1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "qemu/qemu-print.h" 23 #include "cpu.h" 24 #include "trace.h" 25 #include "disas/disas.h" 26 #include "exec/exec-all.h" 27 #include "tcg/tcg.h" 28 #include "qemu/atomic.h" 29 #include "sysemu/qtest.h" 30 #include "qemu/timer.h" 31 #include "qemu/rcu.h" 32 #include "exec/tb-hash.h" 33 #include "exec/tb-lookup.h" 34 #include "exec/log.h" 35 #include "qemu/main-loop.h" 36 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 37 #include "hw/i386/apic.h" 38 #endif 39 #include "sysemu/cpus.h" 40 #include "exec/cpu-all.h" 41 #include "sysemu/cpu-timers.h" 42 #include "sysemu/replay.h" 43 44 /* -icount align implementation. */ 45 46 typedef struct SyncClocks { 47 int64_t diff_clk; 48 int64_t last_cpu_icount; 49 int64_t realtime_clock; 50 } SyncClocks; 51 52 #if !defined(CONFIG_USER_ONLY) 53 /* Allow the guest to have a max 3ms advance. 54 * The difference between the 2 clocks could therefore 55 * oscillate around 0. 56 */ 57 #define VM_CLOCK_ADVANCE 3000000 58 #define THRESHOLD_REDUCE 1.5 59 #define MAX_DELAY_PRINT_RATE 2000000000LL 60 #define MAX_NB_PRINTS 100 61 62 static int64_t max_delay; 63 static int64_t max_advance; 64 65 static void align_clocks(SyncClocks *sc, CPUState *cpu) 66 { 67 int64_t cpu_icount; 68 69 if (!icount_align_option) { 70 return; 71 } 72 73 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 74 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 75 sc->last_cpu_icount = cpu_icount; 76 77 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 78 #ifndef _WIN32 79 struct timespec sleep_delay, rem_delay; 80 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 81 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 82 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 83 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 84 } else { 85 sc->diff_clk = 0; 86 } 87 #else 88 Sleep(sc->diff_clk / SCALE_MS); 89 sc->diff_clk = 0; 90 #endif 91 } 92 } 93 94 static void print_delay(const SyncClocks *sc) 95 { 96 static float threshold_delay; 97 static int64_t last_realtime_clock; 98 static int nb_prints; 99 100 if (icount_align_option && 101 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 102 nb_prints < MAX_NB_PRINTS) { 103 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 104 (-sc->diff_clk / (float)1000000000LL < 105 (threshold_delay - THRESHOLD_REDUCE))) { 106 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 107 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 108 threshold_delay - 1, 109 threshold_delay); 110 nb_prints++; 111 last_realtime_clock = sc->realtime_clock; 112 } 113 } 114 } 115 116 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 117 { 118 if (!icount_align_option) { 119 return; 120 } 121 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 122 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 123 sc->last_cpu_icount 124 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 125 if (sc->diff_clk < max_delay) { 126 max_delay = sc->diff_clk; 127 } 128 if (sc->diff_clk > max_advance) { 129 max_advance = sc->diff_clk; 130 } 131 132 /* Print every 2s max if the guest is late. We limit the number 133 of printed messages to NB_PRINT_MAX(currently 100) */ 134 print_delay(sc); 135 } 136 #else 137 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 138 { 139 } 140 141 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 142 { 143 } 144 #endif /* CONFIG USER ONLY */ 145 146 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 147 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb) 148 { 149 CPUArchState *env = cpu->env_ptr; 150 uintptr_t ret; 151 TranslationBlock *last_tb; 152 int tb_exit; 153 uint8_t *tb_ptr = itb->tc.ptr; 154 155 qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc, 156 "Trace %d: %p [" 157 TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n", 158 cpu->cpu_index, itb->tc.ptr, 159 itb->cs_base, itb->pc, itb->flags, 160 lookup_symbol(itb->pc)); 161 162 #if defined(DEBUG_DISAS) 163 if (qemu_loglevel_mask(CPU_LOG_TB_CPU) 164 && qemu_log_in_addr_range(itb->pc)) { 165 FILE *logfile = qemu_log_lock(); 166 int flags = 0; 167 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 168 flags |= CPU_DUMP_FPU; 169 } 170 #if defined(TARGET_I386) 171 flags |= CPU_DUMP_CCOP; 172 #endif 173 log_cpu_state(cpu, flags); 174 qemu_log_unlock(logfile); 175 } 176 #endif /* DEBUG_DISAS */ 177 178 ret = tcg_qemu_tb_exec(env, tb_ptr); 179 cpu->can_do_io = 1; 180 last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 181 tb_exit = ret & TB_EXIT_MASK; 182 trace_exec_tb_exit(last_tb, tb_exit); 183 184 if (tb_exit > TB_EXIT_IDX1) { 185 /* We didn't start executing this TB (eg because the instruction 186 * counter hit zero); we must restore the guest PC to the address 187 * of the start of the TB. 188 */ 189 CPUClass *cc = CPU_GET_CLASS(cpu); 190 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, 191 "Stopped execution of TB chain before %p [" 192 TARGET_FMT_lx "] %s\n", 193 last_tb->tc.ptr, last_tb->pc, 194 lookup_symbol(last_tb->pc)); 195 if (cc->synchronize_from_tb) { 196 cc->synchronize_from_tb(cpu, last_tb); 197 } else { 198 assert(cc->set_pc); 199 cc->set_pc(cpu, last_tb->pc); 200 } 201 } 202 return ret; 203 } 204 205 #ifndef CONFIG_USER_ONLY 206 /* Execute the code without caching the generated code. An interpreter 207 could be used if available. */ 208 static void cpu_exec_nocache(CPUState *cpu, int max_cycles, 209 TranslationBlock *orig_tb, bool ignore_icount) 210 { 211 TranslationBlock *tb; 212 uint32_t cflags = curr_cflags() | CF_NOCACHE; 213 214 if (ignore_icount) { 215 cflags &= ~CF_USE_ICOUNT; 216 } 217 218 /* Should never happen. 219 We only end up here when an existing TB is too long. */ 220 cflags |= MIN(max_cycles, CF_COUNT_MASK); 221 222 mmap_lock(); 223 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, 224 orig_tb->flags, cflags); 225 tb->orig_tb = orig_tb; 226 mmap_unlock(); 227 228 /* execute the generated code */ 229 trace_exec_tb_nocache(tb, tb->pc); 230 cpu_tb_exec(cpu, tb); 231 232 mmap_lock(); 233 tb_phys_invalidate(tb, -1); 234 mmap_unlock(); 235 tcg_tb_remove(tb); 236 } 237 #endif 238 239 static void cpu_exec_enter(CPUState *cpu) 240 { 241 CPUClass *cc = CPU_GET_CLASS(cpu); 242 243 if (cc->cpu_exec_enter) { 244 cc->cpu_exec_enter(cpu); 245 } 246 } 247 248 static void cpu_exec_exit(CPUState *cpu) 249 { 250 CPUClass *cc = CPU_GET_CLASS(cpu); 251 252 if (cc->cpu_exec_exit) { 253 cc->cpu_exec_exit(cpu); 254 } 255 } 256 257 void cpu_exec_step_atomic(CPUState *cpu) 258 { 259 TranslationBlock *tb; 260 target_ulong cs_base, pc; 261 uint32_t flags; 262 uint32_t cflags = 1; 263 uint32_t cf_mask = cflags & CF_HASH_MASK; 264 265 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 266 start_exclusive(); 267 268 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 269 if (tb == NULL) { 270 mmap_lock(); 271 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 272 mmap_unlock(); 273 } 274 275 /* Since we got here, we know that parallel_cpus must be true. */ 276 parallel_cpus = false; 277 cpu_exec_enter(cpu); 278 /* execute the generated code */ 279 trace_exec_tb(tb, pc); 280 cpu_tb_exec(cpu, tb); 281 cpu_exec_exit(cpu); 282 } else { 283 /* 284 * The mmap_lock is dropped by tb_gen_code if it runs out of 285 * memory. 286 */ 287 #ifndef CONFIG_SOFTMMU 288 tcg_debug_assert(!have_mmap_lock()); 289 #endif 290 if (qemu_mutex_iothread_locked()) { 291 qemu_mutex_unlock_iothread(); 292 } 293 assert_no_pages_locked(); 294 qemu_plugin_disable_mem_helpers(cpu); 295 } 296 297 298 /* 299 * As we start the exclusive region before codegen we must still 300 * be in the region if we longjump out of either the codegen or 301 * the execution. 302 */ 303 g_assert(cpu_in_exclusive_context(cpu)); 304 parallel_cpus = true; 305 end_exclusive(); 306 } 307 308 struct tb_desc { 309 target_ulong pc; 310 target_ulong cs_base; 311 CPUArchState *env; 312 tb_page_addr_t phys_page1; 313 uint32_t flags; 314 uint32_t cf_mask; 315 uint32_t trace_vcpu_dstate; 316 }; 317 318 static bool tb_lookup_cmp(const void *p, const void *d) 319 { 320 const TranslationBlock *tb = p; 321 const struct tb_desc *desc = d; 322 323 if (tb->pc == desc->pc && 324 tb->page_addr[0] == desc->phys_page1 && 325 tb->cs_base == desc->cs_base && 326 tb->flags == desc->flags && 327 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 328 (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) { 329 /* check next page if needed */ 330 if (tb->page_addr[1] == -1) { 331 return true; 332 } else { 333 tb_page_addr_t phys_page2; 334 target_ulong virt_page2; 335 336 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 337 phys_page2 = get_page_addr_code(desc->env, virt_page2); 338 if (tb->page_addr[1] == phys_page2) { 339 return true; 340 } 341 } 342 } 343 return false; 344 } 345 346 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 347 target_ulong cs_base, uint32_t flags, 348 uint32_t cf_mask) 349 { 350 tb_page_addr_t phys_pc; 351 struct tb_desc desc; 352 uint32_t h; 353 354 desc.env = (CPUArchState *)cpu->env_ptr; 355 desc.cs_base = cs_base; 356 desc.flags = flags; 357 desc.cf_mask = cf_mask; 358 desc.trace_vcpu_dstate = *cpu->trace_dstate; 359 desc.pc = pc; 360 phys_pc = get_page_addr_code(desc.env, pc); 361 if (phys_pc == -1) { 362 return NULL; 363 } 364 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; 365 h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate); 366 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 367 } 368 369 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 370 { 371 if (TCG_TARGET_HAS_direct_jump) { 372 uintptr_t offset = tb->jmp_target_arg[n]; 373 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; 374 tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr); 375 } else { 376 tb->jmp_target_arg[n] = addr; 377 } 378 } 379 380 static inline void tb_add_jump(TranslationBlock *tb, int n, 381 TranslationBlock *tb_next) 382 { 383 uintptr_t old; 384 385 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 386 qemu_spin_lock(&tb_next->jmp_lock); 387 388 /* make sure the destination TB is valid */ 389 if (tb_next->cflags & CF_INVALID) { 390 goto out_unlock_next; 391 } 392 /* Atomically claim the jump destination slot only if it was NULL */ 393 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 394 (uintptr_t)tb_next); 395 if (old) { 396 goto out_unlock_next; 397 } 398 399 /* patch the native jump address */ 400 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 401 402 /* add in TB jmp list */ 403 tb->jmp_list_next[n] = tb_next->jmp_list_head; 404 tb_next->jmp_list_head = (uintptr_t)tb | n; 405 406 qemu_spin_unlock(&tb_next->jmp_lock); 407 408 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 409 "Linking TBs %p [" TARGET_FMT_lx 410 "] index %d -> %p [" TARGET_FMT_lx "]\n", 411 tb->tc.ptr, tb->pc, n, 412 tb_next->tc.ptr, tb_next->pc); 413 return; 414 415 out_unlock_next: 416 qemu_spin_unlock(&tb_next->jmp_lock); 417 return; 418 } 419 420 static inline TranslationBlock *tb_find(CPUState *cpu, 421 TranslationBlock *last_tb, 422 int tb_exit, uint32_t cf_mask) 423 { 424 TranslationBlock *tb; 425 target_ulong cs_base, pc; 426 uint32_t flags; 427 428 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 429 if (tb == NULL) { 430 mmap_lock(); 431 tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask); 432 mmap_unlock(); 433 /* We add the TB in the virtual pc hash table for the fast lookup */ 434 qatomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); 435 } 436 #ifndef CONFIG_USER_ONLY 437 /* We don't take care of direct jumps when address mapping changes in 438 * system emulation. So it's not safe to make a direct jump to a TB 439 * spanning two pages because the mapping for the second page can change. 440 */ 441 if (tb->page_addr[1] != -1) { 442 last_tb = NULL; 443 } 444 #endif 445 /* See if we can patch the calling TB. */ 446 if (last_tb) { 447 tb_add_jump(last_tb, tb_exit, tb); 448 } 449 return tb; 450 } 451 452 static inline bool cpu_handle_halt(CPUState *cpu) 453 { 454 if (cpu->halted) { 455 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 456 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) { 457 X86CPU *x86_cpu = X86_CPU(cpu); 458 qemu_mutex_lock_iothread(); 459 apic_poll_irq(x86_cpu->apic_state); 460 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 461 qemu_mutex_unlock_iothread(); 462 } 463 #endif 464 if (!cpu_has_work(cpu)) { 465 return true; 466 } 467 468 cpu->halted = 0; 469 } 470 471 return false; 472 } 473 474 static inline void cpu_handle_debug_exception(CPUState *cpu) 475 { 476 CPUClass *cc = CPU_GET_CLASS(cpu); 477 CPUWatchpoint *wp; 478 479 if (!cpu->watchpoint_hit) { 480 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 481 wp->flags &= ~BP_WATCHPOINT_HIT; 482 } 483 } 484 485 if (cc->debug_excp_handler) { 486 cc->debug_excp_handler(cpu); 487 } 488 } 489 490 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 491 { 492 if (cpu->exception_index < 0) { 493 #ifndef CONFIG_USER_ONLY 494 if (replay_has_exception() 495 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) { 496 /* try to cause an exception pending in the log */ 497 cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true); 498 } 499 #endif 500 if (cpu->exception_index < 0) { 501 return false; 502 } 503 } 504 505 if (cpu->exception_index >= EXCP_INTERRUPT) { 506 /* exit request from the cpu execution loop */ 507 *ret = cpu->exception_index; 508 if (*ret == EXCP_DEBUG) { 509 cpu_handle_debug_exception(cpu); 510 } 511 cpu->exception_index = -1; 512 return true; 513 } else { 514 #if defined(CONFIG_USER_ONLY) 515 /* if user mode only, we simulate a fake exception 516 which will be handled outside the cpu execution 517 loop */ 518 #if defined(TARGET_I386) 519 CPUClass *cc = CPU_GET_CLASS(cpu); 520 cc->do_interrupt(cpu); 521 #endif 522 *ret = cpu->exception_index; 523 cpu->exception_index = -1; 524 return true; 525 #else 526 if (replay_exception()) { 527 CPUClass *cc = CPU_GET_CLASS(cpu); 528 qemu_mutex_lock_iothread(); 529 cc->do_interrupt(cpu); 530 qemu_mutex_unlock_iothread(); 531 cpu->exception_index = -1; 532 533 if (unlikely(cpu->singlestep_enabled)) { 534 /* 535 * After processing the exception, ensure an EXCP_DEBUG is 536 * raised when single-stepping so that GDB doesn't miss the 537 * next instruction. 538 */ 539 *ret = EXCP_DEBUG; 540 cpu_handle_debug_exception(cpu); 541 return true; 542 } 543 } else if (!replay_has_interrupt()) { 544 /* give a chance to iothread in replay mode */ 545 *ret = EXCP_INTERRUPT; 546 return true; 547 } 548 #endif 549 } 550 551 return false; 552 } 553 554 /* 555 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a 556 * "real" interrupt event later. It does not need to be recorded for 557 * replay purposes. 558 */ 559 static inline bool need_replay_interrupt(int interrupt_request) 560 { 561 #if defined(TARGET_I386) 562 return !(interrupt_request & CPU_INTERRUPT_POLL); 563 #else 564 return true; 565 #endif 566 } 567 568 static inline bool cpu_handle_interrupt(CPUState *cpu, 569 TranslationBlock **last_tb) 570 { 571 CPUClass *cc = CPU_GET_CLASS(cpu); 572 573 /* Clear the interrupt flag now since we're processing 574 * cpu->interrupt_request and cpu->exit_request. 575 * Ensure zeroing happens before reading cpu->exit_request or 576 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 577 */ 578 qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0); 579 580 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 581 int interrupt_request; 582 qemu_mutex_lock_iothread(); 583 interrupt_request = cpu->interrupt_request; 584 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 585 /* Mask out external interrupts for this step. */ 586 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 587 } 588 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 589 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 590 cpu->exception_index = EXCP_DEBUG; 591 qemu_mutex_unlock_iothread(); 592 return true; 593 } 594 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 595 /* Do nothing */ 596 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 597 replay_interrupt(); 598 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 599 cpu->halted = 1; 600 cpu->exception_index = EXCP_HLT; 601 qemu_mutex_unlock_iothread(); 602 return true; 603 } 604 #if defined(TARGET_I386) 605 else if (interrupt_request & CPU_INTERRUPT_INIT) { 606 X86CPU *x86_cpu = X86_CPU(cpu); 607 CPUArchState *env = &x86_cpu->env; 608 replay_interrupt(); 609 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 610 do_cpu_init(x86_cpu); 611 cpu->exception_index = EXCP_HALTED; 612 qemu_mutex_unlock_iothread(); 613 return true; 614 } 615 #else 616 else if (interrupt_request & CPU_INTERRUPT_RESET) { 617 replay_interrupt(); 618 cpu_reset(cpu); 619 qemu_mutex_unlock_iothread(); 620 return true; 621 } 622 #endif 623 /* The target hook has 3 exit conditions: 624 False when the interrupt isn't processed, 625 True when it is, and we should restart on a new TB, 626 and via longjmp via cpu_loop_exit. */ 627 else { 628 if (cc->cpu_exec_interrupt && 629 cc->cpu_exec_interrupt(cpu, interrupt_request)) { 630 if (need_replay_interrupt(interrupt_request)) { 631 replay_interrupt(); 632 } 633 /* 634 * After processing the interrupt, ensure an EXCP_DEBUG is 635 * raised when single-stepping so that GDB doesn't miss the 636 * next instruction. 637 */ 638 cpu->exception_index = 639 (cpu->singlestep_enabled ? EXCP_DEBUG : -1); 640 *last_tb = NULL; 641 } 642 /* The target hook may have updated the 'cpu->interrupt_request'; 643 * reload the 'interrupt_request' value */ 644 interrupt_request = cpu->interrupt_request; 645 } 646 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 647 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 648 /* ensure that no TB jump will be modified as 649 the program flow was changed */ 650 *last_tb = NULL; 651 } 652 653 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 654 qemu_mutex_unlock_iothread(); 655 } 656 657 /* Finally, check if we need to exit to the main loop. */ 658 if (unlikely(qatomic_read(&cpu->exit_request)) 659 || (icount_enabled() 660 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) { 661 qatomic_set(&cpu->exit_request, 0); 662 if (cpu->exception_index == -1) { 663 cpu->exception_index = EXCP_INTERRUPT; 664 } 665 return true; 666 } 667 668 return false; 669 } 670 671 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 672 TranslationBlock **last_tb, int *tb_exit) 673 { 674 uintptr_t ret; 675 int32_t insns_left; 676 677 trace_exec_tb(tb, tb->pc); 678 ret = cpu_tb_exec(cpu, tb); 679 tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 680 *tb_exit = ret & TB_EXIT_MASK; 681 if (*tb_exit != TB_EXIT_REQUESTED) { 682 *last_tb = tb; 683 return; 684 } 685 686 *last_tb = NULL; 687 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32); 688 if (insns_left < 0) { 689 /* Something asked us to stop executing chained TBs; just 690 * continue round the main loop. Whatever requested the exit 691 * will also have set something else (eg exit_request or 692 * interrupt_request) which will be handled by 693 * cpu_handle_interrupt. cpu_handle_interrupt will also 694 * clear cpu->icount_decr.u16.high. 695 */ 696 return; 697 } 698 699 /* Instruction counter expired. */ 700 assert(icount_enabled()); 701 #ifndef CONFIG_USER_ONLY 702 /* Ensure global icount has gone forward */ 703 icount_update(cpu); 704 /* Refill decrementer and continue execution. */ 705 insns_left = MIN(0xffff, cpu->icount_budget); 706 cpu_neg(cpu)->icount_decr.u16.low = insns_left; 707 cpu->icount_extra = cpu->icount_budget - insns_left; 708 if (!cpu->icount_extra && insns_left < tb->icount) { 709 /* Execute any remaining instructions, then let the main loop 710 * handle the next event. 711 */ 712 if (insns_left > 0) { 713 cpu_exec_nocache(cpu, insns_left, tb, false); 714 } 715 } 716 #endif 717 } 718 719 /* main execution loop */ 720 721 int cpu_exec(CPUState *cpu) 722 { 723 CPUClass *cc = CPU_GET_CLASS(cpu); 724 int ret; 725 SyncClocks sc = { 0 }; 726 727 /* replay_interrupt may need current_cpu */ 728 current_cpu = cpu; 729 730 if (cpu_handle_halt(cpu)) { 731 return EXCP_HALTED; 732 } 733 734 rcu_read_lock(); 735 736 cpu_exec_enter(cpu); 737 738 /* Calculate difference between guest clock and host clock. 739 * This delay includes the delay of the last cycle, so 740 * what we have to do is sleep until it is 0. As for the 741 * advance/delay we gain here, we try to fix it next time. 742 */ 743 init_delay_params(&sc, cpu); 744 745 /* prepare setjmp context for exception handling */ 746 if (sigsetjmp(cpu->jmp_env, 0) != 0) { 747 #if defined(__clang__) 748 /* Some compilers wrongly smash all local variables after 749 * siglongjmp. There were bug reports for gcc 4.5.0 and clang. 750 * Reload essential local variables here for those compilers. 751 * Newer versions of gcc would complain about this code (-Wclobbered). */ 752 cpu = current_cpu; 753 cc = CPU_GET_CLASS(cpu); 754 #else /* buggy compiler */ 755 /* Assert that the compiler does not smash local variables. */ 756 g_assert(cpu == current_cpu); 757 g_assert(cc == CPU_GET_CLASS(cpu)); 758 #endif /* buggy compiler */ 759 #ifndef CONFIG_SOFTMMU 760 tcg_debug_assert(!have_mmap_lock()); 761 #endif 762 if (qemu_mutex_iothread_locked()) { 763 qemu_mutex_unlock_iothread(); 764 } 765 qemu_plugin_disable_mem_helpers(cpu); 766 767 assert_no_pages_locked(); 768 } 769 770 /* if an exception is pending, we execute it here */ 771 while (!cpu_handle_exception(cpu, &ret)) { 772 TranslationBlock *last_tb = NULL; 773 int tb_exit = 0; 774 775 while (!cpu_handle_interrupt(cpu, &last_tb)) { 776 uint32_t cflags = cpu->cflags_next_tb; 777 TranslationBlock *tb; 778 779 /* When requested, use an exact setting for cflags for the next 780 execution. This is used for icount, precise smc, and stop- 781 after-access watchpoints. Since this request should never 782 have CF_INVALID set, -1 is a convenient invalid value that 783 does not require tcg headers for cpu_common_reset. */ 784 if (cflags == -1) { 785 cflags = curr_cflags(); 786 } else { 787 cpu->cflags_next_tb = -1; 788 } 789 790 tb = tb_find(cpu, last_tb, tb_exit, cflags); 791 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); 792 /* Try to align the host and virtual clocks 793 if the guest is in advance */ 794 align_clocks(&sc, cpu); 795 } 796 } 797 798 cpu_exec_exit(cpu); 799 rcu_read_unlock(); 800 801 return ret; 802 } 803 804 #ifndef CONFIG_USER_ONLY 805 806 void dump_drift_info(void) 807 { 808 if (!icount_enabled()) { 809 return; 810 } 811 812 qemu_printf("Host - Guest clock %"PRIi64" ms\n", 813 (cpu_get_clock() - icount_get()) / SCALE_MS); 814 if (icount_align_option) { 815 qemu_printf("Max guest delay %"PRIi64" ms\n", 816 -max_delay / SCALE_MS); 817 qemu_printf("Max guest advance %"PRIi64" ms\n", 818 max_advance / SCALE_MS); 819 } else { 820 qemu_printf("Max guest delay NA\n"); 821 qemu_printf("Max guest advance NA\n"); 822 } 823 } 824 825 #endif /* !CONFIG_USER_ONLY */ 826