1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "cpu.h" 23 #include "trace.h" 24 #include "disas/disas.h" 25 #include "exec/exec-all.h" 26 #include "tcg.h" 27 #include "qemu/atomic.h" 28 #include "sysemu/qtest.h" 29 #include "qemu/timer.h" 30 #include "qemu/rcu.h" 31 #include "exec/tb-hash.h" 32 #include "exec/tb-lookup.h" 33 #include "exec/log.h" 34 #include "qemu/main-loop.h" 35 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 36 #include "hw/i386/apic.h" 37 #endif 38 #include "sysemu/cpus.h" 39 #include "sysemu/replay.h" 40 41 /* -icount align implementation. */ 42 43 typedef struct SyncClocks { 44 int64_t diff_clk; 45 int64_t last_cpu_icount; 46 int64_t realtime_clock; 47 } SyncClocks; 48 49 #if !defined(CONFIG_USER_ONLY) 50 /* Allow the guest to have a max 3ms advance. 51 * The difference between the 2 clocks could therefore 52 * oscillate around 0. 53 */ 54 #define VM_CLOCK_ADVANCE 3000000 55 #define THRESHOLD_REDUCE 1.5 56 #define MAX_DELAY_PRINT_RATE 2000000000LL 57 #define MAX_NB_PRINTS 100 58 59 static void align_clocks(SyncClocks *sc, CPUState *cpu) 60 { 61 int64_t cpu_icount; 62 63 if (!icount_align_option) { 64 return; 65 } 66 67 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 68 sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount); 69 sc->last_cpu_icount = cpu_icount; 70 71 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 72 #ifndef _WIN32 73 struct timespec sleep_delay, rem_delay; 74 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 75 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 76 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 77 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 78 } else { 79 sc->diff_clk = 0; 80 } 81 #else 82 Sleep(sc->diff_clk / SCALE_MS); 83 sc->diff_clk = 0; 84 #endif 85 } 86 } 87 88 static void print_delay(const SyncClocks *sc) 89 { 90 static float threshold_delay; 91 static int64_t last_realtime_clock; 92 static int nb_prints; 93 94 if (icount_align_option && 95 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 96 nb_prints < MAX_NB_PRINTS) { 97 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 98 (-sc->diff_clk / (float)1000000000LL < 99 (threshold_delay - THRESHOLD_REDUCE))) { 100 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 101 printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 102 threshold_delay - 1, 103 threshold_delay); 104 nb_prints++; 105 last_realtime_clock = sc->realtime_clock; 106 } 107 } 108 } 109 110 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 111 { 112 if (!icount_align_option) { 113 return; 114 } 115 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 116 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 117 sc->last_cpu_icount 118 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 119 if (sc->diff_clk < max_delay) { 120 max_delay = sc->diff_clk; 121 } 122 if (sc->diff_clk > max_advance) { 123 max_advance = sc->diff_clk; 124 } 125 126 /* Print every 2s max if the guest is late. We limit the number 127 of printed messages to NB_PRINT_MAX(currently 100) */ 128 print_delay(sc); 129 } 130 #else 131 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 132 { 133 } 134 135 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 136 { 137 } 138 #endif /* CONFIG USER ONLY */ 139 140 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 141 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb) 142 { 143 CPUArchState *env = cpu->env_ptr; 144 uintptr_t ret; 145 TranslationBlock *last_tb; 146 int tb_exit; 147 uint8_t *tb_ptr = itb->tc.ptr; 148 149 qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc, 150 "Trace %d: %p [" 151 TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n", 152 cpu->cpu_index, itb->tc.ptr, 153 itb->cs_base, itb->pc, itb->flags, 154 lookup_symbol(itb->pc)); 155 156 #if defined(DEBUG_DISAS) 157 if (qemu_loglevel_mask(CPU_LOG_TB_CPU) 158 && qemu_log_in_addr_range(itb->pc)) { 159 qemu_log_lock(); 160 int flags = 0; 161 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 162 flags |= CPU_DUMP_FPU; 163 } 164 #if defined(TARGET_I386) 165 flags |= CPU_DUMP_CCOP; 166 #endif 167 log_cpu_state(cpu, flags); 168 qemu_log_unlock(); 169 } 170 #endif /* DEBUG_DISAS */ 171 172 ret = tcg_qemu_tb_exec(env, tb_ptr); 173 cpu->can_do_io = 1; 174 last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 175 tb_exit = ret & TB_EXIT_MASK; 176 trace_exec_tb_exit(last_tb, tb_exit); 177 178 if (tb_exit > TB_EXIT_IDX1) { 179 /* We didn't start executing this TB (eg because the instruction 180 * counter hit zero); we must restore the guest PC to the address 181 * of the start of the TB. 182 */ 183 CPUClass *cc = CPU_GET_CLASS(cpu); 184 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, 185 "Stopped execution of TB chain before %p [" 186 TARGET_FMT_lx "] %s\n", 187 last_tb->tc.ptr, last_tb->pc, 188 lookup_symbol(last_tb->pc)); 189 if (cc->synchronize_from_tb) { 190 cc->synchronize_from_tb(cpu, last_tb); 191 } else { 192 assert(cc->set_pc); 193 cc->set_pc(cpu, last_tb->pc); 194 } 195 } 196 return ret; 197 } 198 199 #ifndef CONFIG_USER_ONLY 200 /* Execute the code without caching the generated code. An interpreter 201 could be used if available. */ 202 static void cpu_exec_nocache(CPUState *cpu, int max_cycles, 203 TranslationBlock *orig_tb, bool ignore_icount) 204 { 205 TranslationBlock *tb; 206 uint32_t cflags = curr_cflags() | CF_NOCACHE; 207 208 if (ignore_icount) { 209 cflags &= ~CF_USE_ICOUNT; 210 } 211 212 /* Should never happen. 213 We only end up here when an existing TB is too long. */ 214 cflags |= MIN(max_cycles, CF_COUNT_MASK); 215 216 mmap_lock(); 217 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, 218 orig_tb->flags, cflags); 219 tb->orig_tb = orig_tb; 220 mmap_unlock(); 221 222 /* execute the generated code */ 223 trace_exec_tb_nocache(tb, tb->pc); 224 cpu_tb_exec(cpu, tb); 225 226 mmap_lock(); 227 tb_phys_invalidate(tb, -1); 228 mmap_unlock(); 229 tcg_tb_remove(tb); 230 } 231 #endif 232 233 void cpu_exec_step_atomic(CPUState *cpu) 234 { 235 CPUClass *cc = CPU_GET_CLASS(cpu); 236 TranslationBlock *tb; 237 target_ulong cs_base, pc; 238 uint32_t flags; 239 uint32_t cflags = 1; 240 uint32_t cf_mask = cflags & CF_HASH_MASK; 241 /* volatile because we modify it between setjmp and longjmp */ 242 volatile bool in_exclusive_region = false; 243 244 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 245 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 246 if (tb == NULL) { 247 mmap_lock(); 248 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 249 mmap_unlock(); 250 } 251 252 start_exclusive(); 253 254 /* Since we got here, we know that parallel_cpus must be true. */ 255 parallel_cpus = false; 256 in_exclusive_region = true; 257 cc->cpu_exec_enter(cpu); 258 /* execute the generated code */ 259 trace_exec_tb(tb, pc); 260 cpu_tb_exec(cpu, tb); 261 cc->cpu_exec_exit(cpu); 262 } else { 263 /* 264 * The mmap_lock is dropped by tb_gen_code if it runs out of 265 * memory. 266 */ 267 #ifndef CONFIG_SOFTMMU 268 tcg_debug_assert(!have_mmap_lock()); 269 #endif 270 if (qemu_mutex_iothread_locked()) { 271 qemu_mutex_unlock_iothread(); 272 } 273 assert_no_pages_locked(); 274 } 275 276 if (in_exclusive_region) { 277 /* We might longjump out of either the codegen or the 278 * execution, so must make sure we only end the exclusive 279 * region if we started it. 280 */ 281 parallel_cpus = true; 282 end_exclusive(); 283 } 284 } 285 286 struct tb_desc { 287 target_ulong pc; 288 target_ulong cs_base; 289 CPUArchState *env; 290 tb_page_addr_t phys_page1; 291 uint32_t flags; 292 uint32_t cf_mask; 293 uint32_t trace_vcpu_dstate; 294 }; 295 296 static bool tb_lookup_cmp(const void *p, const void *d) 297 { 298 const TranslationBlock *tb = p; 299 const struct tb_desc *desc = d; 300 301 if (tb->pc == desc->pc && 302 tb->page_addr[0] == desc->phys_page1 && 303 tb->cs_base == desc->cs_base && 304 tb->flags == desc->flags && 305 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 306 (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) { 307 /* check next page if needed */ 308 if (tb->page_addr[1] == -1) { 309 return true; 310 } else { 311 tb_page_addr_t phys_page2; 312 target_ulong virt_page2; 313 314 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 315 phys_page2 = get_page_addr_code(desc->env, virt_page2); 316 if (tb->page_addr[1] == phys_page2) { 317 return true; 318 } 319 } 320 } 321 return false; 322 } 323 324 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 325 target_ulong cs_base, uint32_t flags, 326 uint32_t cf_mask) 327 { 328 tb_page_addr_t phys_pc; 329 struct tb_desc desc; 330 uint32_t h; 331 332 desc.env = (CPUArchState *)cpu->env_ptr; 333 desc.cs_base = cs_base; 334 desc.flags = flags; 335 desc.cf_mask = cf_mask; 336 desc.trace_vcpu_dstate = *cpu->trace_dstate; 337 desc.pc = pc; 338 phys_pc = get_page_addr_code(desc.env, pc); 339 if (phys_pc == -1) { 340 return NULL; 341 } 342 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; 343 h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate); 344 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 345 } 346 347 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 348 { 349 if (TCG_TARGET_HAS_direct_jump) { 350 uintptr_t offset = tb->jmp_target_arg[n]; 351 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; 352 tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr); 353 } else { 354 tb->jmp_target_arg[n] = addr; 355 } 356 } 357 358 static inline void tb_add_jump(TranslationBlock *tb, int n, 359 TranslationBlock *tb_next) 360 { 361 uintptr_t old; 362 363 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 364 qemu_spin_lock(&tb_next->jmp_lock); 365 366 /* make sure the destination TB is valid */ 367 if (tb_next->cflags & CF_INVALID) { 368 goto out_unlock_next; 369 } 370 /* Atomically claim the jump destination slot only if it was NULL */ 371 old = atomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, (uintptr_t)tb_next); 372 if (old) { 373 goto out_unlock_next; 374 } 375 376 /* patch the native jump address */ 377 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 378 379 /* add in TB jmp list */ 380 tb->jmp_list_next[n] = tb_next->jmp_list_head; 381 tb_next->jmp_list_head = (uintptr_t)tb | n; 382 383 qemu_spin_unlock(&tb_next->jmp_lock); 384 385 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 386 "Linking TBs %p [" TARGET_FMT_lx 387 "] index %d -> %p [" TARGET_FMT_lx "]\n", 388 tb->tc.ptr, tb->pc, n, 389 tb_next->tc.ptr, tb_next->pc); 390 return; 391 392 out_unlock_next: 393 qemu_spin_unlock(&tb_next->jmp_lock); 394 return; 395 } 396 397 static inline TranslationBlock *tb_find(CPUState *cpu, 398 TranslationBlock *last_tb, 399 int tb_exit, uint32_t cf_mask) 400 { 401 TranslationBlock *tb; 402 target_ulong cs_base, pc; 403 uint32_t flags; 404 405 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 406 if (tb == NULL) { 407 mmap_lock(); 408 tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask); 409 mmap_unlock(); 410 /* We add the TB in the virtual pc hash table for the fast lookup */ 411 atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); 412 } 413 #ifndef CONFIG_USER_ONLY 414 /* We don't take care of direct jumps when address mapping changes in 415 * system emulation. So it's not safe to make a direct jump to a TB 416 * spanning two pages because the mapping for the second page can change. 417 */ 418 if (tb->page_addr[1] != -1) { 419 last_tb = NULL; 420 } 421 #endif 422 /* See if we can patch the calling TB. */ 423 if (last_tb) { 424 tb_add_jump(last_tb, tb_exit, tb); 425 } 426 return tb; 427 } 428 429 static inline bool cpu_handle_halt(CPUState *cpu) 430 { 431 if (cpu->halted) { 432 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 433 if ((cpu->interrupt_request & CPU_INTERRUPT_POLL) 434 && replay_interrupt()) { 435 X86CPU *x86_cpu = X86_CPU(cpu); 436 qemu_mutex_lock_iothread(); 437 apic_poll_irq(x86_cpu->apic_state); 438 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 439 qemu_mutex_unlock_iothread(); 440 } 441 #endif 442 if (!cpu_has_work(cpu)) { 443 return true; 444 } 445 446 cpu->halted = 0; 447 } 448 449 return false; 450 } 451 452 static inline void cpu_handle_debug_exception(CPUState *cpu) 453 { 454 CPUClass *cc = CPU_GET_CLASS(cpu); 455 CPUWatchpoint *wp; 456 457 if (!cpu->watchpoint_hit) { 458 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 459 wp->flags &= ~BP_WATCHPOINT_HIT; 460 } 461 } 462 463 cc->debug_excp_handler(cpu); 464 } 465 466 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 467 { 468 if (cpu->exception_index < 0) { 469 #ifndef CONFIG_USER_ONLY 470 if (replay_has_exception() 471 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) { 472 /* try to cause an exception pending in the log */ 473 cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true); 474 } 475 #endif 476 if (cpu->exception_index < 0) { 477 return false; 478 } 479 } 480 481 if (cpu->exception_index >= EXCP_INTERRUPT) { 482 /* exit request from the cpu execution loop */ 483 *ret = cpu->exception_index; 484 if (*ret == EXCP_DEBUG) { 485 cpu_handle_debug_exception(cpu); 486 } 487 cpu->exception_index = -1; 488 return true; 489 } else { 490 #if defined(CONFIG_USER_ONLY) 491 /* if user mode only, we simulate a fake exception 492 which will be handled outside the cpu execution 493 loop */ 494 #if defined(TARGET_I386) 495 CPUClass *cc = CPU_GET_CLASS(cpu); 496 cc->do_interrupt(cpu); 497 #endif 498 *ret = cpu->exception_index; 499 cpu->exception_index = -1; 500 return true; 501 #else 502 if (replay_exception()) { 503 CPUClass *cc = CPU_GET_CLASS(cpu); 504 qemu_mutex_lock_iothread(); 505 cc->do_interrupt(cpu); 506 qemu_mutex_unlock_iothread(); 507 cpu->exception_index = -1; 508 } else if (!replay_has_interrupt()) { 509 /* give a chance to iothread in replay mode */ 510 *ret = EXCP_INTERRUPT; 511 return true; 512 } 513 #endif 514 } 515 516 return false; 517 } 518 519 static inline bool cpu_handle_interrupt(CPUState *cpu, 520 TranslationBlock **last_tb) 521 { 522 CPUClass *cc = CPU_GET_CLASS(cpu); 523 524 /* Clear the interrupt flag now since we're processing 525 * cpu->interrupt_request and cpu->exit_request. 526 * Ensure zeroing happens before reading cpu->exit_request or 527 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 528 */ 529 atomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0); 530 531 if (unlikely(atomic_read(&cpu->interrupt_request))) { 532 int interrupt_request; 533 qemu_mutex_lock_iothread(); 534 interrupt_request = cpu->interrupt_request; 535 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 536 /* Mask out external interrupts for this step. */ 537 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 538 } 539 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 540 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 541 cpu->exception_index = EXCP_DEBUG; 542 qemu_mutex_unlock_iothread(); 543 return true; 544 } 545 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 546 /* Do nothing */ 547 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 548 replay_interrupt(); 549 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 550 cpu->halted = 1; 551 cpu->exception_index = EXCP_HLT; 552 qemu_mutex_unlock_iothread(); 553 return true; 554 } 555 #if defined(TARGET_I386) 556 else if (interrupt_request & CPU_INTERRUPT_INIT) { 557 X86CPU *x86_cpu = X86_CPU(cpu); 558 CPUArchState *env = &x86_cpu->env; 559 replay_interrupt(); 560 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 561 do_cpu_init(x86_cpu); 562 cpu->exception_index = EXCP_HALTED; 563 qemu_mutex_unlock_iothread(); 564 return true; 565 } 566 #else 567 else if (interrupt_request & CPU_INTERRUPT_RESET) { 568 replay_interrupt(); 569 cpu_reset(cpu); 570 qemu_mutex_unlock_iothread(); 571 return true; 572 } 573 #endif 574 /* The target hook has 3 exit conditions: 575 False when the interrupt isn't processed, 576 True when it is, and we should restart on a new TB, 577 and via longjmp via cpu_loop_exit. */ 578 else { 579 if (cc->cpu_exec_interrupt(cpu, interrupt_request)) { 580 replay_interrupt(); 581 cpu->exception_index = -1; 582 *last_tb = NULL; 583 } 584 /* The target hook may have updated the 'cpu->interrupt_request'; 585 * reload the 'interrupt_request' value */ 586 interrupt_request = cpu->interrupt_request; 587 } 588 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 589 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 590 /* ensure that no TB jump will be modified as 591 the program flow was changed */ 592 *last_tb = NULL; 593 } 594 595 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 596 qemu_mutex_unlock_iothread(); 597 } 598 599 /* Finally, check if we need to exit to the main loop. */ 600 if (unlikely(atomic_read(&cpu->exit_request)) 601 || (use_icount 602 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) { 603 atomic_set(&cpu->exit_request, 0); 604 if (cpu->exception_index == -1) { 605 cpu->exception_index = EXCP_INTERRUPT; 606 } 607 return true; 608 } 609 610 return false; 611 } 612 613 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 614 TranslationBlock **last_tb, int *tb_exit) 615 { 616 uintptr_t ret; 617 int32_t insns_left; 618 619 trace_exec_tb(tb, tb->pc); 620 ret = cpu_tb_exec(cpu, tb); 621 tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 622 *tb_exit = ret & TB_EXIT_MASK; 623 if (*tb_exit != TB_EXIT_REQUESTED) { 624 *last_tb = tb; 625 return; 626 } 627 628 *last_tb = NULL; 629 insns_left = atomic_read(&cpu_neg(cpu)->icount_decr.u32); 630 if (insns_left < 0) { 631 /* Something asked us to stop executing chained TBs; just 632 * continue round the main loop. Whatever requested the exit 633 * will also have set something else (eg exit_request or 634 * interrupt_request) which will be handled by 635 * cpu_handle_interrupt. cpu_handle_interrupt will also 636 * clear cpu->icount_decr.u16.high. 637 */ 638 return; 639 } 640 641 /* Instruction counter expired. */ 642 assert(use_icount); 643 #ifndef CONFIG_USER_ONLY 644 /* Ensure global icount has gone forward */ 645 cpu_update_icount(cpu); 646 /* Refill decrementer and continue execution. */ 647 insns_left = MIN(0xffff, cpu->icount_budget); 648 cpu_neg(cpu)->icount_decr.u16.low = insns_left; 649 cpu->icount_extra = cpu->icount_budget - insns_left; 650 if (!cpu->icount_extra) { 651 /* Execute any remaining instructions, then let the main loop 652 * handle the next event. 653 */ 654 if (insns_left > 0) { 655 cpu_exec_nocache(cpu, insns_left, tb, false); 656 } 657 } 658 #endif 659 } 660 661 /* main execution loop */ 662 663 int cpu_exec(CPUState *cpu) 664 { 665 CPUClass *cc = CPU_GET_CLASS(cpu); 666 int ret; 667 SyncClocks sc = { 0 }; 668 669 /* replay_interrupt may need current_cpu */ 670 current_cpu = cpu; 671 672 if (cpu_handle_halt(cpu)) { 673 return EXCP_HALTED; 674 } 675 676 rcu_read_lock(); 677 678 cc->cpu_exec_enter(cpu); 679 680 /* Calculate difference between guest clock and host clock. 681 * This delay includes the delay of the last cycle, so 682 * what we have to do is sleep until it is 0. As for the 683 * advance/delay we gain here, we try to fix it next time. 684 */ 685 init_delay_params(&sc, cpu); 686 687 /* prepare setjmp context for exception handling */ 688 if (sigsetjmp(cpu->jmp_env, 0) != 0) { 689 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6) 690 /* Some compilers wrongly smash all local variables after 691 * siglongjmp. There were bug reports for gcc 4.5.0 and clang. 692 * Reload essential local variables here for those compilers. 693 * Newer versions of gcc would complain about this code (-Wclobbered). */ 694 cpu = current_cpu; 695 cc = CPU_GET_CLASS(cpu); 696 #else /* buggy compiler */ 697 /* Assert that the compiler does not smash local variables. */ 698 g_assert(cpu == current_cpu); 699 g_assert(cc == CPU_GET_CLASS(cpu)); 700 #endif /* buggy compiler */ 701 #ifndef CONFIG_SOFTMMU 702 tcg_debug_assert(!have_mmap_lock()); 703 #endif 704 if (qemu_mutex_iothread_locked()) { 705 qemu_mutex_unlock_iothread(); 706 } 707 assert_no_pages_locked(); 708 } 709 710 /* if an exception is pending, we execute it here */ 711 while (!cpu_handle_exception(cpu, &ret)) { 712 TranslationBlock *last_tb = NULL; 713 int tb_exit = 0; 714 715 while (!cpu_handle_interrupt(cpu, &last_tb)) { 716 uint32_t cflags = cpu->cflags_next_tb; 717 TranslationBlock *tb; 718 719 /* When requested, use an exact setting for cflags for the next 720 execution. This is used for icount, precise smc, and stop- 721 after-access watchpoints. Since this request should never 722 have CF_INVALID set, -1 is a convenient invalid value that 723 does not require tcg headers for cpu_common_reset. */ 724 if (cflags == -1) { 725 cflags = curr_cflags(); 726 } else { 727 cpu->cflags_next_tb = -1; 728 } 729 730 tb = tb_find(cpu, last_tb, tb_exit, cflags); 731 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); 732 /* Try to align the host and virtual clocks 733 if the guest is in advance */ 734 align_clocks(&sc, cpu); 735 } 736 } 737 738 cc->cpu_exec_exit(cpu); 739 rcu_read_unlock(); 740 741 return ret; 742 } 743