xref: /openbmc/qemu/accel/tcg/cpu-exec.c (revision bbadfb2e)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/type-helpers.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 #include "qemu/atomic.h"
30 #include "qemu/rcu.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
34 #include "hw/i386/apic.h"
35 #endif
36 #include "sysemu/cpus.h"
37 #include "exec/cpu-all.h"
38 #include "sysemu/cpu-timers.h"
39 #include "exec/replay-core.h"
40 #include "sysemu/tcg.h"
41 #include "exec/helper-proto.h"
42 #include "tb-jmp-cache.h"
43 #include "tb-hash.h"
44 #include "tb-context.h"
45 #include "internal.h"
46 
47 /* -icount align implementation. */
48 
49 typedef struct SyncClocks {
50     int64_t diff_clk;
51     int64_t last_cpu_icount;
52     int64_t realtime_clock;
53 } SyncClocks;
54 
55 #if !defined(CONFIG_USER_ONLY)
56 /* Allow the guest to have a max 3ms advance.
57  * The difference between the 2 clocks could therefore
58  * oscillate around 0.
59  */
60 #define VM_CLOCK_ADVANCE 3000000
61 #define THRESHOLD_REDUCE 1.5
62 #define MAX_DELAY_PRINT_RATE 2000000000LL
63 #define MAX_NB_PRINTS 100
64 
65 int64_t max_delay;
66 int64_t max_advance;
67 
68 static void align_clocks(SyncClocks *sc, CPUState *cpu)
69 {
70     int64_t cpu_icount;
71 
72     if (!icount_align_option) {
73         return;
74     }
75 
76     cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
77     sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
78     sc->last_cpu_icount = cpu_icount;
79 
80     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
81 #ifndef _WIN32
82         struct timespec sleep_delay, rem_delay;
83         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
84         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
85         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
86             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
87         } else {
88             sc->diff_clk = 0;
89         }
90 #else
91         Sleep(sc->diff_clk / SCALE_MS);
92         sc->diff_clk = 0;
93 #endif
94     }
95 }
96 
97 static void print_delay(const SyncClocks *sc)
98 {
99     static float threshold_delay;
100     static int64_t last_realtime_clock;
101     static int nb_prints;
102 
103     if (icount_align_option &&
104         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
105         nb_prints < MAX_NB_PRINTS) {
106         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
107             (-sc->diff_clk / (float)1000000000LL <
108              (threshold_delay - THRESHOLD_REDUCE))) {
109             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
110             qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
111                         threshold_delay - 1,
112                         threshold_delay);
113             nb_prints++;
114             last_realtime_clock = sc->realtime_clock;
115         }
116     }
117 }
118 
119 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
120 {
121     if (!icount_align_option) {
122         return;
123     }
124     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
125     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
126     sc->last_cpu_icount
127         = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
128     if (sc->diff_clk < max_delay) {
129         max_delay = sc->diff_clk;
130     }
131     if (sc->diff_clk > max_advance) {
132         max_advance = sc->diff_clk;
133     }
134 
135     /* Print every 2s max if the guest is late. We limit the number
136        of printed messages to NB_PRINT_MAX(currently 100) */
137     print_delay(sc);
138 }
139 #else
140 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
141 {
142 }
143 
144 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
145 {
146 }
147 #endif /* CONFIG USER ONLY */
148 
149 uint32_t curr_cflags(CPUState *cpu)
150 {
151     uint32_t cflags = cpu->tcg_cflags;
152 
153     /*
154      * Record gdb single-step.  We should be exiting the TB by raising
155      * EXCP_DEBUG, but to simplify other tests, disable chaining too.
156      *
157      * For singlestep and -d nochain, suppress goto_tb so that
158      * we can log -d cpu,exec after every TB.
159      */
160     if (unlikely(cpu->singlestep_enabled)) {
161         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
162     } else if (singlestep) {
163         cflags |= CF_NO_GOTO_TB | 1;
164     } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
165         cflags |= CF_NO_GOTO_TB;
166     }
167 
168     return cflags;
169 }
170 
171 struct tb_desc {
172     target_ulong pc;
173     target_ulong cs_base;
174     CPUArchState *env;
175     tb_page_addr_t page_addr0;
176     uint32_t flags;
177     uint32_t cflags;
178     uint32_t trace_vcpu_dstate;
179 };
180 
181 static bool tb_lookup_cmp(const void *p, const void *d)
182 {
183     const TranslationBlock *tb = p;
184     const struct tb_desc *desc = d;
185 
186     if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) &&
187         tb_page_addr0(tb) == desc->page_addr0 &&
188         tb->cs_base == desc->cs_base &&
189         tb->flags == desc->flags &&
190         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
191         tb_cflags(tb) == desc->cflags) {
192         /* check next page if needed */
193         tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
194         if (tb_phys_page1 == -1) {
195             return true;
196         } else {
197             tb_page_addr_t phys_page1;
198             target_ulong virt_page1;
199 
200             /*
201              * We know that the first page matched, and an otherwise valid TB
202              * encountered an incomplete instruction at the end of that page,
203              * therefore we know that generating a new TB from the current PC
204              * must also require reading from the next page -- even if the
205              * second pages do not match, and therefore the resulting insn
206              * is different for the new TB.  Therefore any exception raised
207              * here by the faulting lookup is not premature.
208              */
209             virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
210             phys_page1 = get_page_addr_code(desc->env, virt_page1);
211             if (tb_phys_page1 == phys_page1) {
212                 return true;
213             }
214         }
215     }
216     return false;
217 }
218 
219 static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
220                                           target_ulong cs_base, uint32_t flags,
221                                           uint32_t cflags)
222 {
223     tb_page_addr_t phys_pc;
224     struct tb_desc desc;
225     uint32_t h;
226 
227     desc.env = cpu->env_ptr;
228     desc.cs_base = cs_base;
229     desc.flags = flags;
230     desc.cflags = cflags;
231     desc.trace_vcpu_dstate = *cpu->trace_dstate;
232     desc.pc = pc;
233     phys_pc = get_page_addr_code(desc.env, pc);
234     if (phys_pc == -1) {
235         return NULL;
236     }
237     desc.page_addr0 = phys_pc;
238     h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc),
239                      flags, cflags, *cpu->trace_dstate);
240     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
241 }
242 
243 /* Might cause an exception, so have a longjmp destination ready */
244 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
245                                           target_ulong cs_base,
246                                           uint32_t flags, uint32_t cflags)
247 {
248     TranslationBlock *tb;
249     CPUJumpCache *jc;
250     uint32_t hash;
251 
252     /* we should never be trying to look up an INVALID tb */
253     tcg_debug_assert(!(cflags & CF_INVALID));
254 
255     hash = tb_jmp_cache_hash_func(pc);
256     jc = cpu->tb_jmp_cache;
257 
258     if (cflags & CF_PCREL) {
259         /* Use acquire to ensure current load of pc from jc. */
260         tb = qatomic_load_acquire(&jc->array[hash].tb);
261 
262         if (likely(tb &&
263                    jc->array[hash].pc == pc &&
264                    tb->cs_base == cs_base &&
265                    tb->flags == flags &&
266                    tb->trace_vcpu_dstate == *cpu->trace_dstate &&
267                    tb_cflags(tb) == cflags)) {
268             return tb;
269         }
270         tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
271         if (tb == NULL) {
272             return NULL;
273         }
274         jc->array[hash].pc = pc;
275         /* Ensure pc is written first. */
276         qatomic_store_release(&jc->array[hash].tb, tb);
277     } else {
278         /* Use rcu_read to ensure current load of pc from *tb. */
279         tb = qatomic_rcu_read(&jc->array[hash].tb);
280 
281         if (likely(tb &&
282                    tb->pc == pc &&
283                    tb->cs_base == cs_base &&
284                    tb->flags == flags &&
285                    tb->trace_vcpu_dstate == *cpu->trace_dstate &&
286                    tb_cflags(tb) == cflags)) {
287             return tb;
288         }
289         tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
290         if (tb == NULL) {
291             return NULL;
292         }
293         /* Use the pc value already stored in tb->pc. */
294         qatomic_set(&jc->array[hash].tb, tb);
295     }
296 
297     return tb;
298 }
299 
300 static void log_cpu_exec(target_ulong pc, CPUState *cpu,
301                          const TranslationBlock *tb)
302 {
303     if (qemu_log_in_addr_range(pc)) {
304         qemu_log_mask(CPU_LOG_EXEC,
305                       "Trace %d: %p [" TARGET_FMT_lx
306                       "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
307                       cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
308                       tb->flags, tb->cflags, lookup_symbol(pc));
309 
310 #if defined(DEBUG_DISAS)
311         if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
312             FILE *logfile = qemu_log_trylock();
313             if (logfile) {
314                 int flags = 0;
315 
316                 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
317                     flags |= CPU_DUMP_FPU;
318                 }
319 #if defined(TARGET_I386)
320                 flags |= CPU_DUMP_CCOP;
321 #endif
322                 cpu_dump_state(cpu, logfile, flags);
323                 qemu_log_unlock(logfile);
324             }
325         }
326 #endif /* DEBUG_DISAS */
327     }
328 }
329 
330 static bool check_for_breakpoints_slow(CPUState *cpu, target_ulong pc,
331                                        uint32_t *cflags)
332 {
333     CPUBreakpoint *bp;
334     bool match_page = false;
335 
336     /*
337      * Singlestep overrides breakpoints.
338      * This requirement is visible in the record-replay tests, where
339      * we would fail to make forward progress in reverse-continue.
340      *
341      * TODO: gdb singlestep should only override gdb breakpoints,
342      * so that one could (gdb) singlestep into the guest kernel's
343      * architectural breakpoint handler.
344      */
345     if (cpu->singlestep_enabled) {
346         return false;
347     }
348 
349     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
350         /*
351          * If we have an exact pc match, trigger the breakpoint.
352          * Otherwise, note matches within the page.
353          */
354         if (pc == bp->pc) {
355             bool match_bp = false;
356 
357             if (bp->flags & BP_GDB) {
358                 match_bp = true;
359             } else if (bp->flags & BP_CPU) {
360 #ifdef CONFIG_USER_ONLY
361                 g_assert_not_reached();
362 #else
363                 CPUClass *cc = CPU_GET_CLASS(cpu);
364                 assert(cc->tcg_ops->debug_check_breakpoint);
365                 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
366 #endif
367             }
368 
369             if (match_bp) {
370                 cpu->exception_index = EXCP_DEBUG;
371                 return true;
372             }
373         } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
374             match_page = true;
375         }
376     }
377 
378     /*
379      * Within the same page as a breakpoint, single-step,
380      * returning to helper_lookup_tb_ptr after each insn looking
381      * for the actual breakpoint.
382      *
383      * TODO: Perhaps better to record all of the TBs associated
384      * with a given virtual page that contains a breakpoint, and
385      * then invalidate them when a new overlapping breakpoint is
386      * set on the page.  Non-overlapping TBs would not be
387      * invalidated, nor would any TB need to be invalidated as
388      * breakpoints are removed.
389      */
390     if (match_page) {
391         *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
392     }
393     return false;
394 }
395 
396 static inline bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
397                                          uint32_t *cflags)
398 {
399     return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
400         check_for_breakpoints_slow(cpu, pc, cflags);
401 }
402 
403 /**
404  * helper_lookup_tb_ptr: quick check for next tb
405  * @env: current cpu state
406  *
407  * Look for an existing TB matching the current cpu state.
408  * If found, return the code pointer.  If not found, return
409  * the tcg epilogue so that we return into cpu_tb_exec.
410  */
411 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
412 {
413     CPUState *cpu = env_cpu(env);
414     TranslationBlock *tb;
415     target_ulong cs_base, pc;
416     uint32_t flags, cflags;
417 
418     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
419 
420     cflags = curr_cflags(cpu);
421     if (check_for_breakpoints(cpu, pc, &cflags)) {
422         cpu_loop_exit(cpu);
423     }
424 
425     tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
426     if (tb == NULL) {
427         return tcg_code_gen_epilogue;
428     }
429 
430     if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
431         log_cpu_exec(pc, cpu, tb);
432     }
433 
434     return tb->tc.ptr;
435 }
436 
437 /* Execute a TB, and fix up the CPU state afterwards if necessary */
438 /*
439  * Disable CFI checks.
440  * TCG creates binary blobs at runtime, with the transformed code.
441  * A TB is a blob of binary code, created at runtime and called with an
442  * indirect function call. Since such function did not exist at compile time,
443  * the CFI runtime has no way to verify its signature and would fail.
444  * TCG is not considered a security-sensitive part of QEMU so this does not
445  * affect the impact of CFI in environment with high security requirements
446  */
447 static inline TranslationBlock * QEMU_DISABLE_CFI
448 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
449 {
450     CPUArchState *env = cpu->env_ptr;
451     uintptr_t ret;
452     TranslationBlock *last_tb;
453     const void *tb_ptr = itb->tc.ptr;
454 
455     if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
456         log_cpu_exec(log_pc(cpu, itb), cpu, itb);
457     }
458 
459     qemu_thread_jit_execute();
460     ret = tcg_qemu_tb_exec(env, tb_ptr);
461     cpu->can_do_io = 1;
462     qemu_plugin_disable_mem_helpers(cpu);
463     /*
464      * TODO: Delay swapping back to the read-write region of the TB
465      * until we actually need to modify the TB.  The read-only copy,
466      * coming from the rx region, shares the same host TLB entry as
467      * the code that executed the exit_tb opcode that arrived here.
468      * If we insist on touching both the RX and the RW pages, we
469      * double the host TLB pressure.
470      */
471     last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
472     *tb_exit = ret & TB_EXIT_MASK;
473 
474     trace_exec_tb_exit(last_tb, *tb_exit);
475 
476     if (*tb_exit > TB_EXIT_IDX1) {
477         /* We didn't start executing this TB (eg because the instruction
478          * counter hit zero); we must restore the guest PC to the address
479          * of the start of the TB.
480          */
481         CPUClass *cc = CPU_GET_CLASS(cpu);
482 
483         if (cc->tcg_ops->synchronize_from_tb) {
484             cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
485         } else {
486             tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL));
487             assert(cc->set_pc);
488             cc->set_pc(cpu, last_tb->pc);
489         }
490         if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
491             target_ulong pc = log_pc(cpu, last_tb);
492             if (qemu_log_in_addr_range(pc)) {
493                 qemu_log("Stopped execution of TB chain before %p ["
494                          TARGET_FMT_lx "] %s\n",
495                          last_tb->tc.ptr, pc, lookup_symbol(pc));
496             }
497         }
498     }
499 
500     /*
501      * If gdb single-step, and we haven't raised another exception,
502      * raise a debug exception.  Single-step with another exception
503      * is handled in cpu_handle_exception.
504      */
505     if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
506         cpu->exception_index = EXCP_DEBUG;
507         cpu_loop_exit(cpu);
508     }
509 
510     return last_tb;
511 }
512 
513 
514 static void cpu_exec_enter(CPUState *cpu)
515 {
516     CPUClass *cc = CPU_GET_CLASS(cpu);
517 
518     if (cc->tcg_ops->cpu_exec_enter) {
519         cc->tcg_ops->cpu_exec_enter(cpu);
520     }
521 }
522 
523 static void cpu_exec_exit(CPUState *cpu)
524 {
525     CPUClass *cc = CPU_GET_CLASS(cpu);
526 
527     if (cc->tcg_ops->cpu_exec_exit) {
528         cc->tcg_ops->cpu_exec_exit(cpu);
529     }
530 }
531 
532 void cpu_exec_step_atomic(CPUState *cpu)
533 {
534     CPUArchState *env = cpu->env_ptr;
535     TranslationBlock *tb;
536     target_ulong cs_base, pc;
537     uint32_t flags, cflags;
538     int tb_exit;
539 
540     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
541         start_exclusive();
542         g_assert(cpu == current_cpu);
543         g_assert(!cpu->running);
544         cpu->running = true;
545 
546         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
547 
548         cflags = curr_cflags(cpu);
549         /* Execute in a serial context. */
550         cflags &= ~CF_PARALLEL;
551         /* After 1 insn, return and release the exclusive lock. */
552         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
553         /*
554          * No need to check_for_breakpoints here.
555          * We only arrive in cpu_exec_step_atomic after beginning execution
556          * of an insn that includes an atomic operation we can't handle.
557          * Any breakpoint for this insn will have been recognized earlier.
558          */
559 
560         tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
561         if (tb == NULL) {
562             mmap_lock();
563             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
564             mmap_unlock();
565         }
566 
567         cpu_exec_enter(cpu);
568         /* execute the generated code */
569         trace_exec_tb(tb, pc);
570         cpu_tb_exec(cpu, tb, &tb_exit);
571         cpu_exec_exit(cpu);
572     } else {
573 #ifndef CONFIG_SOFTMMU
574         clear_helper_retaddr();
575         if (have_mmap_lock()) {
576             mmap_unlock();
577         }
578 #endif
579         if (qemu_mutex_iothread_locked()) {
580             qemu_mutex_unlock_iothread();
581         }
582         assert_no_pages_locked();
583     }
584 
585     /*
586      * As we start the exclusive region before codegen we must still
587      * be in the region if we longjump out of either the codegen or
588      * the execution.
589      */
590     g_assert(cpu_in_exclusive_context(cpu));
591     cpu->running = false;
592     end_exclusive();
593 }
594 
595 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
596 {
597     /*
598      * Get the rx view of the structure, from which we find the
599      * executable code address, and tb_target_set_jmp_target can
600      * produce a pc-relative displacement to jmp_target_addr[n].
601      */
602     const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
603     uintptr_t offset = tb->jmp_insn_offset[n];
604     uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
605     uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
606 
607     tb->jmp_target_addr[n] = addr;
608     tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
609 }
610 
611 static inline void tb_add_jump(TranslationBlock *tb, int n,
612                                TranslationBlock *tb_next)
613 {
614     uintptr_t old;
615 
616     qemu_thread_jit_write();
617     assert(n < ARRAY_SIZE(tb->jmp_list_next));
618     qemu_spin_lock(&tb_next->jmp_lock);
619 
620     /* make sure the destination TB is valid */
621     if (tb_next->cflags & CF_INVALID) {
622         goto out_unlock_next;
623     }
624     /* Atomically claim the jump destination slot only if it was NULL */
625     old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
626                           (uintptr_t)tb_next);
627     if (old) {
628         goto out_unlock_next;
629     }
630 
631     /* patch the native jump address */
632     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
633 
634     /* add in TB jmp list */
635     tb->jmp_list_next[n] = tb_next->jmp_list_head;
636     tb_next->jmp_list_head = (uintptr_t)tb | n;
637 
638     qemu_spin_unlock(&tb_next->jmp_lock);
639 
640     qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
641                   tb->tc.ptr, n, tb_next->tc.ptr);
642     return;
643 
644  out_unlock_next:
645     qemu_spin_unlock(&tb_next->jmp_lock);
646     return;
647 }
648 
649 static inline bool cpu_handle_halt(CPUState *cpu)
650 {
651 #ifndef CONFIG_USER_ONLY
652     if (cpu->halted) {
653 #if defined(TARGET_I386)
654         if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
655             X86CPU *x86_cpu = X86_CPU(cpu);
656             qemu_mutex_lock_iothread();
657             apic_poll_irq(x86_cpu->apic_state);
658             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
659             qemu_mutex_unlock_iothread();
660         }
661 #endif /* TARGET_I386 */
662         if (!cpu_has_work(cpu)) {
663             return true;
664         }
665 
666         cpu->halted = 0;
667     }
668 #endif /* !CONFIG_USER_ONLY */
669 
670     return false;
671 }
672 
673 static inline void cpu_handle_debug_exception(CPUState *cpu)
674 {
675     CPUClass *cc = CPU_GET_CLASS(cpu);
676     CPUWatchpoint *wp;
677 
678     if (!cpu->watchpoint_hit) {
679         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
680             wp->flags &= ~BP_WATCHPOINT_HIT;
681         }
682     }
683 
684     if (cc->tcg_ops->debug_excp_handler) {
685         cc->tcg_ops->debug_excp_handler(cpu);
686     }
687 }
688 
689 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
690 {
691     if (cpu->exception_index < 0) {
692 #ifndef CONFIG_USER_ONLY
693         if (replay_has_exception()
694             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
695             /* Execute just one insn to trigger exception pending in the log */
696             cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
697                 | CF_NOIRQ | 1;
698         }
699 #endif
700         return false;
701     }
702     if (cpu->exception_index >= EXCP_INTERRUPT) {
703         /* exit request from the cpu execution loop */
704         *ret = cpu->exception_index;
705         if (*ret == EXCP_DEBUG) {
706             cpu_handle_debug_exception(cpu);
707         }
708         cpu->exception_index = -1;
709         return true;
710     } else {
711 #if defined(CONFIG_USER_ONLY)
712         /* if user mode only, we simulate a fake exception
713            which will be handled outside the cpu execution
714            loop */
715 #if defined(TARGET_I386)
716         CPUClass *cc = CPU_GET_CLASS(cpu);
717         cc->tcg_ops->fake_user_interrupt(cpu);
718 #endif /* TARGET_I386 */
719         *ret = cpu->exception_index;
720         cpu->exception_index = -1;
721         return true;
722 #else
723         if (replay_exception()) {
724             CPUClass *cc = CPU_GET_CLASS(cpu);
725             qemu_mutex_lock_iothread();
726             cc->tcg_ops->do_interrupt(cpu);
727             qemu_mutex_unlock_iothread();
728             cpu->exception_index = -1;
729 
730             if (unlikely(cpu->singlestep_enabled)) {
731                 /*
732                  * After processing the exception, ensure an EXCP_DEBUG is
733                  * raised when single-stepping so that GDB doesn't miss the
734                  * next instruction.
735                  */
736                 *ret = EXCP_DEBUG;
737                 cpu_handle_debug_exception(cpu);
738                 return true;
739             }
740         } else if (!replay_has_interrupt()) {
741             /* give a chance to iothread in replay mode */
742             *ret = EXCP_INTERRUPT;
743             return true;
744         }
745 #endif
746     }
747 
748     return false;
749 }
750 
751 #ifndef CONFIG_USER_ONLY
752 /*
753  * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
754  * "real" interrupt event later. It does not need to be recorded for
755  * replay purposes.
756  */
757 static inline bool need_replay_interrupt(int interrupt_request)
758 {
759 #if defined(TARGET_I386)
760     return !(interrupt_request & CPU_INTERRUPT_POLL);
761 #else
762     return true;
763 #endif
764 }
765 #endif /* !CONFIG_USER_ONLY */
766 
767 static inline bool cpu_handle_interrupt(CPUState *cpu,
768                                         TranslationBlock **last_tb)
769 {
770     /*
771      * If we have requested custom cflags with CF_NOIRQ we should
772      * skip checking here. Any pending interrupts will get picked up
773      * by the next TB we execute under normal cflags.
774      */
775     if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
776         return false;
777     }
778 
779     /* Clear the interrupt flag now since we're processing
780      * cpu->interrupt_request and cpu->exit_request.
781      * Ensure zeroing happens before reading cpu->exit_request or
782      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
783      */
784     qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
785 
786     if (unlikely(qatomic_read(&cpu->interrupt_request))) {
787         int interrupt_request;
788         qemu_mutex_lock_iothread();
789         interrupt_request = cpu->interrupt_request;
790         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
791             /* Mask out external interrupts for this step. */
792             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
793         }
794         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
795             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
796             cpu->exception_index = EXCP_DEBUG;
797             qemu_mutex_unlock_iothread();
798             return true;
799         }
800 #if !defined(CONFIG_USER_ONLY)
801         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
802             /* Do nothing */
803         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
804             replay_interrupt();
805             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
806             cpu->halted = 1;
807             cpu->exception_index = EXCP_HLT;
808             qemu_mutex_unlock_iothread();
809             return true;
810         }
811 #if defined(TARGET_I386)
812         else if (interrupt_request & CPU_INTERRUPT_INIT) {
813             X86CPU *x86_cpu = X86_CPU(cpu);
814             CPUArchState *env = &x86_cpu->env;
815             replay_interrupt();
816             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
817             do_cpu_init(x86_cpu);
818             cpu->exception_index = EXCP_HALTED;
819             qemu_mutex_unlock_iothread();
820             return true;
821         }
822 #else
823         else if (interrupt_request & CPU_INTERRUPT_RESET) {
824             replay_interrupt();
825             cpu_reset(cpu);
826             qemu_mutex_unlock_iothread();
827             return true;
828         }
829 #endif /* !TARGET_I386 */
830         /* The target hook has 3 exit conditions:
831            False when the interrupt isn't processed,
832            True when it is, and we should restart on a new TB,
833            and via longjmp via cpu_loop_exit.  */
834         else {
835             CPUClass *cc = CPU_GET_CLASS(cpu);
836 
837             if (cc->tcg_ops->cpu_exec_interrupt &&
838                 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
839                 if (need_replay_interrupt(interrupt_request)) {
840                     replay_interrupt();
841                 }
842                 /*
843                  * After processing the interrupt, ensure an EXCP_DEBUG is
844                  * raised when single-stepping so that GDB doesn't miss the
845                  * next instruction.
846                  */
847                 if (unlikely(cpu->singlestep_enabled)) {
848                     cpu->exception_index = EXCP_DEBUG;
849                     qemu_mutex_unlock_iothread();
850                     return true;
851                 }
852                 cpu->exception_index = -1;
853                 *last_tb = NULL;
854             }
855             /* The target hook may have updated the 'cpu->interrupt_request';
856              * reload the 'interrupt_request' value */
857             interrupt_request = cpu->interrupt_request;
858         }
859 #endif /* !CONFIG_USER_ONLY */
860         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
861             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
862             /* ensure that no TB jump will be modified as
863                the program flow was changed */
864             *last_tb = NULL;
865         }
866 
867         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
868         qemu_mutex_unlock_iothread();
869     }
870 
871     /* Finally, check if we need to exit to the main loop.  */
872     if (unlikely(qatomic_read(&cpu->exit_request))
873         || (icount_enabled()
874             && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
875             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
876         qatomic_set(&cpu->exit_request, 0);
877         if (cpu->exception_index == -1) {
878             cpu->exception_index = EXCP_INTERRUPT;
879         }
880         return true;
881     }
882 
883     return false;
884 }
885 
886 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
887                                     target_ulong pc,
888                                     TranslationBlock **last_tb, int *tb_exit)
889 {
890     int32_t insns_left;
891 
892     trace_exec_tb(tb, pc);
893     tb = cpu_tb_exec(cpu, tb, tb_exit);
894     if (*tb_exit != TB_EXIT_REQUESTED) {
895         *last_tb = tb;
896         return;
897     }
898 
899     *last_tb = NULL;
900     insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
901     if (insns_left < 0) {
902         /* Something asked us to stop executing chained TBs; just
903          * continue round the main loop. Whatever requested the exit
904          * will also have set something else (eg exit_request or
905          * interrupt_request) which will be handled by
906          * cpu_handle_interrupt.  cpu_handle_interrupt will also
907          * clear cpu->icount_decr.u16.high.
908          */
909         return;
910     }
911 
912     /* Instruction counter expired.  */
913     assert(icount_enabled());
914 #ifndef CONFIG_USER_ONLY
915     /* Ensure global icount has gone forward */
916     icount_update(cpu);
917     /* Refill decrementer and continue execution.  */
918     insns_left = MIN(0xffff, cpu->icount_budget);
919     cpu_neg(cpu)->icount_decr.u16.low = insns_left;
920     cpu->icount_extra = cpu->icount_budget - insns_left;
921 
922     /*
923      * If the next tb has more instructions than we have left to
924      * execute we need to ensure we find/generate a TB with exactly
925      * insns_left instructions in it.
926      */
927     if (insns_left > 0 && insns_left < tb->icount)  {
928         assert(insns_left <= CF_COUNT_MASK);
929         assert(cpu->icount_extra == 0);
930         cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
931     }
932 #endif
933 }
934 
935 /* main execution loop */
936 
937 static int __attribute__((noinline))
938 cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
939 {
940     int ret;
941 
942     /* if an exception is pending, we execute it here */
943     while (!cpu_handle_exception(cpu, &ret)) {
944         TranslationBlock *last_tb = NULL;
945         int tb_exit = 0;
946 
947         while (!cpu_handle_interrupt(cpu, &last_tb)) {
948             TranslationBlock *tb;
949             target_ulong cs_base, pc;
950             uint32_t flags, cflags;
951 
952             cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags);
953 
954             /*
955              * When requested, use an exact setting for cflags for the next
956              * execution.  This is used for icount, precise smc, and stop-
957              * after-access watchpoints.  Since this request should never
958              * have CF_INVALID set, -1 is a convenient invalid value that
959              * does not require tcg headers for cpu_common_reset.
960              */
961             cflags = cpu->cflags_next_tb;
962             if (cflags == -1) {
963                 cflags = curr_cflags(cpu);
964             } else {
965                 cpu->cflags_next_tb = -1;
966             }
967 
968             if (check_for_breakpoints(cpu, pc, &cflags)) {
969                 break;
970             }
971 
972             tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
973             if (tb == NULL) {
974                 CPUJumpCache *jc;
975                 uint32_t h;
976 
977                 mmap_lock();
978                 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
979                 mmap_unlock();
980 
981                 /*
982                  * We add the TB in the virtual pc hash table
983                  * for the fast lookup
984                  */
985                 h = tb_jmp_cache_hash_func(pc);
986                 jc = cpu->tb_jmp_cache;
987                 if (cflags & CF_PCREL) {
988                     jc->array[h].pc = pc;
989                     /* Ensure pc is written first. */
990                     qatomic_store_release(&jc->array[h].tb, tb);
991                 } else {
992                     /* Use the pc value already stored in tb->pc. */
993                     qatomic_set(&jc->array[h].tb, tb);
994                 }
995             }
996 
997 #ifndef CONFIG_USER_ONLY
998             /*
999              * We don't take care of direct jumps when address mapping
1000              * changes in system emulation.  So it's not safe to make a
1001              * direct jump to a TB spanning two pages because the mapping
1002              * for the second page can change.
1003              */
1004             if (tb_page_addr1(tb) != -1) {
1005                 last_tb = NULL;
1006             }
1007 #endif
1008             /* See if we can patch the calling TB. */
1009             if (last_tb) {
1010                 tb_add_jump(last_tb, tb_exit, tb);
1011             }
1012 
1013             cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
1014 
1015             /* Try to align the host and virtual clocks
1016                if the guest is in advance */
1017             align_clocks(sc, cpu);
1018         }
1019     }
1020     return ret;
1021 }
1022 
1023 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
1024 {
1025     /* Prepare setjmp context for exception handling. */
1026     if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
1027         /* Non-buggy compilers preserve this; assert the correct value. */
1028         g_assert(cpu == current_cpu);
1029 
1030 #ifndef CONFIG_SOFTMMU
1031         clear_helper_retaddr();
1032         if (have_mmap_lock()) {
1033             mmap_unlock();
1034         }
1035 #endif
1036         if (qemu_mutex_iothread_locked()) {
1037             qemu_mutex_unlock_iothread();
1038         }
1039 
1040         assert_no_pages_locked();
1041     }
1042 
1043     return cpu_exec_loop(cpu, sc);
1044 }
1045 
1046 int cpu_exec(CPUState *cpu)
1047 {
1048     int ret;
1049     SyncClocks sc = { 0 };
1050 
1051     /* replay_interrupt may need current_cpu */
1052     current_cpu = cpu;
1053 
1054     if (cpu_handle_halt(cpu)) {
1055         return EXCP_HALTED;
1056     }
1057 
1058     rcu_read_lock();
1059     cpu_exec_enter(cpu);
1060 
1061     /*
1062      * Calculate difference between guest clock and host clock.
1063      * This delay includes the delay of the last cycle, so
1064      * what we have to do is sleep until it is 0. As for the
1065      * advance/delay we gain here, we try to fix it next time.
1066      */
1067     init_delay_params(&sc, cpu);
1068 
1069     ret = cpu_exec_setjmp(cpu, &sc);
1070 
1071     cpu_exec_exit(cpu);
1072     rcu_read_unlock();
1073 
1074     return ret;
1075 }
1076 
1077 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
1078 {
1079     static bool tcg_target_initialized;
1080     CPUClass *cc = CPU_GET_CLASS(cpu);
1081 
1082     if (!tcg_target_initialized) {
1083         cc->tcg_ops->initialize();
1084         tcg_target_initialized = true;
1085     }
1086 
1087     cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1088     tlb_init(cpu);
1089 #ifndef CONFIG_USER_ONLY
1090     tcg_iommu_init_notifier_list(cpu);
1091 #endif /* !CONFIG_USER_ONLY */
1092     /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1093 }
1094 
1095 /* undo the initializations in reverse order */
1096 void tcg_exec_unrealizefn(CPUState *cpu)
1097 {
1098 #ifndef CONFIG_USER_ONLY
1099     tcg_iommu_free_notifier_list(cpu);
1100 #endif /* !CONFIG_USER_ONLY */
1101 
1102     tlb_destroy(cpu);
1103     g_free_rcu(cpu->tb_jmp_cache, rcu);
1104 }
1105