1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "trace.h" 22 #include "disas/disas.h" 23 #include "exec/exec-all.h" 24 #include "tcg.h" 25 #include "qemu/atomic.h" 26 #include "sysemu/qtest.h" 27 #include "qemu/timer.h" 28 #include "exec/address-spaces.h" 29 #include "qemu/rcu.h" 30 #include "exec/tb-hash.h" 31 #include "exec/tb-lookup.h" 32 #include "exec/log.h" 33 #include "qemu/main-loop.h" 34 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 35 #include "hw/i386/apic.h" 36 #endif 37 #include "sysemu/cpus.h" 38 #include "sysemu/replay.h" 39 40 /* -icount align implementation. */ 41 42 typedef struct SyncClocks { 43 int64_t diff_clk; 44 int64_t last_cpu_icount; 45 int64_t realtime_clock; 46 } SyncClocks; 47 48 #if !defined(CONFIG_USER_ONLY) 49 /* Allow the guest to have a max 3ms advance. 50 * The difference between the 2 clocks could therefore 51 * oscillate around 0. 52 */ 53 #define VM_CLOCK_ADVANCE 3000000 54 #define THRESHOLD_REDUCE 1.5 55 #define MAX_DELAY_PRINT_RATE 2000000000LL 56 #define MAX_NB_PRINTS 100 57 58 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 59 { 60 int64_t cpu_icount; 61 62 if (!icount_align_option) { 63 return; 64 } 65 66 cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; 67 sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount); 68 sc->last_cpu_icount = cpu_icount; 69 70 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 71 #ifndef _WIN32 72 struct timespec sleep_delay, rem_delay; 73 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 74 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 75 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 76 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 77 } else { 78 sc->diff_clk = 0; 79 } 80 #else 81 Sleep(sc->diff_clk / SCALE_MS); 82 sc->diff_clk = 0; 83 #endif 84 } 85 } 86 87 static void print_delay(const SyncClocks *sc) 88 { 89 static float threshold_delay; 90 static int64_t last_realtime_clock; 91 static int nb_prints; 92 93 if (icount_align_option && 94 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 95 nb_prints < MAX_NB_PRINTS) { 96 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 97 (-sc->diff_clk / (float)1000000000LL < 98 (threshold_delay - THRESHOLD_REDUCE))) { 99 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 100 printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 101 threshold_delay - 1, 102 threshold_delay); 103 nb_prints++; 104 last_realtime_clock = sc->realtime_clock; 105 } 106 } 107 } 108 109 static void init_delay_params(SyncClocks *sc, 110 const CPUState *cpu) 111 { 112 if (!icount_align_option) { 113 return; 114 } 115 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 116 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 117 sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; 118 if (sc->diff_clk < max_delay) { 119 max_delay = sc->diff_clk; 120 } 121 if (sc->diff_clk > max_advance) { 122 max_advance = sc->diff_clk; 123 } 124 125 /* Print every 2s max if the guest is late. We limit the number 126 of printed messages to NB_PRINT_MAX(currently 100) */ 127 print_delay(sc); 128 } 129 #else 130 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 131 { 132 } 133 134 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 135 { 136 } 137 #endif /* CONFIG USER ONLY */ 138 139 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 140 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb) 141 { 142 CPUArchState *env = cpu->env_ptr; 143 uintptr_t ret; 144 TranslationBlock *last_tb; 145 int tb_exit; 146 uint8_t *tb_ptr = itb->tc.ptr; 147 148 qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc, 149 "Trace %p [%d: " TARGET_FMT_lx "] %s\n", 150 itb->tc.ptr, cpu->cpu_index, itb->pc, 151 lookup_symbol(itb->pc)); 152 153 #if defined(DEBUG_DISAS) 154 if (qemu_loglevel_mask(CPU_LOG_TB_CPU) 155 && qemu_log_in_addr_range(itb->pc)) { 156 qemu_log_lock(); 157 #if defined(TARGET_I386) 158 log_cpu_state(cpu, CPU_DUMP_CCOP); 159 #else 160 log_cpu_state(cpu, 0); 161 #endif 162 qemu_log_unlock(); 163 } 164 #endif /* DEBUG_DISAS */ 165 166 cpu->can_do_io = !use_icount; 167 ret = tcg_qemu_tb_exec(env, tb_ptr); 168 cpu->can_do_io = 1; 169 last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 170 tb_exit = ret & TB_EXIT_MASK; 171 trace_exec_tb_exit(last_tb, tb_exit); 172 173 if (tb_exit > TB_EXIT_IDX1) { 174 /* We didn't start executing this TB (eg because the instruction 175 * counter hit zero); we must restore the guest PC to the address 176 * of the start of the TB. 177 */ 178 CPUClass *cc = CPU_GET_CLASS(cpu); 179 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, 180 "Stopped execution of TB chain before %p [" 181 TARGET_FMT_lx "] %s\n", 182 last_tb->tc.ptr, last_tb->pc, 183 lookup_symbol(last_tb->pc)); 184 if (cc->synchronize_from_tb) { 185 cc->synchronize_from_tb(cpu, last_tb); 186 } else { 187 assert(cc->set_pc); 188 cc->set_pc(cpu, last_tb->pc); 189 } 190 } 191 return ret; 192 } 193 194 #ifndef CONFIG_USER_ONLY 195 /* Execute the code without caching the generated code. An interpreter 196 could be used if available. */ 197 static void cpu_exec_nocache(CPUState *cpu, int max_cycles, 198 TranslationBlock *orig_tb, bool ignore_icount) 199 { 200 TranslationBlock *tb; 201 202 /* Should never happen. 203 We only end up here when an existing TB is too long. */ 204 if (max_cycles > CF_COUNT_MASK) 205 max_cycles = CF_COUNT_MASK; 206 207 tb_lock(); 208 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags, 209 max_cycles | CF_NOCACHE 210 | (ignore_icount ? CF_IGNORE_ICOUNT : 0) 211 | curr_cflags()); 212 tb->orig_tb = orig_tb; 213 tb_unlock(); 214 215 /* execute the generated code */ 216 trace_exec_tb_nocache(tb, tb->pc); 217 cpu_tb_exec(cpu, tb); 218 219 tb_lock(); 220 tb_phys_invalidate(tb, -1); 221 tb_free(tb); 222 tb_unlock(); 223 } 224 #endif 225 226 static void cpu_exec_step(CPUState *cpu) 227 { 228 CPUClass *cc = CPU_GET_CLASS(cpu); 229 TranslationBlock *tb; 230 target_ulong cs_base, pc; 231 uint32_t flags; 232 uint32_t cflags = 1 | CF_IGNORE_ICOUNT; 233 234 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 235 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, 236 cflags & CF_HASH_MASK); 237 if (tb == NULL) { 238 mmap_lock(); 239 tb_lock(); 240 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 241 tb_unlock(); 242 mmap_unlock(); 243 } 244 245 cc->cpu_exec_enter(cpu); 246 /* execute the generated code */ 247 trace_exec_tb(tb, pc); 248 cpu_tb_exec(cpu, tb); 249 cc->cpu_exec_exit(cpu); 250 } else { 251 /* We may have exited due to another problem here, so we need 252 * to reset any tb_locks we may have taken but didn't release. 253 * The mmap_lock is dropped by tb_gen_code if it runs out of 254 * memory. 255 */ 256 #ifndef CONFIG_SOFTMMU 257 tcg_debug_assert(!have_mmap_lock()); 258 #endif 259 tb_lock_reset(); 260 } 261 } 262 263 void cpu_exec_step_atomic(CPUState *cpu) 264 { 265 start_exclusive(); 266 267 /* Since we got here, we know that parallel_cpus must be true. */ 268 parallel_cpus = false; 269 cpu_exec_step(cpu); 270 parallel_cpus = true; 271 272 end_exclusive(); 273 } 274 275 struct tb_desc { 276 target_ulong pc; 277 target_ulong cs_base; 278 CPUArchState *env; 279 tb_page_addr_t phys_page1; 280 uint32_t flags; 281 uint32_t cf_mask; 282 uint32_t trace_vcpu_dstate; 283 }; 284 285 static bool tb_cmp(const void *p, const void *d) 286 { 287 const TranslationBlock *tb = p; 288 const struct tb_desc *desc = d; 289 290 if (tb->pc == desc->pc && 291 tb->page_addr[0] == desc->phys_page1 && 292 tb->cs_base == desc->cs_base && 293 tb->flags == desc->flags && 294 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 295 (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) { 296 /* check next page if needed */ 297 if (tb->page_addr[1] == -1) { 298 return true; 299 } else { 300 tb_page_addr_t phys_page2; 301 target_ulong virt_page2; 302 303 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 304 phys_page2 = get_page_addr_code(desc->env, virt_page2); 305 if (tb->page_addr[1] == phys_page2) { 306 return true; 307 } 308 } 309 } 310 return false; 311 } 312 313 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 314 target_ulong cs_base, uint32_t flags, 315 uint32_t cf_mask) 316 { 317 tb_page_addr_t phys_pc; 318 struct tb_desc desc; 319 uint32_t h; 320 321 desc.env = (CPUArchState *)cpu->env_ptr; 322 desc.cs_base = cs_base; 323 desc.flags = flags; 324 desc.cf_mask = cf_mask; 325 desc.trace_vcpu_dstate = *cpu->trace_dstate; 326 desc.pc = pc; 327 phys_pc = get_page_addr_code(desc.env, pc); 328 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; 329 h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate); 330 return qht_lookup(&tcg_ctx.tb_ctx.htable, tb_cmp, &desc, h); 331 } 332 333 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 334 { 335 if (TCG_TARGET_HAS_direct_jump) { 336 uintptr_t offset = tb->jmp_target_arg[n]; 337 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; 338 tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr); 339 } else { 340 tb->jmp_target_arg[n] = addr; 341 } 342 } 343 344 /* Called with tb_lock held. */ 345 static inline void tb_add_jump(TranslationBlock *tb, int n, 346 TranslationBlock *tb_next) 347 { 348 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 349 if (tb->jmp_list_next[n]) { 350 /* Another thread has already done this while we were 351 * outside of the lock; nothing to do in this case */ 352 return; 353 } 354 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 355 "Linking TBs %p [" TARGET_FMT_lx 356 "] index %d -> %p [" TARGET_FMT_lx "]\n", 357 tb->tc.ptr, tb->pc, n, 358 tb_next->tc.ptr, tb_next->pc); 359 360 /* patch the native jump address */ 361 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 362 363 /* add in TB jmp circular list */ 364 tb->jmp_list_next[n] = tb_next->jmp_list_first; 365 tb_next->jmp_list_first = (uintptr_t)tb | n; 366 } 367 368 static inline TranslationBlock *tb_find(CPUState *cpu, 369 TranslationBlock *last_tb, 370 int tb_exit, uint32_t cf_mask) 371 { 372 TranslationBlock *tb; 373 target_ulong cs_base, pc; 374 uint32_t flags; 375 bool acquired_tb_lock = false; 376 377 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 378 if (tb == NULL) { 379 /* mmap_lock is needed by tb_gen_code, and mmap_lock must be 380 * taken outside tb_lock. As system emulation is currently 381 * single threaded the locks are NOPs. 382 */ 383 mmap_lock(); 384 tb_lock(); 385 acquired_tb_lock = true; 386 387 /* There's a chance that our desired tb has been translated while 388 * taking the locks so we check again inside the lock. 389 */ 390 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask); 391 if (likely(tb == NULL)) { 392 /* if no translated code available, then translate it now */ 393 tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask); 394 } 395 396 mmap_unlock(); 397 /* We add the TB in the virtual pc hash table for the fast lookup */ 398 atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); 399 } 400 #ifndef CONFIG_USER_ONLY 401 /* We don't take care of direct jumps when address mapping changes in 402 * system emulation. So it's not safe to make a direct jump to a TB 403 * spanning two pages because the mapping for the second page can change. 404 */ 405 if (tb->page_addr[1] != -1) { 406 last_tb = NULL; 407 } 408 #endif 409 /* See if we can patch the calling TB. */ 410 if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 411 if (!acquired_tb_lock) { 412 tb_lock(); 413 acquired_tb_lock = true; 414 } 415 if (!(tb->cflags & CF_INVALID)) { 416 tb_add_jump(last_tb, tb_exit, tb); 417 } 418 } 419 if (acquired_tb_lock) { 420 tb_unlock(); 421 } 422 return tb; 423 } 424 425 static inline bool cpu_handle_halt(CPUState *cpu) 426 { 427 if (cpu->halted) { 428 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 429 if ((cpu->interrupt_request & CPU_INTERRUPT_POLL) 430 && replay_interrupt()) { 431 X86CPU *x86_cpu = X86_CPU(cpu); 432 qemu_mutex_lock_iothread(); 433 apic_poll_irq(x86_cpu->apic_state); 434 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 435 qemu_mutex_unlock_iothread(); 436 } 437 #endif 438 if (!cpu_has_work(cpu)) { 439 return true; 440 } 441 442 cpu->halted = 0; 443 } 444 445 return false; 446 } 447 448 static inline void cpu_handle_debug_exception(CPUState *cpu) 449 { 450 CPUClass *cc = CPU_GET_CLASS(cpu); 451 CPUWatchpoint *wp; 452 453 if (!cpu->watchpoint_hit) { 454 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 455 wp->flags &= ~BP_WATCHPOINT_HIT; 456 } 457 } 458 459 cc->debug_excp_handler(cpu); 460 } 461 462 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 463 { 464 if (cpu->exception_index >= 0) { 465 if (cpu->exception_index >= EXCP_INTERRUPT) { 466 /* exit request from the cpu execution loop */ 467 *ret = cpu->exception_index; 468 if (*ret == EXCP_DEBUG) { 469 cpu_handle_debug_exception(cpu); 470 } 471 cpu->exception_index = -1; 472 return true; 473 } else { 474 #if defined(CONFIG_USER_ONLY) 475 /* if user mode only, we simulate a fake exception 476 which will be handled outside the cpu execution 477 loop */ 478 #if defined(TARGET_I386) 479 CPUClass *cc = CPU_GET_CLASS(cpu); 480 cc->do_interrupt(cpu); 481 #endif 482 *ret = cpu->exception_index; 483 cpu->exception_index = -1; 484 return true; 485 #else 486 if (replay_exception()) { 487 CPUClass *cc = CPU_GET_CLASS(cpu); 488 qemu_mutex_lock_iothread(); 489 cc->do_interrupt(cpu); 490 qemu_mutex_unlock_iothread(); 491 cpu->exception_index = -1; 492 } else if (!replay_has_interrupt()) { 493 /* give a chance to iothread in replay mode */ 494 *ret = EXCP_INTERRUPT; 495 return true; 496 } 497 #endif 498 } 499 #ifndef CONFIG_USER_ONLY 500 } else if (replay_has_exception() 501 && cpu->icount_decr.u16.low + cpu->icount_extra == 0) { 502 /* try to cause an exception pending in the log */ 503 cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true); 504 *ret = -1; 505 return true; 506 #endif 507 } 508 509 return false; 510 } 511 512 static inline bool cpu_handle_interrupt(CPUState *cpu, 513 TranslationBlock **last_tb) 514 { 515 CPUClass *cc = CPU_GET_CLASS(cpu); 516 517 if (unlikely(atomic_read(&cpu->interrupt_request))) { 518 int interrupt_request; 519 qemu_mutex_lock_iothread(); 520 interrupt_request = cpu->interrupt_request; 521 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 522 /* Mask out external interrupts for this step. */ 523 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 524 } 525 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 526 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 527 cpu->exception_index = EXCP_DEBUG; 528 qemu_mutex_unlock_iothread(); 529 return true; 530 } 531 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 532 /* Do nothing */ 533 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 534 replay_interrupt(); 535 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 536 cpu->halted = 1; 537 cpu->exception_index = EXCP_HLT; 538 qemu_mutex_unlock_iothread(); 539 return true; 540 } 541 #if defined(TARGET_I386) 542 else if (interrupt_request & CPU_INTERRUPT_INIT) { 543 X86CPU *x86_cpu = X86_CPU(cpu); 544 CPUArchState *env = &x86_cpu->env; 545 replay_interrupt(); 546 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 547 do_cpu_init(x86_cpu); 548 cpu->exception_index = EXCP_HALTED; 549 qemu_mutex_unlock_iothread(); 550 return true; 551 } 552 #else 553 else if (interrupt_request & CPU_INTERRUPT_RESET) { 554 replay_interrupt(); 555 cpu_reset(cpu); 556 qemu_mutex_unlock_iothread(); 557 return true; 558 } 559 #endif 560 /* The target hook has 3 exit conditions: 561 False when the interrupt isn't processed, 562 True when it is, and we should restart on a new TB, 563 and via longjmp via cpu_loop_exit. */ 564 else { 565 if (cc->cpu_exec_interrupt(cpu, interrupt_request)) { 566 replay_interrupt(); 567 *last_tb = NULL; 568 } 569 /* The target hook may have updated the 'cpu->interrupt_request'; 570 * reload the 'interrupt_request' value */ 571 interrupt_request = cpu->interrupt_request; 572 } 573 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 574 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 575 /* ensure that no TB jump will be modified as 576 the program flow was changed */ 577 *last_tb = NULL; 578 } 579 580 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 581 qemu_mutex_unlock_iothread(); 582 } 583 584 /* Finally, check if we need to exit to the main loop. */ 585 if (unlikely(atomic_read(&cpu->exit_request) 586 || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) { 587 atomic_set(&cpu->exit_request, 0); 588 cpu->exception_index = EXCP_INTERRUPT; 589 return true; 590 } 591 592 return false; 593 } 594 595 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 596 TranslationBlock **last_tb, int *tb_exit) 597 { 598 uintptr_t ret; 599 int32_t insns_left; 600 601 trace_exec_tb(tb, tb->pc); 602 ret = cpu_tb_exec(cpu, tb); 603 tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 604 *tb_exit = ret & TB_EXIT_MASK; 605 if (*tb_exit != TB_EXIT_REQUESTED) { 606 *last_tb = tb; 607 return; 608 } 609 610 *last_tb = NULL; 611 insns_left = atomic_read(&cpu->icount_decr.u32); 612 atomic_set(&cpu->icount_decr.u16.high, 0); 613 if (insns_left < 0) { 614 /* Something asked us to stop executing chained TBs; just 615 * continue round the main loop. Whatever requested the exit 616 * will also have set something else (eg exit_request or 617 * interrupt_request) which we will handle next time around 618 * the loop. But we need to ensure the zeroing of icount_decr 619 * comes before the next read of cpu->exit_request 620 * or cpu->interrupt_request. 621 */ 622 smp_mb(); 623 return; 624 } 625 626 /* Instruction counter expired. */ 627 assert(use_icount); 628 #ifndef CONFIG_USER_ONLY 629 /* Ensure global icount has gone forward */ 630 cpu_update_icount(cpu); 631 /* Refill decrementer and continue execution. */ 632 insns_left = MIN(0xffff, cpu->icount_budget); 633 cpu->icount_decr.u16.low = insns_left; 634 cpu->icount_extra = cpu->icount_budget - insns_left; 635 if (!cpu->icount_extra) { 636 /* Execute any remaining instructions, then let the main loop 637 * handle the next event. 638 */ 639 if (insns_left > 0) { 640 cpu_exec_nocache(cpu, insns_left, tb, false); 641 } 642 } 643 #endif 644 } 645 646 /* main execution loop */ 647 648 int cpu_exec(CPUState *cpu) 649 { 650 CPUClass *cc = CPU_GET_CLASS(cpu); 651 int ret; 652 SyncClocks sc = { 0 }; 653 654 /* replay_interrupt may need current_cpu */ 655 current_cpu = cpu; 656 657 if (cpu_handle_halt(cpu)) { 658 return EXCP_HALTED; 659 } 660 661 rcu_read_lock(); 662 663 cc->cpu_exec_enter(cpu); 664 665 /* Calculate difference between guest clock and host clock. 666 * This delay includes the delay of the last cycle, so 667 * what we have to do is sleep until it is 0. As for the 668 * advance/delay we gain here, we try to fix it next time. 669 */ 670 init_delay_params(&sc, cpu); 671 672 /* prepare setjmp context for exception handling */ 673 if (sigsetjmp(cpu->jmp_env, 0) != 0) { 674 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6) 675 /* Some compilers wrongly smash all local variables after 676 * siglongjmp. There were bug reports for gcc 4.5.0 and clang. 677 * Reload essential local variables here for those compilers. 678 * Newer versions of gcc would complain about this code (-Wclobbered). */ 679 cpu = current_cpu; 680 cc = CPU_GET_CLASS(cpu); 681 #else /* buggy compiler */ 682 /* Assert that the compiler does not smash local variables. */ 683 g_assert(cpu == current_cpu); 684 g_assert(cc == CPU_GET_CLASS(cpu)); 685 #endif /* buggy compiler */ 686 cpu->can_do_io = 1; 687 tb_lock_reset(); 688 if (qemu_mutex_iothread_locked()) { 689 qemu_mutex_unlock_iothread(); 690 } 691 } 692 693 /* if an exception is pending, we execute it here */ 694 while (!cpu_handle_exception(cpu, &ret)) { 695 TranslationBlock *last_tb = NULL; 696 int tb_exit = 0; 697 698 while (!cpu_handle_interrupt(cpu, &last_tb)) { 699 uint32_t cflags = cpu->cflags_next_tb; 700 TranslationBlock *tb; 701 702 /* When requested, use an exact setting for cflags for the next 703 execution. This is used for icount, precise smc, and stop- 704 after-access watchpoints. Since this request should never 705 have CF_INVALID set, -1 is a convenient invalid value that 706 does not require tcg headers for cpu_common_reset. */ 707 if (cflags == -1) { 708 cflags = curr_cflags(); 709 } else { 710 cpu->cflags_next_tb = -1; 711 } 712 713 tb = tb_find(cpu, last_tb, tb_exit, cflags); 714 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); 715 /* Try to align the host and virtual clocks 716 if the guest is in advance */ 717 align_clocks(&sc, cpu); 718 } 719 } 720 721 cc->cpu_exec_exit(cpu); 722 rcu_read_unlock(); 723 724 return ret; 725 } 726