1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/tcg-cpu-ops.h" 25 #include "trace.h" 26 #include "disas/disas.h" 27 #include "exec/exec-all.h" 28 #include "tcg/tcg.h" 29 #include "qemu/atomic.h" 30 #include "qemu/rcu.h" 31 #include "exec/log.h" 32 #include "qemu/main-loop.h" 33 #include "sysemu/cpus.h" 34 #include "exec/cpu-all.h" 35 #include "sysemu/cpu-timers.h" 36 #include "exec/replay-core.h" 37 #include "sysemu/tcg.h" 38 #include "exec/helper-proto-common.h" 39 #include "tb-jmp-cache.h" 40 #include "tb-hash.h" 41 #include "tb-context.h" 42 #include "internal-common.h" 43 #include "internal-target.h" 44 45 /* -icount align implementation. */ 46 47 typedef struct SyncClocks { 48 int64_t diff_clk; 49 int64_t last_cpu_icount; 50 int64_t realtime_clock; 51 } SyncClocks; 52 53 #if !defined(CONFIG_USER_ONLY) 54 /* Allow the guest to have a max 3ms advance. 55 * The difference between the 2 clocks could therefore 56 * oscillate around 0. 57 */ 58 #define VM_CLOCK_ADVANCE 3000000 59 #define THRESHOLD_REDUCE 1.5 60 #define MAX_DELAY_PRINT_RATE 2000000000LL 61 #define MAX_NB_PRINTS 100 62 63 int64_t max_delay; 64 int64_t max_advance; 65 66 static void align_clocks(SyncClocks *sc, CPUState *cpu) 67 { 68 int64_t cpu_icount; 69 70 if (!icount_align_option) { 71 return; 72 } 73 74 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 75 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 76 sc->last_cpu_icount = cpu_icount; 77 78 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 79 #ifndef _WIN32 80 struct timespec sleep_delay, rem_delay; 81 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 82 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 83 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 84 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 85 } else { 86 sc->diff_clk = 0; 87 } 88 #else 89 Sleep(sc->diff_clk / SCALE_MS); 90 sc->diff_clk = 0; 91 #endif 92 } 93 } 94 95 static void print_delay(const SyncClocks *sc) 96 { 97 static float threshold_delay; 98 static int64_t last_realtime_clock; 99 static int nb_prints; 100 101 if (icount_align_option && 102 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 103 nb_prints < MAX_NB_PRINTS) { 104 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 105 (-sc->diff_clk / (float)1000000000LL < 106 (threshold_delay - THRESHOLD_REDUCE))) { 107 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 108 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 109 threshold_delay - 1, 110 threshold_delay); 111 nb_prints++; 112 last_realtime_clock = sc->realtime_clock; 113 } 114 } 115 } 116 117 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 118 { 119 if (!icount_align_option) { 120 return; 121 } 122 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 123 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 124 sc->last_cpu_icount 125 = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 126 if (sc->diff_clk < max_delay) { 127 max_delay = sc->diff_clk; 128 } 129 if (sc->diff_clk > max_advance) { 130 max_advance = sc->diff_clk; 131 } 132 133 /* Print every 2s max if the guest is late. We limit the number 134 of printed messages to NB_PRINT_MAX(currently 100) */ 135 print_delay(sc); 136 } 137 #else 138 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 139 { 140 } 141 142 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 143 { 144 } 145 #endif /* CONFIG USER ONLY */ 146 147 bool tcg_cflags_has(CPUState *cpu, uint32_t flags) 148 { 149 return cpu->tcg_cflags & flags; 150 } 151 152 void tcg_cflags_set(CPUState *cpu, uint32_t flags) 153 { 154 cpu->tcg_cflags |= flags; 155 } 156 157 uint32_t curr_cflags(CPUState *cpu) 158 { 159 uint32_t cflags = cpu->tcg_cflags; 160 161 /* 162 * Record gdb single-step. We should be exiting the TB by raising 163 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 164 * 165 * For singlestep and -d nochain, suppress goto_tb so that 166 * we can log -d cpu,exec after every TB. 167 */ 168 if (unlikely(cpu->singlestep_enabled)) { 169 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 170 } else if (qatomic_read(&one_insn_per_tb)) { 171 cflags |= CF_NO_GOTO_TB | 1; 172 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 173 cflags |= CF_NO_GOTO_TB; 174 } 175 176 return cflags; 177 } 178 179 struct tb_desc { 180 vaddr pc; 181 uint64_t cs_base; 182 CPUArchState *env; 183 tb_page_addr_t page_addr0; 184 uint32_t flags; 185 uint32_t cflags; 186 }; 187 188 static bool tb_lookup_cmp(const void *p, const void *d) 189 { 190 const TranslationBlock *tb = p; 191 const struct tb_desc *desc = d; 192 193 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && 194 tb_page_addr0(tb) == desc->page_addr0 && 195 tb->cs_base == desc->cs_base && 196 tb->flags == desc->flags && 197 tb_cflags(tb) == desc->cflags) { 198 /* check next page if needed */ 199 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 200 if (tb_phys_page1 == -1) { 201 return true; 202 } else { 203 tb_page_addr_t phys_page1; 204 vaddr virt_page1; 205 206 /* 207 * We know that the first page matched, and an otherwise valid TB 208 * encountered an incomplete instruction at the end of that page, 209 * therefore we know that generating a new TB from the current PC 210 * must also require reading from the next page -- even if the 211 * second pages do not match, and therefore the resulting insn 212 * is different for the new TB. Therefore any exception raised 213 * here by the faulting lookup is not premature. 214 */ 215 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 216 phys_page1 = get_page_addr_code(desc->env, virt_page1); 217 if (tb_phys_page1 == phys_page1) { 218 return true; 219 } 220 } 221 } 222 return false; 223 } 224 225 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc, 226 uint64_t cs_base, uint32_t flags, 227 uint32_t cflags) 228 { 229 tb_page_addr_t phys_pc; 230 struct tb_desc desc; 231 uint32_t h; 232 233 desc.env = cpu_env(cpu); 234 desc.cs_base = cs_base; 235 desc.flags = flags; 236 desc.cflags = cflags; 237 desc.pc = pc; 238 phys_pc = get_page_addr_code(desc.env, pc); 239 if (phys_pc == -1) { 240 return NULL; 241 } 242 desc.page_addr0 = phys_pc; 243 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), 244 flags, cs_base, cflags); 245 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 246 } 247 248 /* Might cause an exception, so have a longjmp destination ready */ 249 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc, 250 uint64_t cs_base, uint32_t flags, 251 uint32_t cflags) 252 { 253 TranslationBlock *tb; 254 CPUJumpCache *jc; 255 uint32_t hash; 256 257 /* we should never be trying to look up an INVALID tb */ 258 tcg_debug_assert(!(cflags & CF_INVALID)); 259 260 hash = tb_jmp_cache_hash_func(pc); 261 jc = cpu->tb_jmp_cache; 262 263 tb = qatomic_read(&jc->array[hash].tb); 264 if (likely(tb && 265 jc->array[hash].pc == pc && 266 tb->cs_base == cs_base && 267 tb->flags == flags && 268 tb_cflags(tb) == cflags)) { 269 goto hit; 270 } 271 272 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 273 if (tb == NULL) { 274 return NULL; 275 } 276 277 jc->array[hash].pc = pc; 278 qatomic_set(&jc->array[hash].tb, tb); 279 280 hit: 281 /* 282 * As long as tb is not NULL, the contents are consistent. Therefore, 283 * the virtual PC has to match for non-CF_PCREL translations. 284 */ 285 assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc); 286 return tb; 287 } 288 289 static void log_cpu_exec(vaddr pc, CPUState *cpu, 290 const TranslationBlock *tb) 291 { 292 if (qemu_log_in_addr_range(pc)) { 293 qemu_log_mask(CPU_LOG_EXEC, 294 "Trace %d: %p [%08" PRIx64 295 "/%016" VADDR_PRIx "/%08x/%08x] %s\n", 296 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 297 tb->flags, tb->cflags, lookup_symbol(pc)); 298 299 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 300 FILE *logfile = qemu_log_trylock(); 301 if (logfile) { 302 int flags = 0; 303 304 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 305 flags |= CPU_DUMP_FPU; 306 } 307 #if defined(TARGET_I386) 308 flags |= CPU_DUMP_CCOP; 309 #endif 310 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { 311 flags |= CPU_DUMP_VPU; 312 } 313 cpu_dump_state(cpu, logfile, flags); 314 qemu_log_unlock(logfile); 315 } 316 } 317 } 318 } 319 320 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, 321 uint32_t *cflags) 322 { 323 CPUBreakpoint *bp; 324 bool match_page = false; 325 326 /* 327 * Singlestep overrides breakpoints. 328 * This requirement is visible in the record-replay tests, where 329 * we would fail to make forward progress in reverse-continue. 330 * 331 * TODO: gdb singlestep should only override gdb breakpoints, 332 * so that one could (gdb) singlestep into the guest kernel's 333 * architectural breakpoint handler. 334 */ 335 if (cpu->singlestep_enabled) { 336 return false; 337 } 338 339 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 340 /* 341 * If we have an exact pc match, trigger the breakpoint. 342 * Otherwise, note matches within the page. 343 */ 344 if (pc == bp->pc) { 345 bool match_bp = false; 346 347 if (bp->flags & BP_GDB) { 348 match_bp = true; 349 } else if (bp->flags & BP_CPU) { 350 #ifdef CONFIG_USER_ONLY 351 g_assert_not_reached(); 352 #else 353 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 354 assert(tcg_ops->debug_check_breakpoint); 355 match_bp = tcg_ops->debug_check_breakpoint(cpu); 356 #endif 357 } 358 359 if (match_bp) { 360 cpu->exception_index = EXCP_DEBUG; 361 return true; 362 } 363 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 364 match_page = true; 365 } 366 } 367 368 /* 369 * Within the same page as a breakpoint, single-step, 370 * returning to helper_lookup_tb_ptr after each insn looking 371 * for the actual breakpoint. 372 * 373 * TODO: Perhaps better to record all of the TBs associated 374 * with a given virtual page that contains a breakpoint, and 375 * then invalidate them when a new overlapping breakpoint is 376 * set on the page. Non-overlapping TBs would not be 377 * invalidated, nor would any TB need to be invalidated as 378 * breakpoints are removed. 379 */ 380 if (match_page) { 381 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | CF_BP_PAGE | 1; 382 } 383 return false; 384 } 385 386 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, 387 uint32_t *cflags) 388 { 389 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 390 check_for_breakpoints_slow(cpu, pc, cflags); 391 } 392 393 /** 394 * helper_lookup_tb_ptr: quick check for next tb 395 * @env: current cpu state 396 * 397 * Look for an existing TB matching the current cpu state. 398 * If found, return the code pointer. If not found, return 399 * the tcg epilogue so that we return into cpu_tb_exec. 400 */ 401 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 402 { 403 CPUState *cpu = env_cpu(env); 404 TranslationBlock *tb; 405 vaddr pc; 406 uint64_t cs_base; 407 uint32_t flags, cflags; 408 409 /* 410 * By definition we've just finished a TB, so I/O is OK. 411 * Avoid the possibility of calling cpu_io_recompile() if 412 * a page table walk triggered by tb_lookup() calling 413 * probe_access_internal() happens to touch an MMIO device. 414 * The next TB, if we chain to it, will clear the flag again. 415 */ 416 cpu->neg.can_do_io = true; 417 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 418 419 cflags = curr_cflags(cpu); 420 if (check_for_breakpoints(cpu, pc, &cflags)) { 421 cpu_loop_exit(cpu); 422 } 423 424 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 425 if (tb == NULL) { 426 return tcg_code_gen_epilogue; 427 } 428 429 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 430 log_cpu_exec(pc, cpu, tb); 431 } 432 433 return tb->tc.ptr; 434 } 435 436 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 437 /* 438 * Disable CFI checks. 439 * TCG creates binary blobs at runtime, with the transformed code. 440 * A TB is a blob of binary code, created at runtime and called with an 441 * indirect function call. Since such function did not exist at compile time, 442 * the CFI runtime has no way to verify its signature and would fail. 443 * TCG is not considered a security-sensitive part of QEMU so this does not 444 * affect the impact of CFI in environment with high security requirements 445 */ 446 static inline TranslationBlock * QEMU_DISABLE_CFI 447 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 448 { 449 uintptr_t ret; 450 TranslationBlock *last_tb; 451 const void *tb_ptr = itb->tc.ptr; 452 453 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 454 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 455 } 456 457 qemu_thread_jit_execute(); 458 ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr); 459 cpu->neg.can_do_io = true; 460 qemu_plugin_disable_mem_helpers(cpu); 461 /* 462 * TODO: Delay swapping back to the read-write region of the TB 463 * until we actually need to modify the TB. The read-only copy, 464 * coming from the rx region, shares the same host TLB entry as 465 * the code that executed the exit_tb opcode that arrived here. 466 * If we insist on touching both the RX and the RW pages, we 467 * double the host TLB pressure. 468 */ 469 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 470 *tb_exit = ret & TB_EXIT_MASK; 471 472 trace_exec_tb_exit(last_tb, *tb_exit); 473 474 if (*tb_exit > TB_EXIT_IDX1) { 475 /* We didn't start executing this TB (eg because the instruction 476 * counter hit zero); we must restore the guest PC to the address 477 * of the start of the TB. 478 */ 479 CPUClass *cc = cpu->cc; 480 const TCGCPUOps *tcg_ops = cc->tcg_ops; 481 482 if (tcg_ops->synchronize_from_tb) { 483 tcg_ops->synchronize_from_tb(cpu, last_tb); 484 } else { 485 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 486 assert(cc->set_pc); 487 cc->set_pc(cpu, last_tb->pc); 488 } 489 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 490 vaddr pc = log_pc(cpu, last_tb); 491 if (qemu_log_in_addr_range(pc)) { 492 qemu_log("Stopped execution of TB chain before %p [%016" 493 VADDR_PRIx "] %s\n", 494 last_tb->tc.ptr, pc, lookup_symbol(pc)); 495 } 496 } 497 } 498 499 /* 500 * If gdb single-step, and we haven't raised another exception, 501 * raise a debug exception. Single-step with another exception 502 * is handled in cpu_handle_exception. 503 */ 504 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 505 cpu->exception_index = EXCP_DEBUG; 506 cpu_loop_exit(cpu); 507 } 508 509 return last_tb; 510 } 511 512 513 static void cpu_exec_enter(CPUState *cpu) 514 { 515 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 516 517 if (tcg_ops->cpu_exec_enter) { 518 tcg_ops->cpu_exec_enter(cpu); 519 } 520 } 521 522 static void cpu_exec_exit(CPUState *cpu) 523 { 524 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 525 526 if (tcg_ops->cpu_exec_exit) { 527 tcg_ops->cpu_exec_exit(cpu); 528 } 529 } 530 531 static void cpu_exec_longjmp_cleanup(CPUState *cpu) 532 { 533 /* Non-buggy compilers preserve this; assert the correct value. */ 534 g_assert(cpu == current_cpu); 535 536 #ifdef CONFIG_USER_ONLY 537 clear_helper_retaddr(); 538 if (have_mmap_lock()) { 539 mmap_unlock(); 540 } 541 #else 542 /* 543 * For softmmu, a tlb_fill fault during translation will land here, 544 * and we need to release any page locks held. In system mode we 545 * have one tcg_ctx per thread, so we know it was this cpu doing 546 * the translation. 547 * 548 * Alternative 1: Install a cleanup to be called via an exception 549 * handling safe longjmp. It seems plausible that all our hosts 550 * support such a thing. We'd have to properly register unwind info 551 * for the JIT for EH, rather that just for GDB. 552 * 553 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to 554 * capture the cpu_loop_exit longjmp, perform the cleanup, and 555 * jump again to arrive here. 556 */ 557 if (tcg_ctx->gen_tb) { 558 tb_unlock_pages(tcg_ctx->gen_tb); 559 tcg_ctx->gen_tb = NULL; 560 } 561 #endif 562 if (bql_locked()) { 563 bql_unlock(); 564 } 565 assert_no_pages_locked(); 566 } 567 568 void cpu_exec_step_atomic(CPUState *cpu) 569 { 570 CPUArchState *env = cpu_env(cpu); 571 TranslationBlock *tb; 572 vaddr pc; 573 uint64_t cs_base; 574 uint32_t flags, cflags; 575 int tb_exit; 576 577 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 578 start_exclusive(); 579 g_assert(cpu == current_cpu); 580 g_assert(!cpu->running); 581 cpu->running = true; 582 583 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 584 585 cflags = curr_cflags(cpu); 586 /* Execute in a serial context. */ 587 cflags &= ~CF_PARALLEL; 588 /* After 1 insn, return and release the exclusive lock. */ 589 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 590 /* 591 * No need to check_for_breakpoints here. 592 * We only arrive in cpu_exec_step_atomic after beginning execution 593 * of an insn that includes an atomic operation we can't handle. 594 * Any breakpoint for this insn will have been recognized earlier. 595 */ 596 597 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 598 if (tb == NULL) { 599 mmap_lock(); 600 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 601 mmap_unlock(); 602 } 603 604 cpu_exec_enter(cpu); 605 /* execute the generated code */ 606 trace_exec_tb(tb, pc); 607 cpu_tb_exec(cpu, tb, &tb_exit); 608 cpu_exec_exit(cpu); 609 } else { 610 cpu_exec_longjmp_cleanup(cpu); 611 } 612 613 /* 614 * As we start the exclusive region before codegen we must still 615 * be in the region if we longjump out of either the codegen or 616 * the execution. 617 */ 618 g_assert(cpu_in_exclusive_context(cpu)); 619 cpu->running = false; 620 end_exclusive(); 621 } 622 623 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 624 { 625 /* 626 * Get the rx view of the structure, from which we find the 627 * executable code address, and tb_target_set_jmp_target can 628 * produce a pc-relative displacement to jmp_target_addr[n]. 629 */ 630 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 631 uintptr_t offset = tb->jmp_insn_offset[n]; 632 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 633 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 634 635 tb->jmp_target_addr[n] = addr; 636 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 637 } 638 639 static inline void tb_add_jump(TranslationBlock *tb, int n, 640 TranslationBlock *tb_next) 641 { 642 uintptr_t old; 643 644 qemu_thread_jit_write(); 645 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 646 qemu_spin_lock(&tb_next->jmp_lock); 647 648 /* make sure the destination TB is valid */ 649 if (tb_next->cflags & CF_INVALID) { 650 goto out_unlock_next; 651 } 652 /* Atomically claim the jump destination slot only if it was NULL */ 653 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 654 (uintptr_t)tb_next); 655 if (old) { 656 goto out_unlock_next; 657 } 658 659 /* patch the native jump address */ 660 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 661 662 /* add in TB jmp list */ 663 tb->jmp_list_next[n] = tb_next->jmp_list_head; 664 tb_next->jmp_list_head = (uintptr_t)tb | n; 665 666 qemu_spin_unlock(&tb_next->jmp_lock); 667 668 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 669 tb->tc.ptr, n, tb_next->tc.ptr); 670 return; 671 672 out_unlock_next: 673 qemu_spin_unlock(&tb_next->jmp_lock); 674 return; 675 } 676 677 static inline bool cpu_handle_halt(CPUState *cpu) 678 { 679 #ifndef CONFIG_USER_ONLY 680 if (cpu->halted) { 681 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 682 bool leave_halt = tcg_ops->cpu_exec_halt(cpu); 683 684 if (!leave_halt) { 685 return true; 686 } 687 688 cpu->halted = 0; 689 } 690 #endif /* !CONFIG_USER_ONLY */ 691 692 return false; 693 } 694 695 static inline void cpu_handle_debug_exception(CPUState *cpu) 696 { 697 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 698 CPUWatchpoint *wp; 699 700 if (!cpu->watchpoint_hit) { 701 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 702 wp->flags &= ~BP_WATCHPOINT_HIT; 703 } 704 } 705 706 if (tcg_ops->debug_excp_handler) { 707 tcg_ops->debug_excp_handler(cpu); 708 } 709 } 710 711 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 712 { 713 if (cpu->exception_index < 0) { 714 #ifndef CONFIG_USER_ONLY 715 if (replay_has_exception() 716 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) { 717 /* Execute just one insn to trigger exception pending in the log */ 718 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 719 | CF_NOIRQ | 1; 720 } 721 #endif 722 return false; 723 } 724 725 if (cpu->exception_index >= EXCP_INTERRUPT) { 726 /* exit request from the cpu execution loop */ 727 *ret = cpu->exception_index; 728 if (*ret == EXCP_DEBUG) { 729 cpu_handle_debug_exception(cpu); 730 } 731 cpu->exception_index = -1; 732 return true; 733 } 734 735 #if defined(CONFIG_USER_ONLY) 736 /* 737 * If user mode only, we simulate a fake exception which will be 738 * handled outside the cpu execution loop. 739 */ 740 #if defined(TARGET_I386) 741 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 742 tcg_ops->fake_user_interrupt(cpu); 743 #endif /* TARGET_I386 */ 744 *ret = cpu->exception_index; 745 cpu->exception_index = -1; 746 return true; 747 #else 748 if (replay_exception()) { 749 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 750 751 bql_lock(); 752 tcg_ops->do_interrupt(cpu); 753 bql_unlock(); 754 cpu->exception_index = -1; 755 756 if (unlikely(cpu->singlestep_enabled)) { 757 /* 758 * After processing the exception, ensure an EXCP_DEBUG is 759 * raised when single-stepping so that GDB doesn't miss the 760 * next instruction. 761 */ 762 *ret = EXCP_DEBUG; 763 cpu_handle_debug_exception(cpu); 764 return true; 765 } 766 } else if (!replay_has_interrupt()) { 767 /* give a chance to iothread in replay mode */ 768 *ret = EXCP_INTERRUPT; 769 return true; 770 } 771 #endif 772 773 return false; 774 } 775 776 static inline bool icount_exit_request(CPUState *cpu) 777 { 778 if (!icount_enabled()) { 779 return false; 780 } 781 if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) { 782 return false; 783 } 784 return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0; 785 } 786 787 static inline bool cpu_handle_interrupt(CPUState *cpu, 788 TranslationBlock **last_tb) 789 { 790 /* 791 * If we have requested custom cflags with CF_NOIRQ we should 792 * skip checking here. Any pending interrupts will get picked up 793 * by the next TB we execute under normal cflags. 794 */ 795 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 796 return false; 797 } 798 799 /* Clear the interrupt flag now since we're processing 800 * cpu->interrupt_request and cpu->exit_request. 801 * Ensure zeroing happens before reading cpu->exit_request or 802 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 803 */ 804 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0); 805 806 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 807 int interrupt_request; 808 bql_lock(); 809 interrupt_request = cpu->interrupt_request; 810 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 811 /* Mask out external interrupts for this step. */ 812 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 813 } 814 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 815 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 816 cpu->exception_index = EXCP_DEBUG; 817 bql_unlock(); 818 return true; 819 } 820 #if !defined(CONFIG_USER_ONLY) 821 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 822 /* Do nothing */ 823 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 824 replay_interrupt(); 825 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 826 cpu->halted = 1; 827 cpu->exception_index = EXCP_HLT; 828 bql_unlock(); 829 return true; 830 } 831 #if defined(TARGET_I386) 832 else if (interrupt_request & CPU_INTERRUPT_INIT) { 833 X86CPU *x86_cpu = X86_CPU(cpu); 834 CPUArchState *env = &x86_cpu->env; 835 replay_interrupt(); 836 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 837 do_cpu_init(x86_cpu); 838 cpu->exception_index = EXCP_HALTED; 839 bql_unlock(); 840 return true; 841 } 842 #else 843 else if (interrupt_request & CPU_INTERRUPT_RESET) { 844 replay_interrupt(); 845 cpu_reset(cpu); 846 bql_unlock(); 847 return true; 848 } 849 #endif /* !TARGET_I386 */ 850 /* The target hook has 3 exit conditions: 851 False when the interrupt isn't processed, 852 True when it is, and we should restart on a new TB, 853 and via longjmp via cpu_loop_exit. */ 854 else { 855 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 856 857 if (tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 858 if (!tcg_ops->need_replay_interrupt || 859 tcg_ops->need_replay_interrupt(interrupt_request)) { 860 replay_interrupt(); 861 } 862 /* 863 * After processing the interrupt, ensure an EXCP_DEBUG is 864 * raised when single-stepping so that GDB doesn't miss the 865 * next instruction. 866 */ 867 if (unlikely(cpu->singlestep_enabled)) { 868 cpu->exception_index = EXCP_DEBUG; 869 bql_unlock(); 870 return true; 871 } 872 cpu->exception_index = -1; 873 *last_tb = NULL; 874 } 875 /* The target hook may have updated the 'cpu->interrupt_request'; 876 * reload the 'interrupt_request' value */ 877 interrupt_request = cpu->interrupt_request; 878 } 879 #endif /* !CONFIG_USER_ONLY */ 880 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 881 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 882 /* ensure that no TB jump will be modified as 883 the program flow was changed */ 884 *last_tb = NULL; 885 } 886 887 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 888 bql_unlock(); 889 } 890 891 /* Finally, check if we need to exit to the main loop. */ 892 if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) { 893 qatomic_set(&cpu->exit_request, 0); 894 if (cpu->exception_index == -1) { 895 cpu->exception_index = EXCP_INTERRUPT; 896 } 897 return true; 898 } 899 900 return false; 901 } 902 903 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 904 vaddr pc, TranslationBlock **last_tb, 905 int *tb_exit) 906 { 907 trace_exec_tb(tb, pc); 908 tb = cpu_tb_exec(cpu, tb, tb_exit); 909 if (*tb_exit != TB_EXIT_REQUESTED) { 910 *last_tb = tb; 911 return; 912 } 913 914 *last_tb = NULL; 915 if (cpu_loop_exit_requested(cpu)) { 916 /* Something asked us to stop executing chained TBs; just 917 * continue round the main loop. Whatever requested the exit 918 * will also have set something else (eg exit_request or 919 * interrupt_request) which will be handled by 920 * cpu_handle_interrupt. cpu_handle_interrupt will also 921 * clear cpu->icount_decr.u16.high. 922 */ 923 return; 924 } 925 926 /* Instruction counter expired. */ 927 assert(icount_enabled()); 928 #ifndef CONFIG_USER_ONLY 929 /* Ensure global icount has gone forward */ 930 icount_update(cpu); 931 /* Refill decrementer and continue execution. */ 932 int32_t insns_left = MIN(0xffff, cpu->icount_budget); 933 cpu->neg.icount_decr.u16.low = insns_left; 934 cpu->icount_extra = cpu->icount_budget - insns_left; 935 936 /* 937 * If the next tb has more instructions than we have left to 938 * execute we need to ensure we find/generate a TB with exactly 939 * insns_left instructions in it. 940 */ 941 if (insns_left > 0 && insns_left < tb->icount) { 942 assert(insns_left <= CF_COUNT_MASK); 943 assert(cpu->icount_extra == 0); 944 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 945 } 946 #endif 947 } 948 949 /* main execution loop */ 950 951 static int __attribute__((noinline)) 952 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 953 { 954 int ret; 955 956 /* if an exception is pending, we execute it here */ 957 while (!cpu_handle_exception(cpu, &ret)) { 958 TranslationBlock *last_tb = NULL; 959 int tb_exit = 0; 960 961 while (!cpu_handle_interrupt(cpu, &last_tb)) { 962 TranslationBlock *tb; 963 vaddr pc; 964 uint64_t cs_base; 965 uint32_t flags, cflags; 966 967 cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags); 968 969 /* 970 * When requested, use an exact setting for cflags for the next 971 * execution. This is used for icount, precise smc, and stop- 972 * after-access watchpoints. Since this request should never 973 * have CF_INVALID set, -1 is a convenient invalid value that 974 * does not require tcg headers for cpu_common_reset. 975 */ 976 cflags = cpu->cflags_next_tb; 977 if (cflags == -1) { 978 cflags = curr_cflags(cpu); 979 } else { 980 cpu->cflags_next_tb = -1; 981 } 982 983 if (check_for_breakpoints(cpu, pc, &cflags)) { 984 break; 985 } 986 987 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 988 if (tb == NULL) { 989 CPUJumpCache *jc; 990 uint32_t h; 991 992 mmap_lock(); 993 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 994 mmap_unlock(); 995 996 /* 997 * We add the TB in the virtual pc hash table 998 * for the fast lookup 999 */ 1000 h = tb_jmp_cache_hash_func(pc); 1001 jc = cpu->tb_jmp_cache; 1002 jc->array[h].pc = pc; 1003 qatomic_set(&jc->array[h].tb, tb); 1004 } 1005 1006 #ifndef CONFIG_USER_ONLY 1007 /* 1008 * We don't take care of direct jumps when address mapping 1009 * changes in system emulation. So it's not safe to make a 1010 * direct jump to a TB spanning two pages because the mapping 1011 * for the second page can change. 1012 */ 1013 if (tb_page_addr1(tb) != -1) { 1014 last_tb = NULL; 1015 } 1016 #endif 1017 /* See if we can patch the calling TB. */ 1018 if (last_tb) { 1019 tb_add_jump(last_tb, tb_exit, tb); 1020 } 1021 1022 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1023 1024 /* Try to align the host and virtual clocks 1025 if the guest is in advance */ 1026 align_clocks(sc, cpu); 1027 } 1028 } 1029 return ret; 1030 } 1031 1032 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 1033 { 1034 /* Prepare setjmp context for exception handling. */ 1035 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 1036 cpu_exec_longjmp_cleanup(cpu); 1037 } 1038 1039 return cpu_exec_loop(cpu, sc); 1040 } 1041 1042 int cpu_exec(CPUState *cpu) 1043 { 1044 int ret; 1045 SyncClocks sc = { 0 }; 1046 1047 /* replay_interrupt may need current_cpu */ 1048 current_cpu = cpu; 1049 1050 if (cpu_handle_halt(cpu)) { 1051 return EXCP_HALTED; 1052 } 1053 1054 RCU_READ_LOCK_GUARD(); 1055 cpu_exec_enter(cpu); 1056 1057 /* 1058 * Calculate difference between guest clock and host clock. 1059 * This delay includes the delay of the last cycle, so 1060 * what we have to do is sleep until it is 0. As for the 1061 * advance/delay we gain here, we try to fix it next time. 1062 */ 1063 init_delay_params(&sc, cpu); 1064 1065 ret = cpu_exec_setjmp(cpu, &sc); 1066 1067 cpu_exec_exit(cpu); 1068 return ret; 1069 } 1070 1071 bool tcg_exec_realizefn(CPUState *cpu, Error **errp) 1072 { 1073 static bool tcg_target_initialized; 1074 1075 if (!tcg_target_initialized) { 1076 /* Check mandatory TCGCPUOps handlers */ 1077 #ifndef CONFIG_USER_ONLY 1078 assert(cpu->cc->tcg_ops->cpu_exec_halt); 1079 assert(cpu->cc->tcg_ops->cpu_exec_interrupt); 1080 #endif /* !CONFIG_USER_ONLY */ 1081 cpu->cc->tcg_ops->initialize(); 1082 tcg_target_initialized = true; 1083 } 1084 1085 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1086 tlb_init(cpu); 1087 #ifndef CONFIG_USER_ONLY 1088 tcg_iommu_init_notifier_list(cpu); 1089 #endif /* !CONFIG_USER_ONLY */ 1090 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1091 1092 return true; 1093 } 1094 1095 /* undo the initializations in reverse order */ 1096 void tcg_exec_unrealizefn(CPUState *cpu) 1097 { 1098 #ifndef CONFIG_USER_ONLY 1099 tcg_iommu_free_notifier_list(cpu); 1100 #endif /* !CONFIG_USER_ONLY */ 1101 1102 tlb_destroy(cpu); 1103 g_free_rcu(cpu->tb_jmp_cache, rcu); 1104 } 1105