1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "qemu/qemu-print.h" 23 #include "hw/core/tcg-cpu-ops.h" 24 #include "trace.h" 25 #include "disas/disas.h" 26 #include "exec/exec-all.h" 27 #include "tcg/tcg.h" 28 #include "qemu/atomic.h" 29 #include "qemu/compiler.h" 30 #include "qemu/timer.h" 31 #include "qemu/rcu.h" 32 #include "exec/log.h" 33 #include "qemu/main-loop.h" 34 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 35 #include "hw/i386/apic.h" 36 #endif 37 #include "sysemu/cpus.h" 38 #include "exec/cpu-all.h" 39 #include "sysemu/cpu-timers.h" 40 #include "sysemu/replay.h" 41 #include "exec/helper-proto.h" 42 #include "tb-hash.h" 43 #include "tb-context.h" 44 #include "internal.h" 45 46 /* -icount align implementation. */ 47 48 typedef struct SyncClocks { 49 int64_t diff_clk; 50 int64_t last_cpu_icount; 51 int64_t realtime_clock; 52 } SyncClocks; 53 54 #if !defined(CONFIG_USER_ONLY) 55 /* Allow the guest to have a max 3ms advance. 56 * The difference between the 2 clocks could therefore 57 * oscillate around 0. 58 */ 59 #define VM_CLOCK_ADVANCE 3000000 60 #define THRESHOLD_REDUCE 1.5 61 #define MAX_DELAY_PRINT_RATE 2000000000LL 62 #define MAX_NB_PRINTS 100 63 64 static int64_t max_delay; 65 static int64_t max_advance; 66 67 static void align_clocks(SyncClocks *sc, CPUState *cpu) 68 { 69 int64_t cpu_icount; 70 71 if (!icount_align_option) { 72 return; 73 } 74 75 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 76 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 77 sc->last_cpu_icount = cpu_icount; 78 79 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 80 #ifndef _WIN32 81 struct timespec sleep_delay, rem_delay; 82 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 83 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 84 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 85 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 86 } else { 87 sc->diff_clk = 0; 88 } 89 #else 90 Sleep(sc->diff_clk / SCALE_MS); 91 sc->diff_clk = 0; 92 #endif 93 } 94 } 95 96 static void print_delay(const SyncClocks *sc) 97 { 98 static float threshold_delay; 99 static int64_t last_realtime_clock; 100 static int nb_prints; 101 102 if (icount_align_option && 103 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 104 nb_prints < MAX_NB_PRINTS) { 105 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 106 (-sc->diff_clk / (float)1000000000LL < 107 (threshold_delay - THRESHOLD_REDUCE))) { 108 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 109 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 110 threshold_delay - 1, 111 threshold_delay); 112 nb_prints++; 113 last_realtime_clock = sc->realtime_clock; 114 } 115 } 116 } 117 118 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 119 { 120 if (!icount_align_option) { 121 return; 122 } 123 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 124 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 125 sc->last_cpu_icount 126 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 127 if (sc->diff_clk < max_delay) { 128 max_delay = sc->diff_clk; 129 } 130 if (sc->diff_clk > max_advance) { 131 max_advance = sc->diff_clk; 132 } 133 134 /* Print every 2s max if the guest is late. We limit the number 135 of printed messages to NB_PRINT_MAX(currently 100) */ 136 print_delay(sc); 137 } 138 #else 139 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 140 { 141 } 142 143 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 144 { 145 } 146 #endif /* CONFIG USER ONLY */ 147 148 uint32_t curr_cflags(CPUState *cpu) 149 { 150 uint32_t cflags = cpu->tcg_cflags; 151 152 /* 153 * For singlestep and -d nochain, suppress goto_tb so that 154 * we can log -d cpu,exec after every TB. 155 */ 156 if (singlestep) { 157 cflags |= CF_NO_GOTO_TB | 1; 158 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 159 cflags |= CF_NO_GOTO_TB; 160 } 161 162 return cflags; 163 } 164 165 /* Might cause an exception, so have a longjmp destination ready */ 166 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc, 167 target_ulong cs_base, 168 uint32_t flags, uint32_t cflags) 169 { 170 TranslationBlock *tb; 171 uint32_t hash; 172 173 /* we should never be trying to look up an INVALID tb */ 174 tcg_debug_assert(!(cflags & CF_INVALID)); 175 176 hash = tb_jmp_cache_hash_func(pc); 177 tb = qatomic_rcu_read(&cpu->tb_jmp_cache[hash]); 178 179 if (likely(tb && 180 tb->pc == pc && 181 tb->cs_base == cs_base && 182 tb->flags == flags && 183 tb->trace_vcpu_dstate == *cpu->trace_dstate && 184 tb_cflags(tb) == cflags)) { 185 return tb; 186 } 187 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 188 if (tb == NULL) { 189 return NULL; 190 } 191 qatomic_set(&cpu->tb_jmp_cache[hash], tb); 192 return tb; 193 } 194 195 static inline void log_cpu_exec(target_ulong pc, CPUState *cpu, 196 const TranslationBlock *tb) 197 { 198 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) 199 && qemu_log_in_addr_range(pc)) { 200 201 qemu_log_mask(CPU_LOG_EXEC, 202 "Trace %d: %p [" TARGET_FMT_lx 203 "/" TARGET_FMT_lx "/%08x/%08x] %s\n", 204 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 205 tb->flags, tb->cflags, lookup_symbol(pc)); 206 207 #if defined(DEBUG_DISAS) 208 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 209 FILE *logfile = qemu_log_lock(); 210 int flags = 0; 211 212 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 213 flags |= CPU_DUMP_FPU; 214 } 215 #if defined(TARGET_I386) 216 flags |= CPU_DUMP_CCOP; 217 #endif 218 log_cpu_state(cpu, flags); 219 qemu_log_unlock(logfile); 220 } 221 #endif /* DEBUG_DISAS */ 222 } 223 } 224 225 static bool check_for_breakpoints(CPUState *cpu, target_ulong pc, 226 uint32_t *cflags) 227 { 228 CPUBreakpoint *bp; 229 bool match_page = false; 230 231 if (likely(QTAILQ_EMPTY(&cpu->breakpoints))) { 232 return false; 233 } 234 235 /* 236 * Singlestep overrides breakpoints. 237 * This requirement is visible in the record-replay tests, where 238 * we would fail to make forward progress in reverse-continue. 239 * 240 * TODO: gdb singlestep should only override gdb breakpoints, 241 * so that one could (gdb) singlestep into the guest kernel's 242 * architectural breakpoint handler. 243 */ 244 if (cpu->singlestep_enabled) { 245 return false; 246 } 247 248 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 249 /* 250 * If we have an exact pc match, trigger the breakpoint. 251 * Otherwise, note matches within the page. 252 */ 253 if (pc == bp->pc) { 254 bool match_bp = false; 255 256 if (bp->flags & BP_GDB) { 257 match_bp = true; 258 } else if (bp->flags & BP_CPU) { 259 #ifdef CONFIG_USER_ONLY 260 g_assert_not_reached(); 261 #else 262 CPUClass *cc = CPU_GET_CLASS(cpu); 263 assert(cc->tcg_ops->debug_check_breakpoint); 264 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu); 265 #endif 266 } 267 268 if (match_bp) { 269 cpu->exception_index = EXCP_DEBUG; 270 return true; 271 } 272 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 273 match_page = true; 274 } 275 } 276 277 /* 278 * Within the same page as a breakpoint, single-step, 279 * returning to helper_lookup_tb_ptr after each insn looking 280 * for the actual breakpoint. 281 * 282 * TODO: Perhaps better to record all of the TBs associated 283 * with a given virtual page that contains a breakpoint, and 284 * then invalidate them when a new overlapping breakpoint is 285 * set on the page. Non-overlapping TBs would not be 286 * invalidated, nor would any TB need to be invalidated as 287 * breakpoints are removed. 288 */ 289 if (match_page) { 290 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1; 291 } 292 return false; 293 } 294 295 /** 296 * helper_lookup_tb_ptr: quick check for next tb 297 * @env: current cpu state 298 * 299 * Look for an existing TB matching the current cpu state. 300 * If found, return the code pointer. If not found, return 301 * the tcg epilogue so that we return into cpu_tb_exec. 302 */ 303 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 304 { 305 CPUState *cpu = env_cpu(env); 306 TranslationBlock *tb; 307 target_ulong cs_base, pc; 308 uint32_t flags, cflags; 309 310 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 311 312 cflags = curr_cflags(cpu); 313 if (check_for_breakpoints(cpu, pc, &cflags)) { 314 cpu_loop_exit(cpu); 315 } 316 317 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 318 if (tb == NULL) { 319 return tcg_code_gen_epilogue; 320 } 321 322 log_cpu_exec(pc, cpu, tb); 323 324 return tb->tc.ptr; 325 } 326 327 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 328 /* 329 * Disable CFI checks. 330 * TCG creates binary blobs at runtime, with the transformed code. 331 * A TB is a blob of binary code, created at runtime and called with an 332 * indirect function call. Since such function did not exist at compile time, 333 * the CFI runtime has no way to verify its signature and would fail. 334 * TCG is not considered a security-sensitive part of QEMU so this does not 335 * affect the impact of CFI in environment with high security requirements 336 */ 337 static inline TranslationBlock * QEMU_DISABLE_CFI 338 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 339 { 340 CPUArchState *env = cpu->env_ptr; 341 uintptr_t ret; 342 TranslationBlock *last_tb; 343 const void *tb_ptr = itb->tc.ptr; 344 345 log_cpu_exec(itb->pc, cpu, itb); 346 347 qemu_thread_jit_execute(); 348 ret = tcg_qemu_tb_exec(env, tb_ptr); 349 cpu->can_do_io = 1; 350 /* 351 * TODO: Delay swapping back to the read-write region of the TB 352 * until we actually need to modify the TB. The read-only copy, 353 * coming from the rx region, shares the same host TLB entry as 354 * the code that executed the exit_tb opcode that arrived here. 355 * If we insist on touching both the RX and the RW pages, we 356 * double the host TLB pressure. 357 */ 358 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 359 *tb_exit = ret & TB_EXIT_MASK; 360 361 trace_exec_tb_exit(last_tb, *tb_exit); 362 363 if (*tb_exit > TB_EXIT_IDX1) { 364 /* We didn't start executing this TB (eg because the instruction 365 * counter hit zero); we must restore the guest PC to the address 366 * of the start of the TB. 367 */ 368 CPUClass *cc = CPU_GET_CLASS(cpu); 369 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, 370 "Stopped execution of TB chain before %p [" 371 TARGET_FMT_lx "] %s\n", 372 last_tb->tc.ptr, last_tb->pc, 373 lookup_symbol(last_tb->pc)); 374 if (cc->tcg_ops->synchronize_from_tb) { 375 cc->tcg_ops->synchronize_from_tb(cpu, last_tb); 376 } else { 377 assert(cc->set_pc); 378 cc->set_pc(cpu, last_tb->pc); 379 } 380 } 381 return last_tb; 382 } 383 384 385 static void cpu_exec_enter(CPUState *cpu) 386 { 387 CPUClass *cc = CPU_GET_CLASS(cpu); 388 389 if (cc->tcg_ops->cpu_exec_enter) { 390 cc->tcg_ops->cpu_exec_enter(cpu); 391 } 392 } 393 394 static void cpu_exec_exit(CPUState *cpu) 395 { 396 CPUClass *cc = CPU_GET_CLASS(cpu); 397 398 if (cc->tcg_ops->cpu_exec_exit) { 399 cc->tcg_ops->cpu_exec_exit(cpu); 400 } 401 } 402 403 void cpu_exec_step_atomic(CPUState *cpu) 404 { 405 CPUArchState *env = (CPUArchState *)cpu->env_ptr; 406 TranslationBlock *tb; 407 target_ulong cs_base, pc; 408 uint32_t flags, cflags; 409 int tb_exit; 410 411 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 412 start_exclusive(); 413 g_assert(cpu == current_cpu); 414 g_assert(!cpu->running); 415 cpu->running = true; 416 417 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 418 419 cflags = curr_cflags(cpu); 420 /* Execute in a serial context. */ 421 cflags &= ~CF_PARALLEL; 422 /* After 1 insn, return and release the exclusive lock. */ 423 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 424 /* 425 * No need to check_for_breakpoints here. 426 * We only arrive in cpu_exec_step_atomic after beginning execution 427 * of an insn that includes an atomic operation we can't handle. 428 * Any breakpoint for this insn will have been recognized earlier. 429 */ 430 431 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 432 if (tb == NULL) { 433 mmap_lock(); 434 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 435 mmap_unlock(); 436 } 437 438 cpu_exec_enter(cpu); 439 /* execute the generated code */ 440 trace_exec_tb(tb, pc); 441 cpu_tb_exec(cpu, tb, &tb_exit); 442 cpu_exec_exit(cpu); 443 } else { 444 /* 445 * The mmap_lock is dropped by tb_gen_code if it runs out of 446 * memory. 447 */ 448 #ifndef CONFIG_SOFTMMU 449 tcg_debug_assert(!have_mmap_lock()); 450 #endif 451 if (qemu_mutex_iothread_locked()) { 452 qemu_mutex_unlock_iothread(); 453 } 454 assert_no_pages_locked(); 455 qemu_plugin_disable_mem_helpers(cpu); 456 } 457 458 459 /* 460 * As we start the exclusive region before codegen we must still 461 * be in the region if we longjump out of either the codegen or 462 * the execution. 463 */ 464 g_assert(cpu_in_exclusive_context(cpu)); 465 cpu->running = false; 466 end_exclusive(); 467 } 468 469 struct tb_desc { 470 target_ulong pc; 471 target_ulong cs_base; 472 CPUArchState *env; 473 tb_page_addr_t phys_page1; 474 uint32_t flags; 475 uint32_t cflags; 476 uint32_t trace_vcpu_dstate; 477 }; 478 479 static bool tb_lookup_cmp(const void *p, const void *d) 480 { 481 const TranslationBlock *tb = p; 482 const struct tb_desc *desc = d; 483 484 if (tb->pc == desc->pc && 485 tb->page_addr[0] == desc->phys_page1 && 486 tb->cs_base == desc->cs_base && 487 tb->flags == desc->flags && 488 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 489 tb_cflags(tb) == desc->cflags) { 490 /* check next page if needed */ 491 if (tb->page_addr[1] == -1) { 492 return true; 493 } else { 494 tb_page_addr_t phys_page2; 495 target_ulong virt_page2; 496 497 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 498 phys_page2 = get_page_addr_code(desc->env, virt_page2); 499 if (tb->page_addr[1] == phys_page2) { 500 return true; 501 } 502 } 503 } 504 return false; 505 } 506 507 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 508 target_ulong cs_base, uint32_t flags, 509 uint32_t cflags) 510 { 511 tb_page_addr_t phys_pc; 512 struct tb_desc desc; 513 uint32_t h; 514 515 desc.env = (CPUArchState *)cpu->env_ptr; 516 desc.cs_base = cs_base; 517 desc.flags = flags; 518 desc.cflags = cflags; 519 desc.trace_vcpu_dstate = *cpu->trace_dstate; 520 desc.pc = pc; 521 phys_pc = get_page_addr_code(desc.env, pc); 522 if (phys_pc == -1) { 523 return NULL; 524 } 525 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; 526 h = tb_hash_func(phys_pc, pc, flags, cflags, *cpu->trace_dstate); 527 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 528 } 529 530 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 531 { 532 if (TCG_TARGET_HAS_direct_jump) { 533 uintptr_t offset = tb->jmp_target_arg[n]; 534 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; 535 uintptr_t jmp_rx = tc_ptr + offset; 536 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 537 tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr); 538 } else { 539 tb->jmp_target_arg[n] = addr; 540 } 541 } 542 543 static inline void tb_add_jump(TranslationBlock *tb, int n, 544 TranslationBlock *tb_next) 545 { 546 uintptr_t old; 547 548 qemu_thread_jit_write(); 549 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 550 qemu_spin_lock(&tb_next->jmp_lock); 551 552 /* make sure the destination TB is valid */ 553 if (tb_next->cflags & CF_INVALID) { 554 goto out_unlock_next; 555 } 556 /* Atomically claim the jump destination slot only if it was NULL */ 557 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 558 (uintptr_t)tb_next); 559 if (old) { 560 goto out_unlock_next; 561 } 562 563 /* patch the native jump address */ 564 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 565 566 /* add in TB jmp list */ 567 tb->jmp_list_next[n] = tb_next->jmp_list_head; 568 tb_next->jmp_list_head = (uintptr_t)tb | n; 569 570 qemu_spin_unlock(&tb_next->jmp_lock); 571 572 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 573 "Linking TBs %p [" TARGET_FMT_lx 574 "] index %d -> %p [" TARGET_FMT_lx "]\n", 575 tb->tc.ptr, tb->pc, n, 576 tb_next->tc.ptr, tb_next->pc); 577 return; 578 579 out_unlock_next: 580 qemu_spin_unlock(&tb_next->jmp_lock); 581 return; 582 } 583 584 static inline bool cpu_handle_halt(CPUState *cpu) 585 { 586 if (cpu->halted) { 587 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 588 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) { 589 X86CPU *x86_cpu = X86_CPU(cpu); 590 qemu_mutex_lock_iothread(); 591 apic_poll_irq(x86_cpu->apic_state); 592 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 593 qemu_mutex_unlock_iothread(); 594 } 595 #endif 596 if (!cpu_has_work(cpu)) { 597 return true; 598 } 599 600 cpu->halted = 0; 601 } 602 603 return false; 604 } 605 606 static inline void cpu_handle_debug_exception(CPUState *cpu) 607 { 608 CPUClass *cc = CPU_GET_CLASS(cpu); 609 CPUWatchpoint *wp; 610 611 if (!cpu->watchpoint_hit) { 612 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 613 wp->flags &= ~BP_WATCHPOINT_HIT; 614 } 615 } 616 617 if (cc->tcg_ops->debug_excp_handler) { 618 cc->tcg_ops->debug_excp_handler(cpu); 619 } 620 } 621 622 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 623 { 624 if (cpu->exception_index < 0) { 625 #ifndef CONFIG_USER_ONLY 626 if (replay_has_exception() 627 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) { 628 /* Execute just one insn to trigger exception pending in the log */ 629 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) | 1; 630 } 631 #endif 632 return false; 633 } 634 if (cpu->exception_index >= EXCP_INTERRUPT) { 635 /* exit request from the cpu execution loop */ 636 *ret = cpu->exception_index; 637 if (*ret == EXCP_DEBUG) { 638 cpu_handle_debug_exception(cpu); 639 } 640 cpu->exception_index = -1; 641 return true; 642 } else { 643 #if defined(CONFIG_USER_ONLY) 644 /* if user mode only, we simulate a fake exception 645 which will be handled outside the cpu execution 646 loop */ 647 #if defined(TARGET_I386) 648 CPUClass *cc = CPU_GET_CLASS(cpu); 649 cc->tcg_ops->do_interrupt(cpu); 650 #endif 651 *ret = cpu->exception_index; 652 cpu->exception_index = -1; 653 return true; 654 #else 655 if (replay_exception()) { 656 CPUClass *cc = CPU_GET_CLASS(cpu); 657 qemu_mutex_lock_iothread(); 658 cc->tcg_ops->do_interrupt(cpu); 659 qemu_mutex_unlock_iothread(); 660 cpu->exception_index = -1; 661 662 if (unlikely(cpu->singlestep_enabled)) { 663 /* 664 * After processing the exception, ensure an EXCP_DEBUG is 665 * raised when single-stepping so that GDB doesn't miss the 666 * next instruction. 667 */ 668 *ret = EXCP_DEBUG; 669 cpu_handle_debug_exception(cpu); 670 return true; 671 } 672 } else if (!replay_has_interrupt()) { 673 /* give a chance to iothread in replay mode */ 674 *ret = EXCP_INTERRUPT; 675 return true; 676 } 677 #endif 678 } 679 680 return false; 681 } 682 683 /* 684 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a 685 * "real" interrupt event later. It does not need to be recorded for 686 * replay purposes. 687 */ 688 static inline bool need_replay_interrupt(int interrupt_request) 689 { 690 #if defined(TARGET_I386) 691 return !(interrupt_request & CPU_INTERRUPT_POLL); 692 #else 693 return true; 694 #endif 695 } 696 697 static inline bool cpu_handle_interrupt(CPUState *cpu, 698 TranslationBlock **last_tb) 699 { 700 CPUClass *cc = CPU_GET_CLASS(cpu); 701 702 /* Clear the interrupt flag now since we're processing 703 * cpu->interrupt_request and cpu->exit_request. 704 * Ensure zeroing happens before reading cpu->exit_request or 705 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 706 */ 707 qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0); 708 709 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 710 int interrupt_request; 711 qemu_mutex_lock_iothread(); 712 interrupt_request = cpu->interrupt_request; 713 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 714 /* Mask out external interrupts for this step. */ 715 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 716 } 717 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 718 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 719 cpu->exception_index = EXCP_DEBUG; 720 qemu_mutex_unlock_iothread(); 721 return true; 722 } 723 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 724 /* Do nothing */ 725 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 726 replay_interrupt(); 727 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 728 cpu->halted = 1; 729 cpu->exception_index = EXCP_HLT; 730 qemu_mutex_unlock_iothread(); 731 return true; 732 } 733 #if defined(TARGET_I386) 734 else if (interrupt_request & CPU_INTERRUPT_INIT) { 735 X86CPU *x86_cpu = X86_CPU(cpu); 736 CPUArchState *env = &x86_cpu->env; 737 replay_interrupt(); 738 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 739 do_cpu_init(x86_cpu); 740 cpu->exception_index = EXCP_HALTED; 741 qemu_mutex_unlock_iothread(); 742 return true; 743 } 744 #else 745 else if (interrupt_request & CPU_INTERRUPT_RESET) { 746 replay_interrupt(); 747 cpu_reset(cpu); 748 qemu_mutex_unlock_iothread(); 749 return true; 750 } 751 #endif 752 /* The target hook has 3 exit conditions: 753 False when the interrupt isn't processed, 754 True when it is, and we should restart on a new TB, 755 and via longjmp via cpu_loop_exit. */ 756 else { 757 if (cc->tcg_ops->cpu_exec_interrupt && 758 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 759 if (need_replay_interrupt(interrupt_request)) { 760 replay_interrupt(); 761 } 762 /* 763 * After processing the interrupt, ensure an EXCP_DEBUG is 764 * raised when single-stepping so that GDB doesn't miss the 765 * next instruction. 766 */ 767 cpu->exception_index = 768 (cpu->singlestep_enabled ? EXCP_DEBUG : -1); 769 *last_tb = NULL; 770 } 771 /* The target hook may have updated the 'cpu->interrupt_request'; 772 * reload the 'interrupt_request' value */ 773 interrupt_request = cpu->interrupt_request; 774 } 775 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 776 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 777 /* ensure that no TB jump will be modified as 778 the program flow was changed */ 779 *last_tb = NULL; 780 } 781 782 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 783 qemu_mutex_unlock_iothread(); 784 } 785 786 /* Finally, check if we need to exit to the main loop. */ 787 if (unlikely(qatomic_read(&cpu->exit_request)) 788 || (icount_enabled() 789 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT) 790 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) { 791 qatomic_set(&cpu->exit_request, 0); 792 if (cpu->exception_index == -1) { 793 cpu->exception_index = EXCP_INTERRUPT; 794 } 795 return true; 796 } 797 798 return false; 799 } 800 801 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 802 TranslationBlock **last_tb, int *tb_exit) 803 { 804 int32_t insns_left; 805 806 trace_exec_tb(tb, tb->pc); 807 tb = cpu_tb_exec(cpu, tb, tb_exit); 808 if (*tb_exit != TB_EXIT_REQUESTED) { 809 *last_tb = tb; 810 return; 811 } 812 813 *last_tb = NULL; 814 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32); 815 if (insns_left < 0) { 816 /* Something asked us to stop executing chained TBs; just 817 * continue round the main loop. Whatever requested the exit 818 * will also have set something else (eg exit_request or 819 * interrupt_request) which will be handled by 820 * cpu_handle_interrupt. cpu_handle_interrupt will also 821 * clear cpu->icount_decr.u16.high. 822 */ 823 return; 824 } 825 826 /* Instruction counter expired. */ 827 assert(icount_enabled()); 828 #ifndef CONFIG_USER_ONLY 829 /* Ensure global icount has gone forward */ 830 icount_update(cpu); 831 /* Refill decrementer and continue execution. */ 832 insns_left = MIN(CF_COUNT_MASK, cpu->icount_budget); 833 cpu_neg(cpu)->icount_decr.u16.low = insns_left; 834 cpu->icount_extra = cpu->icount_budget - insns_left; 835 836 /* 837 * If the next tb has more instructions than we have left to 838 * execute we need to ensure we find/generate a TB with exactly 839 * insns_left instructions in it. 840 */ 841 if (!cpu->icount_extra && insns_left > 0 && insns_left < tb->icount) { 842 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 843 } 844 #endif 845 } 846 847 /* main execution loop */ 848 849 int cpu_exec(CPUState *cpu) 850 { 851 CPUClass *cc = CPU_GET_CLASS(cpu); 852 int ret; 853 SyncClocks sc = { 0 }; 854 855 /* replay_interrupt may need current_cpu */ 856 current_cpu = cpu; 857 858 if (cpu_handle_halt(cpu)) { 859 return EXCP_HALTED; 860 } 861 862 rcu_read_lock(); 863 864 cpu_exec_enter(cpu); 865 866 /* Calculate difference between guest clock and host clock. 867 * This delay includes the delay of the last cycle, so 868 * what we have to do is sleep until it is 0. As for the 869 * advance/delay we gain here, we try to fix it next time. 870 */ 871 init_delay_params(&sc, cpu); 872 873 /* prepare setjmp context for exception handling */ 874 if (sigsetjmp(cpu->jmp_env, 0) != 0) { 875 #if defined(__clang__) 876 /* 877 * Some compilers wrongly smash all local variables after 878 * siglongjmp (the spec requires that only non-volatile locals 879 * which are changed between the sigsetjmp and siglongjmp are 880 * permitted to be trashed). There were bug reports for gcc 881 * 4.5.0 and clang. The bug is fixed in all versions of gcc 882 * that we support, but is still unfixed in clang: 883 * https://bugs.llvm.org/show_bug.cgi?id=21183 884 * 885 * Reload essential local variables here for those compilers. 886 * Newer versions of gcc would complain about this code (-Wclobbered), 887 * so we only perform the workaround for clang. 888 */ 889 cpu = current_cpu; 890 cc = CPU_GET_CLASS(cpu); 891 #else 892 /* 893 * Non-buggy compilers preserve these locals; assert that 894 * they have the correct value. 895 */ 896 g_assert(cpu == current_cpu); 897 g_assert(cc == CPU_GET_CLASS(cpu)); 898 #endif 899 900 #ifndef CONFIG_SOFTMMU 901 tcg_debug_assert(!have_mmap_lock()); 902 #endif 903 if (qemu_mutex_iothread_locked()) { 904 qemu_mutex_unlock_iothread(); 905 } 906 qemu_plugin_disable_mem_helpers(cpu); 907 908 assert_no_pages_locked(); 909 } 910 911 /* if an exception is pending, we execute it here */ 912 while (!cpu_handle_exception(cpu, &ret)) { 913 TranslationBlock *last_tb = NULL; 914 int tb_exit = 0; 915 916 while (!cpu_handle_interrupt(cpu, &last_tb)) { 917 TranslationBlock *tb; 918 target_ulong cs_base, pc; 919 uint32_t flags, cflags; 920 921 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags); 922 923 /* 924 * When requested, use an exact setting for cflags for the next 925 * execution. This is used for icount, precise smc, and stop- 926 * after-access watchpoints. Since this request should never 927 * have CF_INVALID set, -1 is a convenient invalid value that 928 * does not require tcg headers for cpu_common_reset. 929 */ 930 cflags = cpu->cflags_next_tb; 931 if (cflags == -1) { 932 cflags = curr_cflags(cpu); 933 } else { 934 cpu->cflags_next_tb = -1; 935 } 936 937 if (check_for_breakpoints(cpu, pc, &cflags)) { 938 break; 939 } 940 941 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 942 if (tb == NULL) { 943 mmap_lock(); 944 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 945 mmap_unlock(); 946 /* 947 * We add the TB in the virtual pc hash table 948 * for the fast lookup 949 */ 950 qatomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); 951 } 952 953 #ifndef CONFIG_USER_ONLY 954 /* 955 * We don't take care of direct jumps when address mapping 956 * changes in system emulation. So it's not safe to make a 957 * direct jump to a TB spanning two pages because the mapping 958 * for the second page can change. 959 */ 960 if (tb->page_addr[1] != -1) { 961 last_tb = NULL; 962 } 963 #endif 964 /* See if we can patch the calling TB. */ 965 if (last_tb) { 966 tb_add_jump(last_tb, tb_exit, tb); 967 } 968 969 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); 970 971 /* Try to align the host and virtual clocks 972 if the guest is in advance */ 973 align_clocks(&sc, cpu); 974 } 975 } 976 977 cpu_exec_exit(cpu); 978 rcu_read_unlock(); 979 980 return ret; 981 } 982 983 void tcg_exec_realizefn(CPUState *cpu, Error **errp) 984 { 985 static bool tcg_target_initialized; 986 CPUClass *cc = CPU_GET_CLASS(cpu); 987 988 if (!tcg_target_initialized) { 989 cc->tcg_ops->initialize(); 990 tcg_target_initialized = true; 991 } 992 tlb_init(cpu); 993 qemu_plugin_vcpu_init_hook(cpu); 994 995 #ifndef CONFIG_USER_ONLY 996 tcg_iommu_init_notifier_list(cpu); 997 #endif /* !CONFIG_USER_ONLY */ 998 } 999 1000 /* undo the initializations in reverse order */ 1001 void tcg_exec_unrealizefn(CPUState *cpu) 1002 { 1003 #ifndef CONFIG_USER_ONLY 1004 tcg_iommu_free_notifier_list(cpu); 1005 #endif /* !CONFIG_USER_ONLY */ 1006 1007 qemu_plugin_vcpu_exit_hook(cpu); 1008 tlb_destroy(cpu); 1009 } 1010 1011 #ifndef CONFIG_USER_ONLY 1012 1013 void dump_drift_info(void) 1014 { 1015 if (!icount_enabled()) { 1016 return; 1017 } 1018 1019 qemu_printf("Host - Guest clock %"PRIi64" ms\n", 1020 (cpu_get_clock() - icount_get()) / SCALE_MS); 1021 if (icount_align_option) { 1022 qemu_printf("Max guest delay %"PRIi64" ms\n", 1023 -max_delay / SCALE_MS); 1024 qemu_printf("Max guest advance %"PRIi64" ms\n", 1025 max_advance / SCALE_MS); 1026 } else { 1027 qemu_printf("Max guest delay NA\n"); 1028 qemu_printf("Max guest advance NA\n"); 1029 } 1030 } 1031 1032 #endif /* !CONFIG_USER_ONLY */ 1033