1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/tcg-cpu-ops.h" 25 #include "trace.h" 26 #include "disas/disas.h" 27 #include "exec/exec-all.h" 28 #include "tcg/tcg.h" 29 #include "qemu/atomic.h" 30 #include "qemu/rcu.h" 31 #include "exec/log.h" 32 #include "qemu/main-loop.h" 33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 34 #include "hw/i386/apic.h" 35 #endif 36 #include "sysemu/cpus.h" 37 #include "exec/cpu-all.h" 38 #include "sysemu/cpu-timers.h" 39 #include "exec/replay-core.h" 40 #include "sysemu/tcg.h" 41 #include "exec/helper-proto.h" 42 #include "tb-jmp-cache.h" 43 #include "tb-hash.h" 44 #include "tb-context.h" 45 #include "internal.h" 46 47 /* -icount align implementation. */ 48 49 typedef struct SyncClocks { 50 int64_t diff_clk; 51 int64_t last_cpu_icount; 52 int64_t realtime_clock; 53 } SyncClocks; 54 55 #if !defined(CONFIG_USER_ONLY) 56 /* Allow the guest to have a max 3ms advance. 57 * The difference between the 2 clocks could therefore 58 * oscillate around 0. 59 */ 60 #define VM_CLOCK_ADVANCE 3000000 61 #define THRESHOLD_REDUCE 1.5 62 #define MAX_DELAY_PRINT_RATE 2000000000LL 63 #define MAX_NB_PRINTS 100 64 65 int64_t max_delay; 66 int64_t max_advance; 67 68 static void align_clocks(SyncClocks *sc, CPUState *cpu) 69 { 70 int64_t cpu_icount; 71 72 if (!icount_align_option) { 73 return; 74 } 75 76 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 77 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 78 sc->last_cpu_icount = cpu_icount; 79 80 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 81 #ifndef _WIN32 82 struct timespec sleep_delay, rem_delay; 83 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 84 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 85 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 86 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 87 } else { 88 sc->diff_clk = 0; 89 } 90 #else 91 Sleep(sc->diff_clk / SCALE_MS); 92 sc->diff_clk = 0; 93 #endif 94 } 95 } 96 97 static void print_delay(const SyncClocks *sc) 98 { 99 static float threshold_delay; 100 static int64_t last_realtime_clock; 101 static int nb_prints; 102 103 if (icount_align_option && 104 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 105 nb_prints < MAX_NB_PRINTS) { 106 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 107 (-sc->diff_clk / (float)1000000000LL < 108 (threshold_delay - THRESHOLD_REDUCE))) { 109 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 110 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 111 threshold_delay - 1, 112 threshold_delay); 113 nb_prints++; 114 last_realtime_clock = sc->realtime_clock; 115 } 116 } 117 } 118 119 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 120 { 121 if (!icount_align_option) { 122 return; 123 } 124 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 125 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 126 sc->last_cpu_icount 127 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 128 if (sc->diff_clk < max_delay) { 129 max_delay = sc->diff_clk; 130 } 131 if (sc->diff_clk > max_advance) { 132 max_advance = sc->diff_clk; 133 } 134 135 /* Print every 2s max if the guest is late. We limit the number 136 of printed messages to NB_PRINT_MAX(currently 100) */ 137 print_delay(sc); 138 } 139 #else 140 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 141 { 142 } 143 144 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 145 { 146 } 147 #endif /* CONFIG USER ONLY */ 148 149 uint32_t curr_cflags(CPUState *cpu) 150 { 151 uint32_t cflags = cpu->tcg_cflags; 152 153 /* 154 * Record gdb single-step. We should be exiting the TB by raising 155 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 156 * 157 * For singlestep and -d nochain, suppress goto_tb so that 158 * we can log -d cpu,exec after every TB. 159 */ 160 if (unlikely(cpu->singlestep_enabled)) { 161 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 162 } else if (singlestep) { 163 cflags |= CF_NO_GOTO_TB | 1; 164 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 165 cflags |= CF_NO_GOTO_TB; 166 } 167 168 return cflags; 169 } 170 171 struct tb_desc { 172 target_ulong pc; 173 target_ulong cs_base; 174 CPUArchState *env; 175 tb_page_addr_t page_addr0; 176 uint32_t flags; 177 uint32_t cflags; 178 uint32_t trace_vcpu_dstate; 179 }; 180 181 static bool tb_lookup_cmp(const void *p, const void *d) 182 { 183 const TranslationBlock *tb = p; 184 const struct tb_desc *desc = d; 185 186 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && 187 tb_page_addr0(tb) == desc->page_addr0 && 188 tb->cs_base == desc->cs_base && 189 tb->flags == desc->flags && 190 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 191 tb_cflags(tb) == desc->cflags) { 192 /* check next page if needed */ 193 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 194 if (tb_phys_page1 == -1) { 195 return true; 196 } else { 197 tb_page_addr_t phys_page1; 198 target_ulong virt_page1; 199 200 /* 201 * We know that the first page matched, and an otherwise valid TB 202 * encountered an incomplete instruction at the end of that page, 203 * therefore we know that generating a new TB from the current PC 204 * must also require reading from the next page -- even if the 205 * second pages do not match, and therefore the resulting insn 206 * is different for the new TB. Therefore any exception raised 207 * here by the faulting lookup is not premature. 208 */ 209 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 210 phys_page1 = get_page_addr_code(desc->env, virt_page1); 211 if (tb_phys_page1 == phys_page1) { 212 return true; 213 } 214 } 215 } 216 return false; 217 } 218 219 static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 220 target_ulong cs_base, uint32_t flags, 221 uint32_t cflags) 222 { 223 tb_page_addr_t phys_pc; 224 struct tb_desc desc; 225 uint32_t h; 226 227 desc.env = cpu->env_ptr; 228 desc.cs_base = cs_base; 229 desc.flags = flags; 230 desc.cflags = cflags; 231 desc.trace_vcpu_dstate = *cpu->trace_dstate; 232 desc.pc = pc; 233 phys_pc = get_page_addr_code(desc.env, pc); 234 if (phys_pc == -1) { 235 return NULL; 236 } 237 desc.page_addr0 = phys_pc; 238 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), 239 flags, cflags, *cpu->trace_dstate); 240 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 241 } 242 243 /* Might cause an exception, so have a longjmp destination ready */ 244 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc, 245 target_ulong cs_base, 246 uint32_t flags, uint32_t cflags) 247 { 248 TranslationBlock *tb; 249 CPUJumpCache *jc; 250 uint32_t hash; 251 252 /* we should never be trying to look up an INVALID tb */ 253 tcg_debug_assert(!(cflags & CF_INVALID)); 254 255 hash = tb_jmp_cache_hash_func(pc); 256 jc = cpu->tb_jmp_cache; 257 258 if (cflags & CF_PCREL) { 259 /* Use acquire to ensure current load of pc from jc. */ 260 tb = qatomic_load_acquire(&jc->array[hash].tb); 261 262 if (likely(tb && 263 jc->array[hash].pc == pc && 264 tb->cs_base == cs_base && 265 tb->flags == flags && 266 tb->trace_vcpu_dstate == *cpu->trace_dstate && 267 tb_cflags(tb) == cflags)) { 268 return tb; 269 } 270 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 271 if (tb == NULL) { 272 return NULL; 273 } 274 jc->array[hash].pc = pc; 275 /* Ensure pc is written first. */ 276 qatomic_store_release(&jc->array[hash].tb, tb); 277 } else { 278 /* Use rcu_read to ensure current load of pc from *tb. */ 279 tb = qatomic_rcu_read(&jc->array[hash].tb); 280 281 if (likely(tb && 282 tb->pc == pc && 283 tb->cs_base == cs_base && 284 tb->flags == flags && 285 tb->trace_vcpu_dstate == *cpu->trace_dstate && 286 tb_cflags(tb) == cflags)) { 287 return tb; 288 } 289 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 290 if (tb == NULL) { 291 return NULL; 292 } 293 /* Use the pc value already stored in tb->pc. */ 294 qatomic_set(&jc->array[hash].tb, tb); 295 } 296 297 return tb; 298 } 299 300 static void log_cpu_exec(target_ulong pc, CPUState *cpu, 301 const TranslationBlock *tb) 302 { 303 if (qemu_log_in_addr_range(pc)) { 304 qemu_log_mask(CPU_LOG_EXEC, 305 "Trace %d: %p [" TARGET_FMT_lx 306 "/" TARGET_FMT_lx "/%08x/%08x] %s\n", 307 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 308 tb->flags, tb->cflags, lookup_symbol(pc)); 309 310 #if defined(DEBUG_DISAS) 311 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 312 FILE *logfile = qemu_log_trylock(); 313 if (logfile) { 314 int flags = 0; 315 316 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 317 flags |= CPU_DUMP_FPU; 318 } 319 #if defined(TARGET_I386) 320 flags |= CPU_DUMP_CCOP; 321 #endif 322 cpu_dump_state(cpu, logfile, flags); 323 qemu_log_unlock(logfile); 324 } 325 } 326 #endif /* DEBUG_DISAS */ 327 } 328 } 329 330 static bool check_for_breakpoints_slow(CPUState *cpu, target_ulong pc, 331 uint32_t *cflags) 332 { 333 CPUBreakpoint *bp; 334 bool match_page = false; 335 336 /* 337 * Singlestep overrides breakpoints. 338 * This requirement is visible in the record-replay tests, where 339 * we would fail to make forward progress in reverse-continue. 340 * 341 * TODO: gdb singlestep should only override gdb breakpoints, 342 * so that one could (gdb) singlestep into the guest kernel's 343 * architectural breakpoint handler. 344 */ 345 if (cpu->singlestep_enabled) { 346 return false; 347 } 348 349 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 350 /* 351 * If we have an exact pc match, trigger the breakpoint. 352 * Otherwise, note matches within the page. 353 */ 354 if (pc == bp->pc) { 355 bool match_bp = false; 356 357 if (bp->flags & BP_GDB) { 358 match_bp = true; 359 } else if (bp->flags & BP_CPU) { 360 #ifdef CONFIG_USER_ONLY 361 g_assert_not_reached(); 362 #else 363 CPUClass *cc = CPU_GET_CLASS(cpu); 364 assert(cc->tcg_ops->debug_check_breakpoint); 365 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu); 366 #endif 367 } 368 369 if (match_bp) { 370 cpu->exception_index = EXCP_DEBUG; 371 return true; 372 } 373 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 374 match_page = true; 375 } 376 } 377 378 /* 379 * Within the same page as a breakpoint, single-step, 380 * returning to helper_lookup_tb_ptr after each insn looking 381 * for the actual breakpoint. 382 * 383 * TODO: Perhaps better to record all of the TBs associated 384 * with a given virtual page that contains a breakpoint, and 385 * then invalidate them when a new overlapping breakpoint is 386 * set on the page. Non-overlapping TBs would not be 387 * invalidated, nor would any TB need to be invalidated as 388 * breakpoints are removed. 389 */ 390 if (match_page) { 391 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1; 392 } 393 return false; 394 } 395 396 static inline bool check_for_breakpoints(CPUState *cpu, target_ulong pc, 397 uint32_t *cflags) 398 { 399 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 400 check_for_breakpoints_slow(cpu, pc, cflags); 401 } 402 403 /** 404 * helper_lookup_tb_ptr: quick check for next tb 405 * @env: current cpu state 406 * 407 * Look for an existing TB matching the current cpu state. 408 * If found, return the code pointer. If not found, return 409 * the tcg epilogue so that we return into cpu_tb_exec. 410 */ 411 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 412 { 413 CPUState *cpu = env_cpu(env); 414 TranslationBlock *tb; 415 target_ulong cs_base, pc; 416 uint32_t flags, cflags; 417 418 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 419 420 cflags = curr_cflags(cpu); 421 if (check_for_breakpoints(cpu, pc, &cflags)) { 422 cpu_loop_exit(cpu); 423 } 424 425 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 426 if (tb == NULL) { 427 return tcg_code_gen_epilogue; 428 } 429 430 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 431 log_cpu_exec(pc, cpu, tb); 432 } 433 434 return tb->tc.ptr; 435 } 436 437 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 438 /* 439 * Disable CFI checks. 440 * TCG creates binary blobs at runtime, with the transformed code. 441 * A TB is a blob of binary code, created at runtime and called with an 442 * indirect function call. Since such function did not exist at compile time, 443 * the CFI runtime has no way to verify its signature and would fail. 444 * TCG is not considered a security-sensitive part of QEMU so this does not 445 * affect the impact of CFI in environment with high security requirements 446 */ 447 static inline TranslationBlock * QEMU_DISABLE_CFI 448 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 449 { 450 CPUArchState *env = cpu->env_ptr; 451 uintptr_t ret; 452 TranslationBlock *last_tb; 453 const void *tb_ptr = itb->tc.ptr; 454 455 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 456 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 457 } 458 459 qemu_thread_jit_execute(); 460 ret = tcg_qemu_tb_exec(env, tb_ptr); 461 cpu->can_do_io = 1; 462 qemu_plugin_disable_mem_helpers(cpu); 463 /* 464 * TODO: Delay swapping back to the read-write region of the TB 465 * until we actually need to modify the TB. The read-only copy, 466 * coming from the rx region, shares the same host TLB entry as 467 * the code that executed the exit_tb opcode that arrived here. 468 * If we insist on touching both the RX and the RW pages, we 469 * double the host TLB pressure. 470 */ 471 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 472 *tb_exit = ret & TB_EXIT_MASK; 473 474 trace_exec_tb_exit(last_tb, *tb_exit); 475 476 if (*tb_exit > TB_EXIT_IDX1) { 477 /* We didn't start executing this TB (eg because the instruction 478 * counter hit zero); we must restore the guest PC to the address 479 * of the start of the TB. 480 */ 481 CPUClass *cc = CPU_GET_CLASS(cpu); 482 483 if (cc->tcg_ops->synchronize_from_tb) { 484 cc->tcg_ops->synchronize_from_tb(cpu, last_tb); 485 } else { 486 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 487 assert(cc->set_pc); 488 cc->set_pc(cpu, last_tb->pc); 489 } 490 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 491 target_ulong pc = log_pc(cpu, last_tb); 492 if (qemu_log_in_addr_range(pc)) { 493 qemu_log("Stopped execution of TB chain before %p [" 494 TARGET_FMT_lx "] %s\n", 495 last_tb->tc.ptr, pc, lookup_symbol(pc)); 496 } 497 } 498 } 499 500 /* 501 * If gdb single-step, and we haven't raised another exception, 502 * raise a debug exception. Single-step with another exception 503 * is handled in cpu_handle_exception. 504 */ 505 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 506 cpu->exception_index = EXCP_DEBUG; 507 cpu_loop_exit(cpu); 508 } 509 510 return last_tb; 511 } 512 513 514 static void cpu_exec_enter(CPUState *cpu) 515 { 516 CPUClass *cc = CPU_GET_CLASS(cpu); 517 518 if (cc->tcg_ops->cpu_exec_enter) { 519 cc->tcg_ops->cpu_exec_enter(cpu); 520 } 521 } 522 523 static void cpu_exec_exit(CPUState *cpu) 524 { 525 CPUClass *cc = CPU_GET_CLASS(cpu); 526 527 if (cc->tcg_ops->cpu_exec_exit) { 528 cc->tcg_ops->cpu_exec_exit(cpu); 529 } 530 } 531 532 void cpu_exec_step_atomic(CPUState *cpu) 533 { 534 CPUArchState *env = cpu->env_ptr; 535 TranslationBlock *tb; 536 target_ulong cs_base, pc; 537 uint32_t flags, cflags; 538 int tb_exit; 539 540 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 541 start_exclusive(); 542 g_assert(cpu == current_cpu); 543 g_assert(!cpu->running); 544 cpu->running = true; 545 546 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 547 548 cflags = curr_cflags(cpu); 549 /* Execute in a serial context. */ 550 cflags &= ~CF_PARALLEL; 551 /* After 1 insn, return and release the exclusive lock. */ 552 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 553 /* 554 * No need to check_for_breakpoints here. 555 * We only arrive in cpu_exec_step_atomic after beginning execution 556 * of an insn that includes an atomic operation we can't handle. 557 * Any breakpoint for this insn will have been recognized earlier. 558 */ 559 560 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 561 if (tb == NULL) { 562 mmap_lock(); 563 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 564 mmap_unlock(); 565 } 566 567 cpu_exec_enter(cpu); 568 /* execute the generated code */ 569 trace_exec_tb(tb, pc); 570 cpu_tb_exec(cpu, tb, &tb_exit); 571 cpu_exec_exit(cpu); 572 } else { 573 #ifndef CONFIG_SOFTMMU 574 clear_helper_retaddr(); 575 if (have_mmap_lock()) { 576 mmap_unlock(); 577 } 578 #endif 579 if (qemu_mutex_iothread_locked()) { 580 qemu_mutex_unlock_iothread(); 581 } 582 assert_no_pages_locked(); 583 } 584 585 /* 586 * As we start the exclusive region before codegen we must still 587 * be in the region if we longjump out of either the codegen or 588 * the execution. 589 */ 590 g_assert(cpu_in_exclusive_context(cpu)); 591 cpu->running = false; 592 end_exclusive(); 593 } 594 595 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 596 { 597 /* 598 * Get the rx view of the structure, from which we find the 599 * executable code address, and tb_target_set_jmp_target can 600 * produce a pc-relative displacement to jmp_target_addr[n]. 601 */ 602 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 603 uintptr_t offset = tb->jmp_insn_offset[n]; 604 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 605 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 606 607 tb->jmp_target_addr[n] = addr; 608 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 609 } 610 611 static inline void tb_add_jump(TranslationBlock *tb, int n, 612 TranslationBlock *tb_next) 613 { 614 uintptr_t old; 615 616 qemu_thread_jit_write(); 617 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 618 qemu_spin_lock(&tb_next->jmp_lock); 619 620 /* make sure the destination TB is valid */ 621 if (tb_next->cflags & CF_INVALID) { 622 goto out_unlock_next; 623 } 624 /* Atomically claim the jump destination slot only if it was NULL */ 625 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 626 (uintptr_t)tb_next); 627 if (old) { 628 goto out_unlock_next; 629 } 630 631 /* patch the native jump address */ 632 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 633 634 /* add in TB jmp list */ 635 tb->jmp_list_next[n] = tb_next->jmp_list_head; 636 tb_next->jmp_list_head = (uintptr_t)tb | n; 637 638 qemu_spin_unlock(&tb_next->jmp_lock); 639 640 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 641 tb->tc.ptr, n, tb_next->tc.ptr); 642 return; 643 644 out_unlock_next: 645 qemu_spin_unlock(&tb_next->jmp_lock); 646 return; 647 } 648 649 static inline bool cpu_handle_halt(CPUState *cpu) 650 { 651 #ifndef CONFIG_USER_ONLY 652 if (cpu->halted) { 653 #if defined(TARGET_I386) 654 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) { 655 X86CPU *x86_cpu = X86_CPU(cpu); 656 qemu_mutex_lock_iothread(); 657 apic_poll_irq(x86_cpu->apic_state); 658 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 659 qemu_mutex_unlock_iothread(); 660 } 661 #endif /* TARGET_I386 */ 662 if (!cpu_has_work(cpu)) { 663 return true; 664 } 665 666 cpu->halted = 0; 667 } 668 #endif /* !CONFIG_USER_ONLY */ 669 670 return false; 671 } 672 673 static inline void cpu_handle_debug_exception(CPUState *cpu) 674 { 675 CPUClass *cc = CPU_GET_CLASS(cpu); 676 CPUWatchpoint *wp; 677 678 if (!cpu->watchpoint_hit) { 679 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 680 wp->flags &= ~BP_WATCHPOINT_HIT; 681 } 682 } 683 684 if (cc->tcg_ops->debug_excp_handler) { 685 cc->tcg_ops->debug_excp_handler(cpu); 686 } 687 } 688 689 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 690 { 691 if (cpu->exception_index < 0) { 692 #ifndef CONFIG_USER_ONLY 693 if (replay_has_exception() 694 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) { 695 /* Execute just one insn to trigger exception pending in the log */ 696 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 697 | CF_NOIRQ | 1; 698 } 699 #endif 700 return false; 701 } 702 if (cpu->exception_index >= EXCP_INTERRUPT) { 703 /* exit request from the cpu execution loop */ 704 *ret = cpu->exception_index; 705 if (*ret == EXCP_DEBUG) { 706 cpu_handle_debug_exception(cpu); 707 } 708 cpu->exception_index = -1; 709 return true; 710 } else { 711 #if defined(CONFIG_USER_ONLY) 712 /* if user mode only, we simulate a fake exception 713 which will be handled outside the cpu execution 714 loop */ 715 #if defined(TARGET_I386) 716 CPUClass *cc = CPU_GET_CLASS(cpu); 717 cc->tcg_ops->fake_user_interrupt(cpu); 718 #endif /* TARGET_I386 */ 719 *ret = cpu->exception_index; 720 cpu->exception_index = -1; 721 return true; 722 #else 723 if (replay_exception()) { 724 CPUClass *cc = CPU_GET_CLASS(cpu); 725 qemu_mutex_lock_iothread(); 726 cc->tcg_ops->do_interrupt(cpu); 727 qemu_mutex_unlock_iothread(); 728 cpu->exception_index = -1; 729 730 if (unlikely(cpu->singlestep_enabled)) { 731 /* 732 * After processing the exception, ensure an EXCP_DEBUG is 733 * raised when single-stepping so that GDB doesn't miss the 734 * next instruction. 735 */ 736 *ret = EXCP_DEBUG; 737 cpu_handle_debug_exception(cpu); 738 return true; 739 } 740 } else if (!replay_has_interrupt()) { 741 /* give a chance to iothread in replay mode */ 742 *ret = EXCP_INTERRUPT; 743 return true; 744 } 745 #endif 746 } 747 748 return false; 749 } 750 751 #ifndef CONFIG_USER_ONLY 752 /* 753 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a 754 * "real" interrupt event later. It does not need to be recorded for 755 * replay purposes. 756 */ 757 static inline bool need_replay_interrupt(int interrupt_request) 758 { 759 #if defined(TARGET_I386) 760 return !(interrupt_request & CPU_INTERRUPT_POLL); 761 #else 762 return true; 763 #endif 764 } 765 #endif /* !CONFIG_USER_ONLY */ 766 767 static inline bool cpu_handle_interrupt(CPUState *cpu, 768 TranslationBlock **last_tb) 769 { 770 /* 771 * If we have requested custom cflags with CF_NOIRQ we should 772 * skip checking here. Any pending interrupts will get picked up 773 * by the next TB we execute under normal cflags. 774 */ 775 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 776 return false; 777 } 778 779 /* Clear the interrupt flag now since we're processing 780 * cpu->interrupt_request and cpu->exit_request. 781 * Ensure zeroing happens before reading cpu->exit_request or 782 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 783 */ 784 qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0); 785 786 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 787 int interrupt_request; 788 qemu_mutex_lock_iothread(); 789 interrupt_request = cpu->interrupt_request; 790 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 791 /* Mask out external interrupts for this step. */ 792 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 793 } 794 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 795 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 796 cpu->exception_index = EXCP_DEBUG; 797 qemu_mutex_unlock_iothread(); 798 return true; 799 } 800 #if !defined(CONFIG_USER_ONLY) 801 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 802 /* Do nothing */ 803 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 804 replay_interrupt(); 805 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 806 cpu->halted = 1; 807 cpu->exception_index = EXCP_HLT; 808 qemu_mutex_unlock_iothread(); 809 return true; 810 } 811 #if defined(TARGET_I386) 812 else if (interrupt_request & CPU_INTERRUPT_INIT) { 813 X86CPU *x86_cpu = X86_CPU(cpu); 814 CPUArchState *env = &x86_cpu->env; 815 replay_interrupt(); 816 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 817 do_cpu_init(x86_cpu); 818 cpu->exception_index = EXCP_HALTED; 819 qemu_mutex_unlock_iothread(); 820 return true; 821 } 822 #else 823 else if (interrupt_request & CPU_INTERRUPT_RESET) { 824 replay_interrupt(); 825 cpu_reset(cpu); 826 qemu_mutex_unlock_iothread(); 827 return true; 828 } 829 #endif /* !TARGET_I386 */ 830 /* The target hook has 3 exit conditions: 831 False when the interrupt isn't processed, 832 True when it is, and we should restart on a new TB, 833 and via longjmp via cpu_loop_exit. */ 834 else { 835 CPUClass *cc = CPU_GET_CLASS(cpu); 836 837 if (cc->tcg_ops->cpu_exec_interrupt && 838 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 839 if (need_replay_interrupt(interrupt_request)) { 840 replay_interrupt(); 841 } 842 /* 843 * After processing the interrupt, ensure an EXCP_DEBUG is 844 * raised when single-stepping so that GDB doesn't miss the 845 * next instruction. 846 */ 847 if (unlikely(cpu->singlestep_enabled)) { 848 cpu->exception_index = EXCP_DEBUG; 849 qemu_mutex_unlock_iothread(); 850 return true; 851 } 852 cpu->exception_index = -1; 853 *last_tb = NULL; 854 } 855 /* The target hook may have updated the 'cpu->interrupt_request'; 856 * reload the 'interrupt_request' value */ 857 interrupt_request = cpu->interrupt_request; 858 } 859 #endif /* !CONFIG_USER_ONLY */ 860 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 861 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 862 /* ensure that no TB jump will be modified as 863 the program flow was changed */ 864 *last_tb = NULL; 865 } 866 867 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 868 qemu_mutex_unlock_iothread(); 869 } 870 871 /* Finally, check if we need to exit to the main loop. */ 872 if (unlikely(qatomic_read(&cpu->exit_request)) 873 || (icount_enabled() 874 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT) 875 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) { 876 qatomic_set(&cpu->exit_request, 0); 877 if (cpu->exception_index == -1) { 878 cpu->exception_index = EXCP_INTERRUPT; 879 } 880 return true; 881 } 882 883 return false; 884 } 885 886 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 887 target_ulong pc, 888 TranslationBlock **last_tb, int *tb_exit) 889 { 890 int32_t insns_left; 891 892 trace_exec_tb(tb, pc); 893 tb = cpu_tb_exec(cpu, tb, tb_exit); 894 if (*tb_exit != TB_EXIT_REQUESTED) { 895 *last_tb = tb; 896 return; 897 } 898 899 *last_tb = NULL; 900 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32); 901 if (insns_left < 0) { 902 /* Something asked us to stop executing chained TBs; just 903 * continue round the main loop. Whatever requested the exit 904 * will also have set something else (eg exit_request or 905 * interrupt_request) which will be handled by 906 * cpu_handle_interrupt. cpu_handle_interrupt will also 907 * clear cpu->icount_decr.u16.high. 908 */ 909 return; 910 } 911 912 /* Instruction counter expired. */ 913 assert(icount_enabled()); 914 #ifndef CONFIG_USER_ONLY 915 /* Ensure global icount has gone forward */ 916 icount_update(cpu); 917 /* Refill decrementer and continue execution. */ 918 insns_left = MIN(0xffff, cpu->icount_budget); 919 cpu_neg(cpu)->icount_decr.u16.low = insns_left; 920 cpu->icount_extra = cpu->icount_budget - insns_left; 921 922 /* 923 * If the next tb has more instructions than we have left to 924 * execute we need to ensure we find/generate a TB with exactly 925 * insns_left instructions in it. 926 */ 927 if (insns_left > 0 && insns_left < tb->icount) { 928 assert(insns_left <= CF_COUNT_MASK); 929 assert(cpu->icount_extra == 0); 930 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 931 } 932 #endif 933 } 934 935 /* main execution loop */ 936 937 static int __attribute__((noinline)) 938 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 939 { 940 int ret; 941 942 /* if an exception is pending, we execute it here */ 943 while (!cpu_handle_exception(cpu, &ret)) { 944 TranslationBlock *last_tb = NULL; 945 int tb_exit = 0; 946 947 while (!cpu_handle_interrupt(cpu, &last_tb)) { 948 TranslationBlock *tb; 949 target_ulong cs_base, pc; 950 uint32_t flags, cflags; 951 952 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags); 953 954 /* 955 * When requested, use an exact setting for cflags for the next 956 * execution. This is used for icount, precise smc, and stop- 957 * after-access watchpoints. Since this request should never 958 * have CF_INVALID set, -1 is a convenient invalid value that 959 * does not require tcg headers for cpu_common_reset. 960 */ 961 cflags = cpu->cflags_next_tb; 962 if (cflags == -1) { 963 cflags = curr_cflags(cpu); 964 } else { 965 cpu->cflags_next_tb = -1; 966 } 967 968 if (check_for_breakpoints(cpu, pc, &cflags)) { 969 break; 970 } 971 972 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 973 if (tb == NULL) { 974 CPUJumpCache *jc; 975 uint32_t h; 976 977 mmap_lock(); 978 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 979 mmap_unlock(); 980 981 /* 982 * We add the TB in the virtual pc hash table 983 * for the fast lookup 984 */ 985 h = tb_jmp_cache_hash_func(pc); 986 jc = cpu->tb_jmp_cache; 987 if (cflags & CF_PCREL) { 988 jc->array[h].pc = pc; 989 /* Ensure pc is written first. */ 990 qatomic_store_release(&jc->array[h].tb, tb); 991 } else { 992 /* Use the pc value already stored in tb->pc. */ 993 qatomic_set(&jc->array[h].tb, tb); 994 } 995 } 996 997 #ifndef CONFIG_USER_ONLY 998 /* 999 * We don't take care of direct jumps when address mapping 1000 * changes in system emulation. So it's not safe to make a 1001 * direct jump to a TB spanning two pages because the mapping 1002 * for the second page can change. 1003 */ 1004 if (tb_page_addr1(tb) != -1) { 1005 last_tb = NULL; 1006 } 1007 #endif 1008 /* See if we can patch the calling TB. */ 1009 if (last_tb) { 1010 tb_add_jump(last_tb, tb_exit, tb); 1011 } 1012 1013 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1014 1015 /* Try to align the host and virtual clocks 1016 if the guest is in advance */ 1017 align_clocks(sc, cpu); 1018 } 1019 } 1020 return ret; 1021 } 1022 1023 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 1024 { 1025 /* Prepare setjmp context for exception handling. */ 1026 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 1027 /* Non-buggy compilers preserve this; assert the correct value. */ 1028 g_assert(cpu == current_cpu); 1029 1030 #ifndef CONFIG_SOFTMMU 1031 clear_helper_retaddr(); 1032 if (have_mmap_lock()) { 1033 mmap_unlock(); 1034 } 1035 #endif 1036 if (qemu_mutex_iothread_locked()) { 1037 qemu_mutex_unlock_iothread(); 1038 } 1039 1040 assert_no_pages_locked(); 1041 } 1042 1043 return cpu_exec_loop(cpu, sc); 1044 } 1045 1046 int cpu_exec(CPUState *cpu) 1047 { 1048 int ret; 1049 SyncClocks sc = { 0 }; 1050 1051 /* replay_interrupt may need current_cpu */ 1052 current_cpu = cpu; 1053 1054 if (cpu_handle_halt(cpu)) { 1055 return EXCP_HALTED; 1056 } 1057 1058 rcu_read_lock(); 1059 cpu_exec_enter(cpu); 1060 1061 /* 1062 * Calculate difference between guest clock and host clock. 1063 * This delay includes the delay of the last cycle, so 1064 * what we have to do is sleep until it is 0. As for the 1065 * advance/delay we gain here, we try to fix it next time. 1066 */ 1067 init_delay_params(&sc, cpu); 1068 1069 ret = cpu_exec_setjmp(cpu, &sc); 1070 1071 cpu_exec_exit(cpu); 1072 rcu_read_unlock(); 1073 1074 return ret; 1075 } 1076 1077 void tcg_exec_realizefn(CPUState *cpu, Error **errp) 1078 { 1079 static bool tcg_target_initialized; 1080 CPUClass *cc = CPU_GET_CLASS(cpu); 1081 1082 if (!tcg_target_initialized) { 1083 cc->tcg_ops->initialize(); 1084 tcg_target_initialized = true; 1085 } 1086 1087 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1088 tlb_init(cpu); 1089 #ifndef CONFIG_USER_ONLY 1090 tcg_iommu_init_notifier_list(cpu); 1091 #endif /* !CONFIG_USER_ONLY */ 1092 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1093 } 1094 1095 /* undo the initializations in reverse order */ 1096 void tcg_exec_unrealizefn(CPUState *cpu) 1097 { 1098 #ifndef CONFIG_USER_ONLY 1099 tcg_iommu_free_notifier_list(cpu); 1100 #endif /* !CONFIG_USER_ONLY */ 1101 1102 tlb_destroy(cpu); 1103 g_free_rcu(cpu->tb_jmp_cache, rcu); 1104 } 1105