1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "trace.h" 22 #include "disas/disas.h" 23 #include "exec/exec-all.h" 24 #include "tcg.h" 25 #include "qemu/atomic.h" 26 #include "sysemu/qtest.h" 27 #include "qemu/timer.h" 28 #include "exec/address-spaces.h" 29 #include "qemu/rcu.h" 30 #include "exec/tb-hash.h" 31 #include "exec/tb-lookup.h" 32 #include "exec/log.h" 33 #include "qemu/main-loop.h" 34 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 35 #include "hw/i386/apic.h" 36 #endif 37 #include "sysemu/cpus.h" 38 #include "sysemu/replay.h" 39 40 /* -icount align implementation. */ 41 42 typedef struct SyncClocks { 43 int64_t diff_clk; 44 int64_t last_cpu_icount; 45 int64_t realtime_clock; 46 } SyncClocks; 47 48 #if !defined(CONFIG_USER_ONLY) 49 /* Allow the guest to have a max 3ms advance. 50 * The difference between the 2 clocks could therefore 51 * oscillate around 0. 52 */ 53 #define VM_CLOCK_ADVANCE 3000000 54 #define THRESHOLD_REDUCE 1.5 55 #define MAX_DELAY_PRINT_RATE 2000000000LL 56 #define MAX_NB_PRINTS 100 57 58 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 59 { 60 int64_t cpu_icount; 61 62 if (!icount_align_option) { 63 return; 64 } 65 66 cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; 67 sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount); 68 sc->last_cpu_icount = cpu_icount; 69 70 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 71 #ifndef _WIN32 72 struct timespec sleep_delay, rem_delay; 73 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 74 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 75 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 76 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 77 } else { 78 sc->diff_clk = 0; 79 } 80 #else 81 Sleep(sc->diff_clk / SCALE_MS); 82 sc->diff_clk = 0; 83 #endif 84 } 85 } 86 87 static void print_delay(const SyncClocks *sc) 88 { 89 static float threshold_delay; 90 static int64_t last_realtime_clock; 91 static int nb_prints; 92 93 if (icount_align_option && 94 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 95 nb_prints < MAX_NB_PRINTS) { 96 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 97 (-sc->diff_clk / (float)1000000000LL < 98 (threshold_delay - THRESHOLD_REDUCE))) { 99 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 100 printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 101 threshold_delay - 1, 102 threshold_delay); 103 nb_prints++; 104 last_realtime_clock = sc->realtime_clock; 105 } 106 } 107 } 108 109 static void init_delay_params(SyncClocks *sc, 110 const CPUState *cpu) 111 { 112 if (!icount_align_option) { 113 return; 114 } 115 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 116 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 117 sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; 118 if (sc->diff_clk < max_delay) { 119 max_delay = sc->diff_clk; 120 } 121 if (sc->diff_clk > max_advance) { 122 max_advance = sc->diff_clk; 123 } 124 125 /* Print every 2s max if the guest is late. We limit the number 126 of printed messages to NB_PRINT_MAX(currently 100) */ 127 print_delay(sc); 128 } 129 #else 130 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 131 { 132 } 133 134 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 135 { 136 } 137 #endif /* CONFIG USER ONLY */ 138 139 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 140 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb) 141 { 142 CPUArchState *env = cpu->env_ptr; 143 uintptr_t ret; 144 TranslationBlock *last_tb; 145 int tb_exit; 146 uint8_t *tb_ptr = itb->tc.ptr; 147 148 qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc, 149 "Trace %p [%d: " TARGET_FMT_lx "] %s\n", 150 itb->tc.ptr, cpu->cpu_index, itb->pc, 151 lookup_symbol(itb->pc)); 152 153 #if defined(DEBUG_DISAS) 154 if (qemu_loglevel_mask(CPU_LOG_TB_CPU) 155 && qemu_log_in_addr_range(itb->pc)) { 156 qemu_log_lock(); 157 #if defined(TARGET_I386) 158 log_cpu_state(cpu, CPU_DUMP_CCOP); 159 #else 160 log_cpu_state(cpu, 0); 161 #endif 162 qemu_log_unlock(); 163 } 164 #endif /* DEBUG_DISAS */ 165 166 cpu->can_do_io = !use_icount; 167 ret = tcg_qemu_tb_exec(env, tb_ptr); 168 cpu->can_do_io = 1; 169 last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 170 tb_exit = ret & TB_EXIT_MASK; 171 trace_exec_tb_exit(last_tb, tb_exit); 172 173 if (tb_exit > TB_EXIT_IDX1) { 174 /* We didn't start executing this TB (eg because the instruction 175 * counter hit zero); we must restore the guest PC to the address 176 * of the start of the TB. 177 */ 178 CPUClass *cc = CPU_GET_CLASS(cpu); 179 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, 180 "Stopped execution of TB chain before %p [" 181 TARGET_FMT_lx "] %s\n", 182 last_tb->tc.ptr, last_tb->pc, 183 lookup_symbol(last_tb->pc)); 184 if (cc->synchronize_from_tb) { 185 cc->synchronize_from_tb(cpu, last_tb); 186 } else { 187 assert(cc->set_pc); 188 cc->set_pc(cpu, last_tb->pc); 189 } 190 } 191 return ret; 192 } 193 194 #ifndef CONFIG_USER_ONLY 195 /* Execute the code without caching the generated code. An interpreter 196 could be used if available. */ 197 static void cpu_exec_nocache(CPUState *cpu, int max_cycles, 198 TranslationBlock *orig_tb, bool ignore_icount) 199 { 200 TranslationBlock *tb; 201 uint32_t cflags = curr_cflags() | CF_NOCACHE; 202 203 if (ignore_icount) { 204 cflags &= ~CF_USE_ICOUNT; 205 } 206 207 /* Should never happen. 208 We only end up here when an existing TB is too long. */ 209 cflags |= MIN(max_cycles, CF_COUNT_MASK); 210 211 tb_lock(); 212 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, 213 orig_tb->flags, cflags); 214 tb->orig_tb = orig_tb; 215 tb_unlock(); 216 217 /* execute the generated code */ 218 trace_exec_tb_nocache(tb, tb->pc); 219 cpu_tb_exec(cpu, tb); 220 221 tb_lock(); 222 tb_phys_invalidate(tb, -1); 223 tb_remove(tb); 224 tb_unlock(); 225 } 226 #endif 227 228 void cpu_exec_step_atomic(CPUState *cpu) 229 { 230 CPUClass *cc = CPU_GET_CLASS(cpu); 231 TranslationBlock *tb; 232 target_ulong cs_base, pc; 233 uint32_t flags; 234 uint32_t cflags = 1; 235 uint32_t cf_mask = cflags & CF_HASH_MASK; 236 /* volatile because we modify it between setjmp and longjmp */ 237 volatile bool in_exclusive_region = false; 238 239 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 240 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 241 if (tb == NULL) { 242 mmap_lock(); 243 tb_lock(); 244 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask); 245 if (likely(tb == NULL)) { 246 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 247 } 248 tb_unlock(); 249 mmap_unlock(); 250 } 251 252 start_exclusive(); 253 254 /* Since we got here, we know that parallel_cpus must be true. */ 255 parallel_cpus = false; 256 in_exclusive_region = true; 257 cc->cpu_exec_enter(cpu); 258 /* execute the generated code */ 259 trace_exec_tb(tb, pc); 260 cpu_tb_exec(cpu, tb); 261 cc->cpu_exec_exit(cpu); 262 } else { 263 /* We may have exited due to another problem here, so we need 264 * to reset any tb_locks we may have taken but didn't release. 265 * The mmap_lock is dropped by tb_gen_code if it runs out of 266 * memory. 267 */ 268 #ifndef CONFIG_SOFTMMU 269 tcg_debug_assert(!have_mmap_lock()); 270 #endif 271 tb_lock_reset(); 272 } 273 274 if (in_exclusive_region) { 275 /* We might longjump out of either the codegen or the 276 * execution, so must make sure we only end the exclusive 277 * region if we started it. 278 */ 279 parallel_cpus = true; 280 end_exclusive(); 281 } 282 } 283 284 struct tb_desc { 285 target_ulong pc; 286 target_ulong cs_base; 287 CPUArchState *env; 288 tb_page_addr_t phys_page1; 289 uint32_t flags; 290 uint32_t cf_mask; 291 uint32_t trace_vcpu_dstate; 292 }; 293 294 static bool tb_cmp(const void *p, const void *d) 295 { 296 const TranslationBlock *tb = p; 297 const struct tb_desc *desc = d; 298 299 if (tb->pc == desc->pc && 300 tb->page_addr[0] == desc->phys_page1 && 301 tb->cs_base == desc->cs_base && 302 tb->flags == desc->flags && 303 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 304 (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) { 305 /* check next page if needed */ 306 if (tb->page_addr[1] == -1) { 307 return true; 308 } else { 309 tb_page_addr_t phys_page2; 310 target_ulong virt_page2; 311 312 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 313 phys_page2 = get_page_addr_code(desc->env, virt_page2); 314 if (tb->page_addr[1] == phys_page2) { 315 return true; 316 } 317 } 318 } 319 return false; 320 } 321 322 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 323 target_ulong cs_base, uint32_t flags, 324 uint32_t cf_mask) 325 { 326 tb_page_addr_t phys_pc; 327 struct tb_desc desc; 328 uint32_t h; 329 330 desc.env = (CPUArchState *)cpu->env_ptr; 331 desc.cs_base = cs_base; 332 desc.flags = flags; 333 desc.cf_mask = cf_mask; 334 desc.trace_vcpu_dstate = *cpu->trace_dstate; 335 desc.pc = pc; 336 phys_pc = get_page_addr_code(desc.env, pc); 337 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; 338 h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate); 339 return qht_lookup(&tb_ctx.htable, tb_cmp, &desc, h); 340 } 341 342 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 343 { 344 if (TCG_TARGET_HAS_direct_jump) { 345 uintptr_t offset = tb->jmp_target_arg[n]; 346 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; 347 tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr); 348 } else { 349 tb->jmp_target_arg[n] = addr; 350 } 351 } 352 353 /* Called with tb_lock held. */ 354 static inline void tb_add_jump(TranslationBlock *tb, int n, 355 TranslationBlock *tb_next) 356 { 357 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 358 if (tb->jmp_list_next[n]) { 359 /* Another thread has already done this while we were 360 * outside of the lock; nothing to do in this case */ 361 return; 362 } 363 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 364 "Linking TBs %p [" TARGET_FMT_lx 365 "] index %d -> %p [" TARGET_FMT_lx "]\n", 366 tb->tc.ptr, tb->pc, n, 367 tb_next->tc.ptr, tb_next->pc); 368 369 /* patch the native jump address */ 370 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 371 372 /* add in TB jmp circular list */ 373 tb->jmp_list_next[n] = tb_next->jmp_list_first; 374 tb_next->jmp_list_first = (uintptr_t)tb | n; 375 } 376 377 static inline TranslationBlock *tb_find(CPUState *cpu, 378 TranslationBlock *last_tb, 379 int tb_exit, uint32_t cf_mask) 380 { 381 TranslationBlock *tb; 382 target_ulong cs_base, pc; 383 uint32_t flags; 384 bool acquired_tb_lock = false; 385 386 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 387 if (tb == NULL) { 388 /* mmap_lock is needed by tb_gen_code, and mmap_lock must be 389 * taken outside tb_lock. As system emulation is currently 390 * single threaded the locks are NOPs. 391 */ 392 mmap_lock(); 393 tb_lock(); 394 acquired_tb_lock = true; 395 396 /* There's a chance that our desired tb has been translated while 397 * taking the locks so we check again inside the lock. 398 */ 399 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask); 400 if (likely(tb == NULL)) { 401 /* if no translated code available, then translate it now */ 402 tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask); 403 } 404 405 mmap_unlock(); 406 /* We add the TB in the virtual pc hash table for the fast lookup */ 407 atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); 408 } 409 #ifndef CONFIG_USER_ONLY 410 /* We don't take care of direct jumps when address mapping changes in 411 * system emulation. So it's not safe to make a direct jump to a TB 412 * spanning two pages because the mapping for the second page can change. 413 */ 414 if (tb->page_addr[1] != -1) { 415 last_tb = NULL; 416 } 417 #endif 418 /* See if we can patch the calling TB. */ 419 if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 420 if (!acquired_tb_lock) { 421 tb_lock(); 422 acquired_tb_lock = true; 423 } 424 if (!(tb->cflags & CF_INVALID)) { 425 tb_add_jump(last_tb, tb_exit, tb); 426 } 427 } 428 if (acquired_tb_lock) { 429 tb_unlock(); 430 } 431 return tb; 432 } 433 434 static inline bool cpu_handle_halt(CPUState *cpu) 435 { 436 if (cpu->halted) { 437 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 438 if ((cpu->interrupt_request & CPU_INTERRUPT_POLL) 439 && replay_interrupt()) { 440 X86CPU *x86_cpu = X86_CPU(cpu); 441 qemu_mutex_lock_iothread(); 442 apic_poll_irq(x86_cpu->apic_state); 443 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 444 qemu_mutex_unlock_iothread(); 445 } 446 #endif 447 if (!cpu_has_work(cpu)) { 448 return true; 449 } 450 451 cpu->halted = 0; 452 } 453 454 return false; 455 } 456 457 static inline void cpu_handle_debug_exception(CPUState *cpu) 458 { 459 CPUClass *cc = CPU_GET_CLASS(cpu); 460 CPUWatchpoint *wp; 461 462 if (!cpu->watchpoint_hit) { 463 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 464 wp->flags &= ~BP_WATCHPOINT_HIT; 465 } 466 } 467 468 cc->debug_excp_handler(cpu); 469 } 470 471 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 472 { 473 if (cpu->exception_index < 0) { 474 #ifndef CONFIG_USER_ONLY 475 if (replay_has_exception() 476 && cpu->icount_decr.u16.low + cpu->icount_extra == 0) { 477 /* try to cause an exception pending in the log */ 478 cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true); 479 } 480 #endif 481 if (cpu->exception_index < 0) { 482 return false; 483 } 484 } 485 486 if (cpu->exception_index >= EXCP_INTERRUPT) { 487 /* exit request from the cpu execution loop */ 488 *ret = cpu->exception_index; 489 if (*ret == EXCP_DEBUG) { 490 cpu_handle_debug_exception(cpu); 491 } 492 cpu->exception_index = -1; 493 return true; 494 } else { 495 #if defined(CONFIG_USER_ONLY) 496 /* if user mode only, we simulate a fake exception 497 which will be handled outside the cpu execution 498 loop */ 499 #if defined(TARGET_I386) 500 CPUClass *cc = CPU_GET_CLASS(cpu); 501 cc->do_interrupt(cpu); 502 #endif 503 *ret = cpu->exception_index; 504 cpu->exception_index = -1; 505 return true; 506 #else 507 if (replay_exception()) { 508 CPUClass *cc = CPU_GET_CLASS(cpu); 509 qemu_mutex_lock_iothread(); 510 cc->do_interrupt(cpu); 511 qemu_mutex_unlock_iothread(); 512 cpu->exception_index = -1; 513 } else if (!replay_has_interrupt()) { 514 /* give a chance to iothread in replay mode */ 515 *ret = EXCP_INTERRUPT; 516 return true; 517 } 518 #endif 519 } 520 521 return false; 522 } 523 524 static inline bool cpu_handle_interrupt(CPUState *cpu, 525 TranslationBlock **last_tb) 526 { 527 CPUClass *cc = CPU_GET_CLASS(cpu); 528 int32_t insns_left; 529 530 /* Clear the interrupt flag now since we're processing 531 * cpu->interrupt_request and cpu->exit_request. 532 */ 533 insns_left = atomic_read(&cpu->icount_decr.u32); 534 atomic_set(&cpu->icount_decr.u16.high, 0); 535 if (unlikely(insns_left < 0)) { 536 /* Ensure the zeroing of icount_decr comes before the next read 537 * of cpu->exit_request or cpu->interrupt_request. 538 */ 539 smp_mb(); 540 } 541 542 if (unlikely(atomic_read(&cpu->interrupt_request))) { 543 int interrupt_request; 544 qemu_mutex_lock_iothread(); 545 interrupt_request = cpu->interrupt_request; 546 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 547 /* Mask out external interrupts for this step. */ 548 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 549 } 550 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 551 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 552 cpu->exception_index = EXCP_DEBUG; 553 qemu_mutex_unlock_iothread(); 554 return true; 555 } 556 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 557 /* Do nothing */ 558 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 559 replay_interrupt(); 560 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 561 cpu->halted = 1; 562 cpu->exception_index = EXCP_HLT; 563 qemu_mutex_unlock_iothread(); 564 return true; 565 } 566 #if defined(TARGET_I386) 567 else if (interrupt_request & CPU_INTERRUPT_INIT) { 568 X86CPU *x86_cpu = X86_CPU(cpu); 569 CPUArchState *env = &x86_cpu->env; 570 replay_interrupt(); 571 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 572 do_cpu_init(x86_cpu); 573 cpu->exception_index = EXCP_HALTED; 574 qemu_mutex_unlock_iothread(); 575 return true; 576 } 577 #else 578 else if (interrupt_request & CPU_INTERRUPT_RESET) { 579 replay_interrupt(); 580 cpu_reset(cpu); 581 qemu_mutex_unlock_iothread(); 582 return true; 583 } 584 #endif 585 /* The target hook has 3 exit conditions: 586 False when the interrupt isn't processed, 587 True when it is, and we should restart on a new TB, 588 and via longjmp via cpu_loop_exit. */ 589 else { 590 if (cc->cpu_exec_interrupt(cpu, interrupt_request)) { 591 replay_interrupt(); 592 *last_tb = NULL; 593 } 594 /* The target hook may have updated the 'cpu->interrupt_request'; 595 * reload the 'interrupt_request' value */ 596 interrupt_request = cpu->interrupt_request; 597 } 598 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 599 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 600 /* ensure that no TB jump will be modified as 601 the program flow was changed */ 602 *last_tb = NULL; 603 } 604 605 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 606 qemu_mutex_unlock_iothread(); 607 } 608 609 /* Finally, check if we need to exit to the main loop. */ 610 if (unlikely(atomic_read(&cpu->exit_request) 611 || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) { 612 atomic_set(&cpu->exit_request, 0); 613 cpu->exception_index = EXCP_INTERRUPT; 614 return true; 615 } 616 617 return false; 618 } 619 620 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 621 TranslationBlock **last_tb, int *tb_exit) 622 { 623 uintptr_t ret; 624 int32_t insns_left; 625 626 trace_exec_tb(tb, tb->pc); 627 ret = cpu_tb_exec(cpu, tb); 628 tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 629 *tb_exit = ret & TB_EXIT_MASK; 630 if (*tb_exit != TB_EXIT_REQUESTED) { 631 *last_tb = tb; 632 return; 633 } 634 635 *last_tb = NULL; 636 insns_left = atomic_read(&cpu->icount_decr.u32); 637 if (insns_left < 0) { 638 /* Something asked us to stop executing chained TBs; just 639 * continue round the main loop. Whatever requested the exit 640 * will also have set something else (eg exit_request or 641 * interrupt_request) which will be handled by 642 * cpu_handle_interrupt. cpu_handle_interrupt will also 643 * clear cpu->icount_decr.u16.high. 644 */ 645 return; 646 } 647 648 /* Instruction counter expired. */ 649 assert(use_icount); 650 #ifndef CONFIG_USER_ONLY 651 /* Ensure global icount has gone forward */ 652 cpu_update_icount(cpu); 653 /* Refill decrementer and continue execution. */ 654 insns_left = MIN(0xffff, cpu->icount_budget); 655 cpu->icount_decr.u16.low = insns_left; 656 cpu->icount_extra = cpu->icount_budget - insns_left; 657 if (!cpu->icount_extra) { 658 /* Execute any remaining instructions, then let the main loop 659 * handle the next event. 660 */ 661 if (insns_left > 0) { 662 cpu_exec_nocache(cpu, insns_left, tb, false); 663 } 664 } 665 #endif 666 } 667 668 /* main execution loop */ 669 670 int cpu_exec(CPUState *cpu) 671 { 672 CPUClass *cc = CPU_GET_CLASS(cpu); 673 int ret; 674 SyncClocks sc = { 0 }; 675 676 /* replay_interrupt may need current_cpu */ 677 current_cpu = cpu; 678 679 if (cpu_handle_halt(cpu)) { 680 return EXCP_HALTED; 681 } 682 683 rcu_read_lock(); 684 685 cc->cpu_exec_enter(cpu); 686 687 /* Calculate difference between guest clock and host clock. 688 * This delay includes the delay of the last cycle, so 689 * what we have to do is sleep until it is 0. As for the 690 * advance/delay we gain here, we try to fix it next time. 691 */ 692 init_delay_params(&sc, cpu); 693 694 /* prepare setjmp context for exception handling */ 695 if (sigsetjmp(cpu->jmp_env, 0) != 0) { 696 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6) 697 /* Some compilers wrongly smash all local variables after 698 * siglongjmp. There were bug reports for gcc 4.5.0 and clang. 699 * Reload essential local variables here for those compilers. 700 * Newer versions of gcc would complain about this code (-Wclobbered). */ 701 cpu = current_cpu; 702 cc = CPU_GET_CLASS(cpu); 703 #else /* buggy compiler */ 704 /* Assert that the compiler does not smash local variables. */ 705 g_assert(cpu == current_cpu); 706 g_assert(cc == CPU_GET_CLASS(cpu)); 707 #endif /* buggy compiler */ 708 cpu->can_do_io = 1; 709 tb_lock_reset(); 710 if (qemu_mutex_iothread_locked()) { 711 qemu_mutex_unlock_iothread(); 712 } 713 } 714 715 /* if an exception is pending, we execute it here */ 716 while (!cpu_handle_exception(cpu, &ret)) { 717 TranslationBlock *last_tb = NULL; 718 int tb_exit = 0; 719 720 while (!cpu_handle_interrupt(cpu, &last_tb)) { 721 uint32_t cflags = cpu->cflags_next_tb; 722 TranslationBlock *tb; 723 724 /* When requested, use an exact setting for cflags for the next 725 execution. This is used for icount, precise smc, and stop- 726 after-access watchpoints. Since this request should never 727 have CF_INVALID set, -1 is a convenient invalid value that 728 does not require tcg headers for cpu_common_reset. */ 729 if (cflags == -1) { 730 cflags = curr_cflags(); 731 } else { 732 cpu->cflags_next_tb = -1; 733 } 734 735 tb = tb_find(cpu, last_tb, tb_exit, cflags); 736 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); 737 /* Try to align the host and virtual clocks 738 if the guest is in advance */ 739 align_clocks(&sc, cpu); 740 } 741 } 742 743 cc->cpu_exec_exit(cpu); 744 rcu_read_unlock(); 745 746 return ret; 747 } 748