xref: /openbmc/qemu/accel/tcg/cpu-exec.c (revision b11ce33f)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "trace.h"
22 #include "disas/disas.h"
23 #include "exec/exec-all.h"
24 #include "tcg.h"
25 #include "qemu/atomic.h"
26 #include "sysemu/qtest.h"
27 #include "qemu/timer.h"
28 #include "exec/address-spaces.h"
29 #include "qemu/rcu.h"
30 #include "exec/tb-hash.h"
31 #include "exec/tb-lookup.h"
32 #include "exec/log.h"
33 #include "qemu/main-loop.h"
34 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
35 #include "hw/i386/apic.h"
36 #endif
37 #include "sysemu/cpus.h"
38 #include "sysemu/replay.h"
39 
40 /* -icount align implementation. */
41 
42 typedef struct SyncClocks {
43     int64_t diff_clk;
44     int64_t last_cpu_icount;
45     int64_t realtime_clock;
46 } SyncClocks;
47 
48 #if !defined(CONFIG_USER_ONLY)
49 /* Allow the guest to have a max 3ms advance.
50  * The difference between the 2 clocks could therefore
51  * oscillate around 0.
52  */
53 #define VM_CLOCK_ADVANCE 3000000
54 #define THRESHOLD_REDUCE 1.5
55 #define MAX_DELAY_PRINT_RATE 2000000000LL
56 #define MAX_NB_PRINTS 100
57 
58 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
59 {
60     int64_t cpu_icount;
61 
62     if (!icount_align_option) {
63         return;
64     }
65 
66     cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
67     sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
68     sc->last_cpu_icount = cpu_icount;
69 
70     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
71 #ifndef _WIN32
72         struct timespec sleep_delay, rem_delay;
73         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
74         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
75         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
76             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
77         } else {
78             sc->diff_clk = 0;
79         }
80 #else
81         Sleep(sc->diff_clk / SCALE_MS);
82         sc->diff_clk = 0;
83 #endif
84     }
85 }
86 
87 static void print_delay(const SyncClocks *sc)
88 {
89     static float threshold_delay;
90     static int64_t last_realtime_clock;
91     static int nb_prints;
92 
93     if (icount_align_option &&
94         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
95         nb_prints < MAX_NB_PRINTS) {
96         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
97             (-sc->diff_clk / (float)1000000000LL <
98              (threshold_delay - THRESHOLD_REDUCE))) {
99             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
100             printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
101                    threshold_delay - 1,
102                    threshold_delay);
103             nb_prints++;
104             last_realtime_clock = sc->realtime_clock;
105         }
106     }
107 }
108 
109 static void init_delay_params(SyncClocks *sc,
110                               const CPUState *cpu)
111 {
112     if (!icount_align_option) {
113         return;
114     }
115     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
116     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
117     sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
118     if (sc->diff_clk < max_delay) {
119         max_delay = sc->diff_clk;
120     }
121     if (sc->diff_clk > max_advance) {
122         max_advance = sc->diff_clk;
123     }
124 
125     /* Print every 2s max if the guest is late. We limit the number
126        of printed messages to NB_PRINT_MAX(currently 100) */
127     print_delay(sc);
128 }
129 #else
130 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
131 {
132 }
133 
134 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
135 {
136 }
137 #endif /* CONFIG USER ONLY */
138 
139 /* Execute a TB, and fix up the CPU state afterwards if necessary */
140 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
141 {
142     CPUArchState *env = cpu->env_ptr;
143     uintptr_t ret;
144     TranslationBlock *last_tb;
145     int tb_exit;
146     uint8_t *tb_ptr = itb->tc.ptr;
147 
148     qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
149                            "Trace %p [%d: " TARGET_FMT_lx "] %s\n",
150                            itb->tc.ptr, cpu->cpu_index, itb->pc,
151                            lookup_symbol(itb->pc));
152 
153 #if defined(DEBUG_DISAS)
154     if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
155         && qemu_log_in_addr_range(itb->pc)) {
156         qemu_log_lock();
157 #if defined(TARGET_I386)
158         log_cpu_state(cpu, CPU_DUMP_CCOP);
159 #else
160         log_cpu_state(cpu, 0);
161 #endif
162         qemu_log_unlock();
163     }
164 #endif /* DEBUG_DISAS */
165 
166     cpu->can_do_io = !use_icount;
167     ret = tcg_qemu_tb_exec(env, tb_ptr);
168     cpu->can_do_io = 1;
169     last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
170     tb_exit = ret & TB_EXIT_MASK;
171     trace_exec_tb_exit(last_tb, tb_exit);
172 
173     if (tb_exit > TB_EXIT_IDX1) {
174         /* We didn't start executing this TB (eg because the instruction
175          * counter hit zero); we must restore the guest PC to the address
176          * of the start of the TB.
177          */
178         CPUClass *cc = CPU_GET_CLASS(cpu);
179         qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
180                                "Stopped execution of TB chain before %p ["
181                                TARGET_FMT_lx "] %s\n",
182                                last_tb->tc.ptr, last_tb->pc,
183                                lookup_symbol(last_tb->pc));
184         if (cc->synchronize_from_tb) {
185             cc->synchronize_from_tb(cpu, last_tb);
186         } else {
187             assert(cc->set_pc);
188             cc->set_pc(cpu, last_tb->pc);
189         }
190     }
191     return ret;
192 }
193 
194 #ifndef CONFIG_USER_ONLY
195 /* Execute the code without caching the generated code. An interpreter
196    could be used if available. */
197 static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
198                              TranslationBlock *orig_tb, bool ignore_icount)
199 {
200     TranslationBlock *tb;
201     uint32_t cflags = curr_cflags() | CF_NOCACHE;
202 
203     if (ignore_icount) {
204         cflags &= ~CF_USE_ICOUNT;
205     }
206 
207     /* Should never happen.
208        We only end up here when an existing TB is too long.  */
209     cflags |= MIN(max_cycles, CF_COUNT_MASK);
210 
211     tb_lock();
212     tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base,
213                      orig_tb->flags, cflags);
214     tb->orig_tb = orig_tb;
215     tb_unlock();
216 
217     /* execute the generated code */
218     trace_exec_tb_nocache(tb, tb->pc);
219     cpu_tb_exec(cpu, tb);
220 
221     tb_lock();
222     tb_phys_invalidate(tb, -1);
223     tb_remove(tb);
224     tb_unlock();
225 }
226 #endif
227 
228 void cpu_exec_step_atomic(CPUState *cpu)
229 {
230     CPUClass *cc = CPU_GET_CLASS(cpu);
231     TranslationBlock *tb;
232     target_ulong cs_base, pc;
233     uint32_t flags;
234     uint32_t cflags = 1;
235     uint32_t cf_mask = cflags & CF_HASH_MASK;
236     /* volatile because we modify it between setjmp and longjmp */
237     volatile bool in_exclusive_region = false;
238 
239     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
240         tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
241         if (tb == NULL) {
242             mmap_lock();
243             tb_lock();
244             tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask);
245             if (likely(tb == NULL)) {
246                 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
247             }
248             tb_unlock();
249             mmap_unlock();
250         }
251 
252         start_exclusive();
253 
254         /* Since we got here, we know that parallel_cpus must be true.  */
255         parallel_cpus = false;
256         in_exclusive_region = true;
257         cc->cpu_exec_enter(cpu);
258         /* execute the generated code */
259         trace_exec_tb(tb, pc);
260         cpu_tb_exec(cpu, tb);
261         cc->cpu_exec_exit(cpu);
262     } else {
263         /* We may have exited due to another problem here, so we need
264          * to reset any tb_locks we may have taken but didn't release.
265          * The mmap_lock is dropped by tb_gen_code if it runs out of
266          * memory.
267          */
268 #ifndef CONFIG_SOFTMMU
269         tcg_debug_assert(!have_mmap_lock());
270 #endif
271         tb_lock_reset();
272     }
273 
274     if (in_exclusive_region) {
275         /* We might longjump out of either the codegen or the
276          * execution, so must make sure we only end the exclusive
277          * region if we started it.
278          */
279         parallel_cpus = true;
280         end_exclusive();
281     }
282 }
283 
284 struct tb_desc {
285     target_ulong pc;
286     target_ulong cs_base;
287     CPUArchState *env;
288     tb_page_addr_t phys_page1;
289     uint32_t flags;
290     uint32_t cf_mask;
291     uint32_t trace_vcpu_dstate;
292 };
293 
294 static bool tb_cmp(const void *p, const void *d)
295 {
296     const TranslationBlock *tb = p;
297     const struct tb_desc *desc = d;
298 
299     if (tb->pc == desc->pc &&
300         tb->page_addr[0] == desc->phys_page1 &&
301         tb->cs_base == desc->cs_base &&
302         tb->flags == desc->flags &&
303         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
304         (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) {
305         /* check next page if needed */
306         if (tb->page_addr[1] == -1) {
307             return true;
308         } else {
309             tb_page_addr_t phys_page2;
310             target_ulong virt_page2;
311 
312             virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
313             phys_page2 = get_page_addr_code(desc->env, virt_page2);
314             if (tb->page_addr[1] == phys_page2) {
315                 return true;
316             }
317         }
318     }
319     return false;
320 }
321 
322 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
323                                    target_ulong cs_base, uint32_t flags,
324                                    uint32_t cf_mask)
325 {
326     tb_page_addr_t phys_pc;
327     struct tb_desc desc;
328     uint32_t h;
329 
330     desc.env = (CPUArchState *)cpu->env_ptr;
331     desc.cs_base = cs_base;
332     desc.flags = flags;
333     desc.cf_mask = cf_mask;
334     desc.trace_vcpu_dstate = *cpu->trace_dstate;
335     desc.pc = pc;
336     phys_pc = get_page_addr_code(desc.env, pc);
337     desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
338     h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate);
339     return qht_lookup(&tb_ctx.htable, tb_cmp, &desc, h);
340 }
341 
342 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
343 {
344     if (TCG_TARGET_HAS_direct_jump) {
345         uintptr_t offset = tb->jmp_target_arg[n];
346         uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
347         tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr);
348     } else {
349         tb->jmp_target_arg[n] = addr;
350     }
351 }
352 
353 /* Called with tb_lock held.  */
354 static inline void tb_add_jump(TranslationBlock *tb, int n,
355                                TranslationBlock *tb_next)
356 {
357     assert(n < ARRAY_SIZE(tb->jmp_list_next));
358     if (tb->jmp_list_next[n]) {
359         /* Another thread has already done this while we were
360          * outside of the lock; nothing to do in this case */
361         return;
362     }
363     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
364                            "Linking TBs %p [" TARGET_FMT_lx
365                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
366                            tb->tc.ptr, tb->pc, n,
367                            tb_next->tc.ptr, tb_next->pc);
368 
369     /* patch the native jump address */
370     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
371 
372     /* add in TB jmp circular list */
373     tb->jmp_list_next[n] = tb_next->jmp_list_first;
374     tb_next->jmp_list_first = (uintptr_t)tb | n;
375 }
376 
377 static inline TranslationBlock *tb_find(CPUState *cpu,
378                                         TranslationBlock *last_tb,
379                                         int tb_exit, uint32_t cf_mask)
380 {
381     TranslationBlock *tb;
382     target_ulong cs_base, pc;
383     uint32_t flags;
384     bool acquired_tb_lock = false;
385 
386     tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
387     if (tb == NULL) {
388         /* mmap_lock is needed by tb_gen_code, and mmap_lock must be
389          * taken outside tb_lock. As system emulation is currently
390          * single threaded the locks are NOPs.
391          */
392         mmap_lock();
393         tb_lock();
394         acquired_tb_lock = true;
395 
396         /* There's a chance that our desired tb has been translated while
397          * taking the locks so we check again inside the lock.
398          */
399         tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask);
400         if (likely(tb == NULL)) {
401             /* if no translated code available, then translate it now */
402             tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask);
403         }
404 
405         mmap_unlock();
406         /* We add the TB in the virtual pc hash table for the fast lookup */
407         atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
408     }
409 #ifndef CONFIG_USER_ONLY
410     /* We don't take care of direct jumps when address mapping changes in
411      * system emulation. So it's not safe to make a direct jump to a TB
412      * spanning two pages because the mapping for the second page can change.
413      */
414     if (tb->page_addr[1] != -1) {
415         last_tb = NULL;
416     }
417 #endif
418     /* See if we can patch the calling TB. */
419     if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
420         if (!acquired_tb_lock) {
421             tb_lock();
422             acquired_tb_lock = true;
423         }
424         if (!(tb->cflags & CF_INVALID)) {
425             tb_add_jump(last_tb, tb_exit, tb);
426         }
427     }
428     if (acquired_tb_lock) {
429         tb_unlock();
430     }
431     return tb;
432 }
433 
434 static inline bool cpu_handle_halt(CPUState *cpu)
435 {
436     if (cpu->halted) {
437 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
438         if ((cpu->interrupt_request & CPU_INTERRUPT_POLL)
439             && replay_interrupt()) {
440             X86CPU *x86_cpu = X86_CPU(cpu);
441             qemu_mutex_lock_iothread();
442             apic_poll_irq(x86_cpu->apic_state);
443             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
444             qemu_mutex_unlock_iothread();
445         }
446 #endif
447         if (!cpu_has_work(cpu)) {
448             return true;
449         }
450 
451         cpu->halted = 0;
452     }
453 
454     return false;
455 }
456 
457 static inline void cpu_handle_debug_exception(CPUState *cpu)
458 {
459     CPUClass *cc = CPU_GET_CLASS(cpu);
460     CPUWatchpoint *wp;
461 
462     if (!cpu->watchpoint_hit) {
463         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
464             wp->flags &= ~BP_WATCHPOINT_HIT;
465         }
466     }
467 
468     cc->debug_excp_handler(cpu);
469 }
470 
471 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
472 {
473     if (cpu->exception_index < 0) {
474 #ifndef CONFIG_USER_ONLY
475         if (replay_has_exception()
476                && cpu->icount_decr.u16.low + cpu->icount_extra == 0) {
477             /* try to cause an exception pending in the log */
478             cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true);
479         }
480 #endif
481         if (cpu->exception_index < 0) {
482             return false;
483         }
484     }
485 
486     if (cpu->exception_index >= EXCP_INTERRUPT) {
487         /* exit request from the cpu execution loop */
488         *ret = cpu->exception_index;
489         if (*ret == EXCP_DEBUG) {
490             cpu_handle_debug_exception(cpu);
491         }
492         cpu->exception_index = -1;
493         return true;
494     } else {
495 #if defined(CONFIG_USER_ONLY)
496         /* if user mode only, we simulate a fake exception
497            which will be handled outside the cpu execution
498            loop */
499 #if defined(TARGET_I386)
500         CPUClass *cc = CPU_GET_CLASS(cpu);
501         cc->do_interrupt(cpu);
502 #endif
503         *ret = cpu->exception_index;
504         cpu->exception_index = -1;
505         return true;
506 #else
507         if (replay_exception()) {
508             CPUClass *cc = CPU_GET_CLASS(cpu);
509             qemu_mutex_lock_iothread();
510             cc->do_interrupt(cpu);
511             qemu_mutex_unlock_iothread();
512             cpu->exception_index = -1;
513         } else if (!replay_has_interrupt()) {
514             /* give a chance to iothread in replay mode */
515             *ret = EXCP_INTERRUPT;
516             return true;
517         }
518 #endif
519     }
520 
521     return false;
522 }
523 
524 static inline bool cpu_handle_interrupt(CPUState *cpu,
525                                         TranslationBlock **last_tb)
526 {
527     CPUClass *cc = CPU_GET_CLASS(cpu);
528     int32_t insns_left;
529 
530     /* Clear the interrupt flag now since we're processing
531      * cpu->interrupt_request and cpu->exit_request.
532      */
533     insns_left = atomic_read(&cpu->icount_decr.u32);
534     atomic_set(&cpu->icount_decr.u16.high, 0);
535     if (unlikely(insns_left < 0)) {
536         /* Ensure the zeroing of icount_decr comes before the next read
537          * of cpu->exit_request or cpu->interrupt_request.
538          */
539         smp_mb();
540     }
541 
542     if (unlikely(atomic_read(&cpu->interrupt_request))) {
543         int interrupt_request;
544         qemu_mutex_lock_iothread();
545         interrupt_request = cpu->interrupt_request;
546         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
547             /* Mask out external interrupts for this step. */
548             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
549         }
550         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
551             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
552             cpu->exception_index = EXCP_DEBUG;
553             qemu_mutex_unlock_iothread();
554             return true;
555         }
556         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
557             /* Do nothing */
558         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
559             replay_interrupt();
560             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
561             cpu->halted = 1;
562             cpu->exception_index = EXCP_HLT;
563             qemu_mutex_unlock_iothread();
564             return true;
565         }
566 #if defined(TARGET_I386)
567         else if (interrupt_request & CPU_INTERRUPT_INIT) {
568             X86CPU *x86_cpu = X86_CPU(cpu);
569             CPUArchState *env = &x86_cpu->env;
570             replay_interrupt();
571             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
572             do_cpu_init(x86_cpu);
573             cpu->exception_index = EXCP_HALTED;
574             qemu_mutex_unlock_iothread();
575             return true;
576         }
577 #else
578         else if (interrupt_request & CPU_INTERRUPT_RESET) {
579             replay_interrupt();
580             cpu_reset(cpu);
581             qemu_mutex_unlock_iothread();
582             return true;
583         }
584 #endif
585         /* The target hook has 3 exit conditions:
586            False when the interrupt isn't processed,
587            True when it is, and we should restart on a new TB,
588            and via longjmp via cpu_loop_exit.  */
589         else {
590             if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
591                 replay_interrupt();
592                 *last_tb = NULL;
593             }
594             /* The target hook may have updated the 'cpu->interrupt_request';
595              * reload the 'interrupt_request' value */
596             interrupt_request = cpu->interrupt_request;
597         }
598         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
599             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
600             /* ensure that no TB jump will be modified as
601                the program flow was changed */
602             *last_tb = NULL;
603         }
604 
605         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
606         qemu_mutex_unlock_iothread();
607     }
608 
609     /* Finally, check if we need to exit to the main loop.  */
610     if (unlikely(atomic_read(&cpu->exit_request)
611         || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) {
612         atomic_set(&cpu->exit_request, 0);
613         cpu->exception_index = EXCP_INTERRUPT;
614         return true;
615     }
616 
617     return false;
618 }
619 
620 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
621                                     TranslationBlock **last_tb, int *tb_exit)
622 {
623     uintptr_t ret;
624     int32_t insns_left;
625 
626     trace_exec_tb(tb, tb->pc);
627     ret = cpu_tb_exec(cpu, tb);
628     tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
629     *tb_exit = ret & TB_EXIT_MASK;
630     if (*tb_exit != TB_EXIT_REQUESTED) {
631         *last_tb = tb;
632         return;
633     }
634 
635     *last_tb = NULL;
636     insns_left = atomic_read(&cpu->icount_decr.u32);
637     if (insns_left < 0) {
638         /* Something asked us to stop executing chained TBs; just
639          * continue round the main loop. Whatever requested the exit
640          * will also have set something else (eg exit_request or
641          * interrupt_request) which will be handled by
642          * cpu_handle_interrupt.  cpu_handle_interrupt will also
643          * clear cpu->icount_decr.u16.high.
644          */
645         return;
646     }
647 
648     /* Instruction counter expired.  */
649     assert(use_icount);
650 #ifndef CONFIG_USER_ONLY
651     /* Ensure global icount has gone forward */
652     cpu_update_icount(cpu);
653     /* Refill decrementer and continue execution.  */
654     insns_left = MIN(0xffff, cpu->icount_budget);
655     cpu->icount_decr.u16.low = insns_left;
656     cpu->icount_extra = cpu->icount_budget - insns_left;
657     if (!cpu->icount_extra) {
658         /* Execute any remaining instructions, then let the main loop
659          * handle the next event.
660          */
661         if (insns_left > 0) {
662             cpu_exec_nocache(cpu, insns_left, tb, false);
663         }
664     }
665 #endif
666 }
667 
668 /* main execution loop */
669 
670 int cpu_exec(CPUState *cpu)
671 {
672     CPUClass *cc = CPU_GET_CLASS(cpu);
673     int ret;
674     SyncClocks sc = { 0 };
675 
676     /* replay_interrupt may need current_cpu */
677     current_cpu = cpu;
678 
679     if (cpu_handle_halt(cpu)) {
680         return EXCP_HALTED;
681     }
682 
683     rcu_read_lock();
684 
685     cc->cpu_exec_enter(cpu);
686 
687     /* Calculate difference between guest clock and host clock.
688      * This delay includes the delay of the last cycle, so
689      * what we have to do is sleep until it is 0. As for the
690      * advance/delay we gain here, we try to fix it next time.
691      */
692     init_delay_params(&sc, cpu);
693 
694     /* prepare setjmp context for exception handling */
695     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
696 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6)
697         /* Some compilers wrongly smash all local variables after
698          * siglongjmp. There were bug reports for gcc 4.5.0 and clang.
699          * Reload essential local variables here for those compilers.
700          * Newer versions of gcc would complain about this code (-Wclobbered). */
701         cpu = current_cpu;
702         cc = CPU_GET_CLASS(cpu);
703 #else /* buggy compiler */
704         /* Assert that the compiler does not smash local variables. */
705         g_assert(cpu == current_cpu);
706         g_assert(cc == CPU_GET_CLASS(cpu));
707 #endif /* buggy compiler */
708         cpu->can_do_io = 1;
709         tb_lock_reset();
710         if (qemu_mutex_iothread_locked()) {
711             qemu_mutex_unlock_iothread();
712         }
713     }
714 
715     /* if an exception is pending, we execute it here */
716     while (!cpu_handle_exception(cpu, &ret)) {
717         TranslationBlock *last_tb = NULL;
718         int tb_exit = 0;
719 
720         while (!cpu_handle_interrupt(cpu, &last_tb)) {
721             uint32_t cflags = cpu->cflags_next_tb;
722             TranslationBlock *tb;
723 
724             /* When requested, use an exact setting for cflags for the next
725                execution.  This is used for icount, precise smc, and stop-
726                after-access watchpoints.  Since this request should never
727                have CF_INVALID set, -1 is a convenient invalid value that
728                does not require tcg headers for cpu_common_reset.  */
729             if (cflags == -1) {
730                 cflags = curr_cflags();
731             } else {
732                 cpu->cflags_next_tb = -1;
733             }
734 
735             tb = tb_find(cpu, last_tb, tb_exit, cflags);
736             cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
737             /* Try to align the host and virtual clocks
738                if the guest is in advance */
739             align_clocks(&sc, cpu);
740         }
741     }
742 
743     cc->cpu_exec_exit(cpu);
744     rcu_read_unlock();
745 
746     return ret;
747 }
748