_unlock();
432         /* We add the TB in the virtual pc hash table for the fast lookup */
433         qatomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
434     }
435 #ifndef CONFIG_USER_ONLY
436     /* We don't take care of direct jumps when address mapping changes in
437      * system emulation. So it's not safe to make a direct jump to a TB
438      * spanning two pages because the mapping for the second page can change.
439      */
440     if (tb->page_addr[1] != -1) {
441         last_tb = NULL;
442     }
443 #endif
444     /* See if we can patch the calling TB. */
445     if (last_tb) {
446         tb_add_jump(last_tb, tb_exit, tb);
447     }
448     return tb;
449 }
450 
451 static inline bool cpu_handle_halt(CPUState *cpu)
452 {
453     if (cpu->halted) {
454 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
455         if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
456             X86CPU *x86_cpu = X86_CPU(cpu);
457             qemu_mutex_lock_iothread();
458             apic_poll_irq(x86_cpu->apic_state);
459             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
460             qemu_mutex_unlock_iothread();
461         }
462 #endif
463         if (!cpu_has_work(cpu)) {
464             return true;
465         }
466 
467         cpu->halted = 0;
468     }
469 
470     return false;
471 }
472 
473 static inline void cpu_handle_debug_exception(CPUState *cpu)
474 {
475     CPUClass *cc = CPU_GET_CLASS(cpu);
476     CPUWatchpoint *wp;
477 
478     if (!cpu->watchpoint_hit) {
479         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
480             wp->flags &= ~BP_WATCHPOINT_HIT;
481         }
482     }
483 
484     if (cc->tcg_ops->debug_excp_handler) {
485         cc->tcg_ops->debug_excp_handler(cpu);
486     }
487 }
488 
489 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
490 {
491     if (cpu->exception_index < 0) {
492 #ifndef CONFIG_USER_ONLY
493         if (replay_has_exception()
494             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
495             /* Execute just one insn to trigger exception pending in the log */
496             cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) | 1;
497         }
498 #endif
499         return false;
500     }
501     if (cpu->exception_index >= EXCP_INTERRUPT) {
502         /* exit request from the cpu execution loop */
503         *ret = cpu->exception_index;
504         if (*ret == EXCP_DEBUG) {
505             cpu_handle_debug_exception(cpu);
506         }
507         cpu->exception_index = -1;
508         return true;
509     } else {
510 #if defined(CONFIG_USER_ONLY)
511         /* if user mode only, we simulate a fake exception
512            which will be handled outside the cpu execution
513            loop */
514 #if defined(TARGET_I386)
515         CPUClass *cc = CPU_GET_CLASS(cpu);
516         cc->tcg_ops->do_interrupt(cpu);
517 #endif
518         *ret = cpu->exception_index;
519         cpu->exception_index = -1;
520         return true;
521 #else
522         if (replay_exception()) {
523             CPUClass *cc = CPU_GET_CLASS(cpu);
524             qemu_mutex_lock_iothread();
525             cc->tcg_ops->do_interrupt(cpu);
526             qemu_mutex_unlock_iothread();
527             cpu->exception_index = -1;
528 
529             if (unlikely(cpu->singlestep_enabled)) {
530                 /*
531                  * After processing the exception, ensure an EXCP_DEBUG is
532                  * raised when single-stepping so that GDB doesn't miss the
533                  * next instruction.
534                  */
535                 *ret = EXCP_DEBUG;
536                 cpu_handle_debug_exception(cpu);
537                 return true;
538             }
539         } else if (!replay_has_interrupt()) {
540             /* give a chance to iothread in replay mode */
541             *ret = EXCP_INTERRUPT;
542             return true;
543         }
544 #endif
545     }
546 
547     return false;
548 }
549 
550 /*
551  * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
552  * "real" interrupt event later. It does not need to be recorded for
553  * replay purposes.
554  */
555 static inline bool need_replay_interrupt(int interrupt_request)
556 {
557 #if defined(TARGET_I386)
558     return !(interrupt_request & CPU_INTERRUPT_POLL);
559 #else
560     return true;
561 #endif
562 }
563 
564 static inline bool cpu_handle_interrupt(CPUState *cpu,
565                                         TranslationBlock **last_tb)
566 {
567     CPUClass *cc = CPU_GET_CLASS(cpu);
568 
569     /* Clear the interrupt flag now since we're processing
570      * cpu->interrupt_request and cpu->exit_request.
571      * Ensure zeroing happens before reading cpu->exit_request or
572      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
573      */
574     qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
575 
576     if (unlikely(qatomic_read(&cpu->interrupt_request))) {
577         int interrupt_request;
578         qemu_mutex_lock_iothread();
579         interrupt_request = cpu->interrupt_request;
580         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
581             /* Mask out external interrupts for this step. */
582             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
583         }
584         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
585             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
586             cpu->exception_index = EXCP_DEBUG;
587             qemu_mutex_unlock_iothread();
588             return true;
589         }
590         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
591             /* Do nothing */
592         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
593             replay_interrupt();
594             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
595             cpu->halted = 1;
596             cpu->exception_index = EXCP_HLT;
597             qemu_mutex_unlock_iothread();
598             return true;
599         }
600 #if defined(TARGET_I386)
601         else if (interrupt_request & CPU_INTERRUPT_INIT) {
602             X86CPU *x86_cpu = X86_CPU(cpu);
603             CPUArchState *env = &x86_cpu->env;
604             replay_interrupt();
605             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
606             do_cpu_init(x86_cpu);
607             cpu->exception_index = EXCP_HALTED;
608             qemu_mutex_unlock_iothread();
609             return true;
610         }
611 #else
612         else if (interrupt_request & CPU_INTERRUPT_RESET) {
613             replay_interrupt();
614             cpu_reset(cpu);
615             qemu_mutex_unlock_iothread();
616             return true;
617         }
618 #endif
619         /* The target hook has 3 exit conditions:
620            False when the interrupt isn't processed,
621            True when it is, and we should restart on a new TB,
622            and via longjmp via cpu_loop_exit.  */
623         else {
624             if (cc->tcg_ops->cpu_exec_interrupt &&
625                 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
626                 if (need_replay_interrupt(interrupt_request)) {
627                     replay_interrupt();
628                 }
629                 /*
630                  * After processing the interrupt, ensure an EXCP_DEBUG is
631                  * raised when single-stepping so that GDB doesn't miss the
632                  * next instruction.
633                  */
634                 cpu->exception_index =
635                     (cpu->singlestep_enabled ? EXCP_DEBUG : -1);
636                 *last_tb = NULL;
637             }
638             /* The target hook may have updated the 'cpu->interrupt_request';
639              * reload the 'interrupt_request' value */
640             interrupt_request = cpu->interrupt_request;
641         }
642         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
643             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
644             /* ensure that no TB jump will be modified as
645                the program flow was changed */
646             *last_tb = NULL;
647         }
648 
649         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
650         qemu_mutex_unlock_iothread();
651     }
652 
653     /* Finally, check if we need to exit to the main loop.  */
654     if (unlikely(qatomic_read(&cpu->exit_request))
655         || (icount_enabled()
656             && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
657             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
658         qatomic_set(&cpu->exit_request, 0);
659         if (cpu->exception_index == -1) {
660             cpu->exception_index = EXCP_INTERRUPT;
661         }
662         return true;
663     }
664 
665     return false;
666 }
667 
668 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
669                                     TranslationBlock **last_tb, int *tb_exit)
670 {
671     int32_t insns_left;
672 
673     trace_exec_tb(tb, tb->pc);
674     tb = cpu_tb_exec(cpu, tb, tb_exit);
675     if (*tb_exit != TB_EXIT_REQUESTED) {
676         *last_tb = tb;
677         return;
678     }
679 
680     *last_tb = NULL;
681     insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
682     if (insns_left < 0) {
683         /* Something asked us to stop executing chained TBs; just
684          * continue round the main loop. Whatever requested the exit
685          * will also have set something else (eg exit_request or
686          * interrupt_request) which will be handled by
687          * cpu_handle_interrupt.  cpu_handle_interrupt will also
688          * clear cpu->icount_decr.u16.high.
689          */
690         return;
691     }
692 
693     /* Instruction counter expired.  */
694     assert(icount_enabled());
695 #ifndef CONFIG_USER_ONLY
696     /* Ensure global icount has gone forward */
697     icount_update(cpu);
698     /* Refill decrementer and continue execution.  */
699     insns_left = MIN(CF_COUNT_MASK, cpu->icount_budget);
700     cpu_neg(cpu)->icount_decr.u16.low = insns_left;
701     cpu->icount_extra = cpu->icount_budget - insns_left;
702 
703     /*
704      * If the next tb has more instructions than we have left to
705      * execute we need to ensure we find/generate a TB with exactly
706      * insns_left instructions in it.
707      */
708     if (!cpu->icount_extra && insns_left > 0 && insns_left < tb->icount)  {
709         cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
710     }
711 #endif
712 }
713 
714 /* main execution loop */
715 
716 int cpu_exec(CPUState *cpu)
717 {
718     CPUClass *cc = CPU_GET_CLASS(cpu);
719     int ret;
720     SyncClocks sc = { 0 };
721 
722     /* replay_interrupt may need current_cpu */
723     current_cpu = cpu;
724 
725     if (cpu_handle_halt(cpu)) {
726         return EXCP_HALTED;
727     }
728 
729     rcu_read_lock();
730 
731     cpu_exec_enter(cpu);
732 
733     /* Calculate difference between guest clock and host clock.
734      * This delay includes the delay of the last cycle, so
735      * what we have to do is sleep until it is 0. As for the
736      * advance/delay we gain here, we try to fix it next time.
737      */
738     init_delay_params(&sc, cpu);
739 
740     /* prepare setjmp context for exception handling */
741     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
742 #if defined(__clang__)
743         /*
744          * Some compilers wrongly smash all local variables after
745          * siglongjmp (the spec requires that only non-volatile locals
746          * which are changed between the sigsetjmp and siglongjmp are
747          * permitted to be trashed). There were bug reports for gcc
748          * 4.5.0 and clang.  The bug is fixed in all versions of gcc
749          * that we support, but is still unfixed in clang:
750          *   https://bugs.llvm.org/show_bug.cgi?id=21183
751          *
752          * Reload essential local variables here for those compilers.
753          * Newer versions of gcc would complain about this code (-Wclobbered),
754          * so we only perform the workaround for clang.
755          */
756         cpu = current_cpu;
757         cc = CPU_GET_CLASS(cpu);
758 #else
759         /*
760          * Non-buggy compilers preserve these locals; assert that
761          * they have the correct value.
762          */
763         g_assert(cpu == current_cpu);
764         g_assert(cc == CPU_GET_CLASS(cpu));
765 #endif
766 
767 #ifndef CONFIG_SOFTMMU
768         tcg_debug_assert(!have_mmap_lock());
769 #endif
770         if (qemu_mutex_iothread_locked()) {
771             qemu_mutex_unlock_iothread();
772         }
773         qemu_plugin_disable_mem_helpers(cpu);
774 
775         assert_no_pages_locked();
776     }
777 
778     /* if an exception is pending, we execute it here */
779     while (!cpu_handle_exception(cpu, &ret)) {
780         TranslationBlock *last_tb = NULL;
781         int tb_exit = 0;
782 
783         while (!cpu_handle_interrupt(cpu, &last_tb)) {
784             uint32_t cflags = cpu->cflags_next_tb;
785             TranslationBlock *tb;
786 
787             /* When requested, use an exact setting for cflags for the next
788                execution.  This is used for icount, precise smc, and stop-
789                after-access watchpoints.  Since this request should never
790                have CF_INVALID set, -1 is a convenient invalid value that
791                does not require tcg headers for cpu_common_reset.  */
792             if (cflags == -1) {
793                 cflags = curr_cflags(cpu);
794             } else {
795                 cpu->cflags_next_tb = -1;
796             }
797 
798             tb = tb_find(cpu, last_tb, tb_exit, cflags);
799             cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
800             /* Try to align the host and virtual clocks
801                if the guest is in advance */
802             align_clocks(&sc, cpu);
803         }
804     }
805 
806     cpu_exec_exit(cpu);
807     rcu_read_unlock();
808 
809     return ret;
810 }
811 
812 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
813 {
814     static bool tcg_target_initialized;
815     CPUClass *cc = CPU_GET_CLASS(cpu);
816 
817     if (!tcg_target_initialized) {
818         cc->tcg_ops->initialize();
819         tcg_target_initialized = true;
820     }
821     tlb_init(cpu);
822     qemu_plugin_vcpu_init_hook(cpu);
823 
824 #ifndef CONFIG_USER_ONLY
825     tcg_iommu_init_notifier_list(cpu);
826 #endif /* !CONFIG_USER_ONLY */
827 }
828 
829 /* undo the initializations in reverse order */
830 void tcg_exec_unrealizefn(CPUState *cpu)
831 {
832 #ifndef CONFIG_USER_ONLY
833     tcg_iommu_free_notifier_list(cpu);
834 #endif /* !CONFIG_USER_ONLY */
835 
836     qemu_plugin_vcpu_exit_hook(cpu);
837     tlb_destroy(cpu);
838 }
839 
840 #ifndef CONFIG_USER_ONLY
841 
842 void dump_drift_info(void)
843 {
844     if (!icount_enabled()) {
845         return;
846     }
847 
848     qemu_printf("Host - Guest clock  %"PRIi64" ms\n",
849                 (cpu_get_clock() - icount_get()) / SCALE_MS);
850     if (icount_align_option) {
851         qemu_printf("Max guest delay     %"PRIi64" ms\n",
852                     -max_delay / SCALE_MS);
853         qemu_printf("Max guest advance   %"PRIi64" ms\n",
854                     max_advance / SCALE_MS);
855     } else {
856         qemu_printf("Max guest delay     NA\n");
857         qemu_printf("Max guest advance   NA\n");
858     }
859 }
860 
861 #endif /* !CONFIG_USER_ONLY */
862