1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "trace.h" 22 #include "disas/disas.h" 23 #include "exec/exec-all.h" 24 #include "tcg.h" 25 #include "qemu/atomic.h" 26 #include "sysemu/qtest.h" 27 #include "qemu/timer.h" 28 #include "qemu/rcu.h" 29 #include "exec/tb-hash.h" 30 #include "exec/tb-lookup.h" 31 #include "exec/log.h" 32 #include "qemu/main-loop.h" 33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 34 #include "hw/i386/apic.h" 35 #endif 36 #include "sysemu/cpus.h" 37 #include "sysemu/replay.h" 38 39 /* -icount align implementation. */ 40 41 typedef struct SyncClocks { 42 int64_t diff_clk; 43 int64_t last_cpu_icount; 44 int64_t realtime_clock; 45 } SyncClocks; 46 47 #if !defined(CONFIG_USER_ONLY) 48 /* Allow the guest to have a max 3ms advance. 49 * The difference between the 2 clocks could therefore 50 * oscillate around 0. 51 */ 52 #define VM_CLOCK_ADVANCE 3000000 53 #define THRESHOLD_REDUCE 1.5 54 #define MAX_DELAY_PRINT_RATE 2000000000LL 55 #define MAX_NB_PRINTS 100 56 57 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 58 { 59 int64_t cpu_icount; 60 61 if (!icount_align_option) { 62 return; 63 } 64 65 cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; 66 sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount); 67 sc->last_cpu_icount = cpu_icount; 68 69 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 70 #ifndef _WIN32 71 struct timespec sleep_delay, rem_delay; 72 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 73 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 74 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 75 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 76 } else { 77 sc->diff_clk = 0; 78 } 79 #else 80 Sleep(sc->diff_clk / SCALE_MS); 81 sc->diff_clk = 0; 82 #endif 83 } 84 } 85 86 static void print_delay(const SyncClocks *sc) 87 { 88 static float threshold_delay; 89 static int64_t last_realtime_clock; 90 static int nb_prints; 91 92 if (icount_align_option && 93 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 94 nb_prints < MAX_NB_PRINTS) { 95 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 96 (-sc->diff_clk / (float)1000000000LL < 97 (threshold_delay - THRESHOLD_REDUCE))) { 98 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 99 printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 100 threshold_delay - 1, 101 threshold_delay); 102 nb_prints++; 103 last_realtime_clock = sc->realtime_clock; 104 } 105 } 106 } 107 108 static void init_delay_params(SyncClocks *sc, 109 const CPUState *cpu) 110 { 111 if (!icount_align_option) { 112 return; 113 } 114 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 115 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 116 sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; 117 if (sc->diff_clk < max_delay) { 118 max_delay = sc->diff_clk; 119 } 120 if (sc->diff_clk > max_advance) { 121 max_advance = sc->diff_clk; 122 } 123 124 /* Print every 2s max if the guest is late. We limit the number 125 of printed messages to NB_PRINT_MAX(currently 100) */ 126 print_delay(sc); 127 } 128 #else 129 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 130 { 131 } 132 133 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 134 { 135 } 136 #endif /* CONFIG USER ONLY */ 137 138 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 139 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb) 140 { 141 CPUArchState *env = cpu->env_ptr; 142 uintptr_t ret; 143 TranslationBlock *last_tb; 144 int tb_exit; 145 uint8_t *tb_ptr = itb->tc.ptr; 146 147 qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc, 148 "Trace %d: %p [" 149 TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n", 150 cpu->cpu_index, itb->tc.ptr, 151 itb->cs_base, itb->pc, itb->flags, 152 lookup_symbol(itb->pc)); 153 154 #if defined(DEBUG_DISAS) 155 if (qemu_loglevel_mask(CPU_LOG_TB_CPU) 156 && qemu_log_in_addr_range(itb->pc)) { 157 qemu_log_lock(); 158 int flags = 0; 159 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 160 flags |= CPU_DUMP_FPU; 161 } 162 #if defined(TARGET_I386) 163 flags |= CPU_DUMP_CCOP; 164 #endif 165 log_cpu_state(cpu, flags); 166 qemu_log_unlock(); 167 } 168 #endif /* DEBUG_DISAS */ 169 170 cpu->can_do_io = !use_icount; 171 ret = tcg_qemu_tb_exec(env, tb_ptr); 172 cpu->can_do_io = 1; 173 last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 174 tb_exit = ret & TB_EXIT_MASK; 175 trace_exec_tb_exit(last_tb, tb_exit); 176 177 if (tb_exit > TB_EXIT_IDX1) { 178 /* We didn't start executing this TB (eg because the instruction 179 * counter hit zero); we must restore the guest PC to the address 180 * of the start of the TB. 181 */ 182 CPUClass *cc = CPU_GET_CLASS(cpu); 183 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, 184 "Stopped execution of TB chain before %p [" 185 TARGET_FMT_lx "] %s\n", 186 last_tb->tc.ptr, last_tb->pc, 187 lookup_symbol(last_tb->pc)); 188 if (cc->synchronize_from_tb) { 189 cc->synchronize_from_tb(cpu, last_tb); 190 } else { 191 assert(cc->set_pc); 192 cc->set_pc(cpu, last_tb->pc); 193 } 194 } 195 return ret; 196 } 197 198 #ifndef CONFIG_USER_ONLY 199 /* Execute the code without caching the generated code. An interpreter 200 could be used if available. */ 201 static void cpu_exec_nocache(CPUState *cpu, int max_cycles, 202 TranslationBlock *orig_tb, bool ignore_icount) 203 { 204 TranslationBlock *tb; 205 uint32_t cflags = curr_cflags() | CF_NOCACHE; 206 207 if (ignore_icount) { 208 cflags &= ~CF_USE_ICOUNT; 209 } 210 211 /* Should never happen. 212 We only end up here when an existing TB is too long. */ 213 cflags |= MIN(max_cycles, CF_COUNT_MASK); 214 215 tb_lock(); 216 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, 217 orig_tb->flags, cflags); 218 tb->orig_tb = orig_tb; 219 tb_unlock(); 220 221 /* execute the generated code */ 222 trace_exec_tb_nocache(tb, tb->pc); 223 cpu_tb_exec(cpu, tb); 224 225 tb_lock(); 226 tb_phys_invalidate(tb, -1); 227 tcg_tb_remove(tb); 228 tb_unlock(); 229 } 230 #endif 231 232 void cpu_exec_step_atomic(CPUState *cpu) 233 { 234 CPUClass *cc = CPU_GET_CLASS(cpu); 235 TranslationBlock *tb; 236 target_ulong cs_base, pc; 237 uint32_t flags; 238 uint32_t cflags = 1; 239 uint32_t cf_mask = cflags & CF_HASH_MASK; 240 /* volatile because we modify it between setjmp and longjmp */ 241 volatile bool in_exclusive_region = false; 242 243 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 244 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 245 if (tb == NULL) { 246 mmap_lock(); 247 tb_lock(); 248 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask); 249 if (likely(tb == NULL)) { 250 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 251 } 252 tb_unlock(); 253 mmap_unlock(); 254 } 255 256 start_exclusive(); 257 258 /* Since we got here, we know that parallel_cpus must be true. */ 259 parallel_cpus = false; 260 in_exclusive_region = true; 261 cc->cpu_exec_enter(cpu); 262 /* execute the generated code */ 263 trace_exec_tb(tb, pc); 264 cpu_tb_exec(cpu, tb); 265 cc->cpu_exec_exit(cpu); 266 } else { 267 /* We may have exited due to another problem here, so we need 268 * to reset any tb_locks we may have taken but didn't release. 269 * The mmap_lock is dropped by tb_gen_code if it runs out of 270 * memory. 271 */ 272 #ifndef CONFIG_SOFTMMU 273 tcg_debug_assert(!have_mmap_lock()); 274 #endif 275 tb_lock_reset(); 276 } 277 278 if (in_exclusive_region) { 279 /* We might longjump out of either the codegen or the 280 * execution, so must make sure we only end the exclusive 281 * region if we started it. 282 */ 283 parallel_cpus = true; 284 end_exclusive(); 285 } 286 } 287 288 struct tb_desc { 289 target_ulong pc; 290 target_ulong cs_base; 291 CPUArchState *env; 292 tb_page_addr_t phys_page1; 293 uint32_t flags; 294 uint32_t cf_mask; 295 uint32_t trace_vcpu_dstate; 296 }; 297 298 static bool tb_lookup_cmp(const void *p, const void *d) 299 { 300 const TranslationBlock *tb = p; 301 const struct tb_desc *desc = d; 302 303 if (tb->pc == desc->pc && 304 tb->page_addr[0] == desc->phys_page1 && 305 tb->cs_base == desc->cs_base && 306 tb->flags == desc->flags && 307 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 308 (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) { 309 /* check next page if needed */ 310 if (tb->page_addr[1] == -1) { 311 return true; 312 } else { 313 tb_page_addr_t phys_page2; 314 target_ulong virt_page2; 315 316 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 317 phys_page2 = get_page_addr_code(desc->env, virt_page2); 318 if (tb->page_addr[1] == phys_page2) { 319 return true; 320 } 321 } 322 } 323 return false; 324 } 325 326 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 327 target_ulong cs_base, uint32_t flags, 328 uint32_t cf_mask) 329 { 330 tb_page_addr_t phys_pc; 331 struct tb_desc desc; 332 uint32_t h; 333 334 desc.env = (CPUArchState *)cpu->env_ptr; 335 desc.cs_base = cs_base; 336 desc.flags = flags; 337 desc.cf_mask = cf_mask; 338 desc.trace_vcpu_dstate = *cpu->trace_dstate; 339 desc.pc = pc; 340 phys_pc = get_page_addr_code(desc.env, pc); 341 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; 342 h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate); 343 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 344 } 345 346 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 347 { 348 if (TCG_TARGET_HAS_direct_jump) { 349 uintptr_t offset = tb->jmp_target_arg[n]; 350 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; 351 tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr); 352 } else { 353 tb->jmp_target_arg[n] = addr; 354 } 355 } 356 357 /* Called with tb_lock held. */ 358 static inline void tb_add_jump(TranslationBlock *tb, int n, 359 TranslationBlock *tb_next) 360 { 361 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 362 if (tb->jmp_list_next[n]) { 363 /* Another thread has already done this while we were 364 * outside of the lock; nothing to do in this case */ 365 return; 366 } 367 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 368 "Linking TBs %p [" TARGET_FMT_lx 369 "] index %d -> %p [" TARGET_FMT_lx "]\n", 370 tb->tc.ptr, tb->pc, n, 371 tb_next->tc.ptr, tb_next->pc); 372 373 /* patch the native jump address */ 374 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 375 376 /* add in TB jmp circular list */ 377 tb->jmp_list_next[n] = tb_next->jmp_list_first; 378 tb_next->jmp_list_first = (uintptr_t)tb | n; 379 } 380 381 static inline TranslationBlock *tb_find(CPUState *cpu, 382 TranslationBlock *last_tb, 383 int tb_exit, uint32_t cf_mask) 384 { 385 TranslationBlock *tb; 386 target_ulong cs_base, pc; 387 uint32_t flags; 388 bool acquired_tb_lock = false; 389 390 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 391 if (tb == NULL) { 392 /* mmap_lock is needed by tb_gen_code, and mmap_lock must be 393 * taken outside tb_lock. As system emulation is currently 394 * single threaded the locks are NOPs. 395 */ 396 mmap_lock(); 397 tb_lock(); 398 acquired_tb_lock = true; 399 400 /* There's a chance that our desired tb has been translated while 401 * taking the locks so we check again inside the lock. 402 */ 403 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask); 404 if (likely(tb == NULL)) { 405 /* if no translated code available, then translate it now */ 406 tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask); 407 } 408 409 mmap_unlock(); 410 /* We add the TB in the virtual pc hash table for the fast lookup */ 411 atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); 412 } 413 #ifndef CONFIG_USER_ONLY 414 /* We don't take care of direct jumps when address mapping changes in 415 * system emulation. So it's not safe to make a direct jump to a TB 416 * spanning two pages because the mapping for the second page can change. 417 */ 418 if (tb->page_addr[1] != -1) { 419 last_tb = NULL; 420 } 421 #endif 422 /* See if we can patch the calling TB. */ 423 if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 424 if (!acquired_tb_lock) { 425 tb_lock(); 426 acquired_tb_lock = true; 427 } 428 if (!(tb->cflags & CF_INVALID)) { 429 tb_add_jump(last_tb, tb_exit, tb); 430 } 431 } 432 if (acquired_tb_lock) { 433 tb_unlock(); 434 } 435 return tb; 436 } 437 438 static inline bool cpu_handle_halt(CPUState *cpu) 439 { 440 if (cpu->halted) { 441 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 442 if ((cpu->interrupt_request & CPU_INTERRUPT_POLL) 443 && replay_interrupt()) { 444 X86CPU *x86_cpu = X86_CPU(cpu); 445 qemu_mutex_lock_iothread(); 446 apic_poll_irq(x86_cpu->apic_state); 447 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 448 qemu_mutex_unlock_iothread(); 449 } 450 #endif 451 if (!cpu_has_work(cpu)) { 452 return true; 453 } 454 455 cpu->halted = 0; 456 } 457 458 return false; 459 } 460 461 static inline void cpu_handle_debug_exception(CPUState *cpu) 462 { 463 CPUClass *cc = CPU_GET_CLASS(cpu); 464 CPUWatchpoint *wp; 465 466 if (!cpu->watchpoint_hit) { 467 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 468 wp->flags &= ~BP_WATCHPOINT_HIT; 469 } 470 } 471 472 cc->debug_excp_handler(cpu); 473 } 474 475 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 476 { 477 if (cpu->exception_index < 0) { 478 #ifndef CONFIG_USER_ONLY 479 if (replay_has_exception() 480 && cpu->icount_decr.u16.low + cpu->icount_extra == 0) { 481 /* try to cause an exception pending in the log */ 482 cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true); 483 } 484 #endif 485 if (cpu->exception_index < 0) { 486 return false; 487 } 488 } 489 490 if (cpu->exception_index >= EXCP_INTERRUPT) { 491 /* exit request from the cpu execution loop */ 492 *ret = cpu->exception_index; 493 if (*ret == EXCP_DEBUG) { 494 cpu_handle_debug_exception(cpu); 495 } 496 cpu->exception_index = -1; 497 return true; 498 } else { 499 #if defined(CONFIG_USER_ONLY) 500 /* if user mode only, we simulate a fake exception 501 which will be handled outside the cpu execution 502 loop */ 503 #if defined(TARGET_I386) 504 CPUClass *cc = CPU_GET_CLASS(cpu); 505 cc->do_interrupt(cpu); 506 #endif 507 *ret = cpu->exception_index; 508 cpu->exception_index = -1; 509 return true; 510 #else 511 if (replay_exception()) { 512 CPUClass *cc = CPU_GET_CLASS(cpu); 513 qemu_mutex_lock_iothread(); 514 cc->do_interrupt(cpu); 515 qemu_mutex_unlock_iothread(); 516 cpu->exception_index = -1; 517 } else if (!replay_has_interrupt()) { 518 /* give a chance to iothread in replay mode */ 519 *ret = EXCP_INTERRUPT; 520 return true; 521 } 522 #endif 523 } 524 525 return false; 526 } 527 528 static inline bool cpu_handle_interrupt(CPUState *cpu, 529 TranslationBlock **last_tb) 530 { 531 CPUClass *cc = CPU_GET_CLASS(cpu); 532 533 /* Clear the interrupt flag now since we're processing 534 * cpu->interrupt_request and cpu->exit_request. 535 * Ensure zeroing happens before reading cpu->exit_request or 536 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 537 */ 538 atomic_mb_set(&cpu->icount_decr.u16.high, 0); 539 540 if (unlikely(atomic_read(&cpu->interrupt_request))) { 541 int interrupt_request; 542 qemu_mutex_lock_iothread(); 543 interrupt_request = cpu->interrupt_request; 544 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 545 /* Mask out external interrupts for this step. */ 546 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 547 } 548 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 549 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 550 cpu->exception_index = EXCP_DEBUG; 551 qemu_mutex_unlock_iothread(); 552 return true; 553 } 554 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 555 /* Do nothing */ 556 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 557 replay_interrupt(); 558 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 559 cpu->halted = 1; 560 cpu->exception_index = EXCP_HLT; 561 qemu_mutex_unlock_iothread(); 562 return true; 563 } 564 #if defined(TARGET_I386) 565 else if (interrupt_request & CPU_INTERRUPT_INIT) { 566 X86CPU *x86_cpu = X86_CPU(cpu); 567 CPUArchState *env = &x86_cpu->env; 568 replay_interrupt(); 569 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 570 do_cpu_init(x86_cpu); 571 cpu->exception_index = EXCP_HALTED; 572 qemu_mutex_unlock_iothread(); 573 return true; 574 } 575 #else 576 else if (interrupt_request & CPU_INTERRUPT_RESET) { 577 replay_interrupt(); 578 cpu_reset(cpu); 579 qemu_mutex_unlock_iothread(); 580 return true; 581 } 582 #endif 583 /* The target hook has 3 exit conditions: 584 False when the interrupt isn't processed, 585 True when it is, and we should restart on a new TB, 586 and via longjmp via cpu_loop_exit. */ 587 else { 588 if (cc->cpu_exec_interrupt(cpu, interrupt_request)) { 589 replay_interrupt(); 590 cpu->exception_index = -1; 591 *last_tb = NULL; 592 } 593 /* The target hook may have updated the 'cpu->interrupt_request'; 594 * reload the 'interrupt_request' value */ 595 interrupt_request = cpu->interrupt_request; 596 } 597 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 598 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 599 /* ensure that no TB jump will be modified as 600 the program flow was changed */ 601 *last_tb = NULL; 602 } 603 604 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 605 qemu_mutex_unlock_iothread(); 606 } 607 608 /* Finally, check if we need to exit to the main loop. */ 609 if (unlikely(atomic_read(&cpu->exit_request) 610 || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) { 611 atomic_set(&cpu->exit_request, 0); 612 if (cpu->exception_index == -1) { 613 cpu->exception_index = EXCP_INTERRUPT; 614 } 615 return true; 616 } 617 618 return false; 619 } 620 621 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 622 TranslationBlock **last_tb, int *tb_exit) 623 { 624 uintptr_t ret; 625 int32_t insns_left; 626 627 trace_exec_tb(tb, tb->pc); 628 ret = cpu_tb_exec(cpu, tb); 629 tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 630 *tb_exit = ret & TB_EXIT_MASK; 631 if (*tb_exit != TB_EXIT_REQUESTED) { 632 *last_tb = tb; 633 return; 634 } 635 636 *last_tb = NULL; 637 insns_left = atomic_read(&cpu->icount_decr.u32); 638 if (insns_left < 0) { 639 /* Something asked us to stop executing chained TBs; just 640 * continue round the main loop. Whatever requested the exit 641 * will also have set something else (eg exit_request or 642 * interrupt_request) which will be handled by 643 * cpu_handle_interrupt. cpu_handle_interrupt will also 644 * clear cpu->icount_decr.u16.high. 645 */ 646 return; 647 } 648 649 /* Instruction counter expired. */ 650 assert(use_icount); 651 #ifndef CONFIG_USER_ONLY 652 /* Ensure global icount has gone forward */ 653 cpu_update_icount(cpu); 654 /* Refill decrementer and continue execution. */ 655 insns_left = MIN(0xffff, cpu->icount_budget); 656 cpu->icount_decr.u16.low = insns_left; 657 cpu->icount_extra = cpu->icount_budget - insns_left; 658 if (!cpu->icount_extra) { 659 /* Execute any remaining instructions, then let the main loop 660 * handle the next event. 661 */ 662 if (insns_left > 0) { 663 cpu_exec_nocache(cpu, insns_left, tb, false); 664 } 665 } 666 #endif 667 } 668 669 /* main execution loop */ 670 671 int cpu_exec(CPUState *cpu) 672 { 673 CPUClass *cc = CPU_GET_CLASS(cpu); 674 int ret; 675 SyncClocks sc = { 0 }; 676 677 /* replay_interrupt may need current_cpu */ 678 current_cpu = cpu; 679 680 if (cpu_handle_halt(cpu)) { 681 return EXCP_HALTED; 682 } 683 684 rcu_read_lock(); 685 686 cc->cpu_exec_enter(cpu); 687 688 /* Calculate difference between guest clock and host clock. 689 * This delay includes the delay of the last cycle, so 690 * what we have to do is sleep until it is 0. As for the 691 * advance/delay we gain here, we try to fix it next time. 692 */ 693 init_delay_params(&sc, cpu); 694 695 /* prepare setjmp context for exception handling */ 696 if (sigsetjmp(cpu->jmp_env, 0) != 0) { 697 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6) 698 /* Some compilers wrongly smash all local variables after 699 * siglongjmp. There were bug reports for gcc 4.5.0 and clang. 700 * Reload essential local variables here for those compilers. 701 * Newer versions of gcc would complain about this code (-Wclobbered). */ 702 cpu = current_cpu; 703 cc = CPU_GET_CLASS(cpu); 704 #else /* buggy compiler */ 705 /* Assert that the compiler does not smash local variables. */ 706 g_assert(cpu == current_cpu); 707 g_assert(cc == CPU_GET_CLASS(cpu)); 708 #endif /* buggy compiler */ 709 tb_lock_reset(); 710 if (qemu_mutex_iothread_locked()) { 711 qemu_mutex_unlock_iothread(); 712 } 713 } 714 715 /* if an exception is pending, we execute it here */ 716 while (!cpu_handle_exception(cpu, &ret)) { 717 TranslationBlock *last_tb = NULL; 718 int tb_exit = 0; 719 720 while (!cpu_handle_interrupt(cpu, &last_tb)) { 721 uint32_t cflags = cpu->cflags_next_tb; 722 TranslationBlock *tb; 723 724 /* When requested, use an exact setting for cflags for the next 725 execution. This is used for icount, precise smc, and stop- 726 after-access watchpoints. Since this request should never 727 have CF_INVALID set, -1 is a convenient invalid value that 728 does not require tcg headers for cpu_common_reset. */ 729 if (cflags == -1) { 730 cflags = curr_cflags(); 731 } else { 732 cpu->cflags_next_tb = -1; 733 } 734 735 tb = tb_find(cpu, last_tb, tb_exit, cflags); 736 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); 737 /* Try to align the host and virtual clocks 738 if the guest is in advance */ 739 align_clocks(&sc, cpu); 740 } 741 } 742 743 cc->cpu_exec_exit(cpu); 744 rcu_read_unlock(); 745 746 return ret; 747 } 748