1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/qapi-commands-machine.h" 24 #include "qapi/type-helpers.h" 25 #include "hw/core/tcg-cpu-ops.h" 26 #include "trace.h" 27 #include "disas/disas.h" 28 #include "exec/exec-all.h" 29 #include "tcg/tcg.h" 30 #include "qemu/atomic.h" 31 #include "qemu/compiler.h" 32 #include "qemu/timer.h" 33 #include "qemu/rcu.h" 34 #include "exec/log.h" 35 #include "qemu/main-loop.h" 36 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 37 #include "hw/i386/apic.h" 38 #endif 39 #include "sysemu/cpus.h" 40 #include "exec/cpu-all.h" 41 #include "sysemu/cpu-timers.h" 42 #include "sysemu/replay.h" 43 #include "sysemu/tcg.h" 44 #include "exec/helper-proto.h" 45 #include "tb-jmp-cache.h" 46 #include "tb-hash.h" 47 #include "tb-context.h" 48 #include "internal.h" 49 50 /* -icount align implementation. */ 51 52 typedef struct SyncClocks { 53 int64_t diff_clk; 54 int64_t last_cpu_icount; 55 int64_t realtime_clock; 56 } SyncClocks; 57 58 #if !defined(CONFIG_USER_ONLY) 59 /* Allow the guest to have a max 3ms advance. 60 * The difference between the 2 clocks could therefore 61 * oscillate around 0. 62 */ 63 #define VM_CLOCK_ADVANCE 3000000 64 #define THRESHOLD_REDUCE 1.5 65 #define MAX_DELAY_PRINT_RATE 2000000000LL 66 #define MAX_NB_PRINTS 100 67 68 static int64_t max_delay; 69 static int64_t max_advance; 70 71 static void align_clocks(SyncClocks *sc, CPUState *cpu) 72 { 73 int64_t cpu_icount; 74 75 if (!icount_align_option) { 76 return; 77 } 78 79 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 80 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 81 sc->last_cpu_icount = cpu_icount; 82 83 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 84 #ifndef _WIN32 85 struct timespec sleep_delay, rem_delay; 86 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 87 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 88 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 89 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 90 } else { 91 sc->diff_clk = 0; 92 } 93 #else 94 Sleep(sc->diff_clk / SCALE_MS); 95 sc->diff_clk = 0; 96 #endif 97 } 98 } 99 100 static void print_delay(const SyncClocks *sc) 101 { 102 static float threshold_delay; 103 static int64_t last_realtime_clock; 104 static int nb_prints; 105 106 if (icount_align_option && 107 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 108 nb_prints < MAX_NB_PRINTS) { 109 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 110 (-sc->diff_clk / (float)1000000000LL < 111 (threshold_delay - THRESHOLD_REDUCE))) { 112 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 113 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 114 threshold_delay - 1, 115 threshold_delay); 116 nb_prints++; 117 last_realtime_clock = sc->realtime_clock; 118 } 119 } 120 } 121 122 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 123 { 124 if (!icount_align_option) { 125 return; 126 } 127 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 128 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 129 sc->last_cpu_icount 130 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 131 if (sc->diff_clk < max_delay) { 132 max_delay = sc->diff_clk; 133 } 134 if (sc->diff_clk > max_advance) { 135 max_advance = sc->diff_clk; 136 } 137 138 /* Print every 2s max if the guest is late. We limit the number 139 of printed messages to NB_PRINT_MAX(currently 100) */ 140 print_delay(sc); 141 } 142 #else 143 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 144 { 145 } 146 147 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 148 { 149 } 150 #endif /* CONFIG USER ONLY */ 151 152 uint32_t curr_cflags(CPUState *cpu) 153 { 154 uint32_t cflags = cpu->tcg_cflags; 155 156 /* 157 * Record gdb single-step. We should be exiting the TB by raising 158 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 159 * 160 * For singlestep and -d nochain, suppress goto_tb so that 161 * we can log -d cpu,exec after every TB. 162 */ 163 if (unlikely(cpu->singlestep_enabled)) { 164 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 165 } else if (singlestep) { 166 cflags |= CF_NO_GOTO_TB | 1; 167 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 168 cflags |= CF_NO_GOTO_TB; 169 } 170 171 return cflags; 172 } 173 174 struct tb_desc { 175 target_ulong pc; 176 target_ulong cs_base; 177 CPUArchState *env; 178 tb_page_addr_t page_addr0; 179 uint32_t flags; 180 uint32_t cflags; 181 uint32_t trace_vcpu_dstate; 182 }; 183 184 static bool tb_lookup_cmp(const void *p, const void *d) 185 { 186 const TranslationBlock *tb = p; 187 const struct tb_desc *desc = d; 188 189 if ((TARGET_TB_PCREL || tb_pc(tb) == desc->pc) && 190 tb->page_addr[0] == desc->page_addr0 && 191 tb->cs_base == desc->cs_base && 192 tb->flags == desc->flags && 193 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 194 tb_cflags(tb) == desc->cflags) { 195 /* check next page if needed */ 196 if (tb->page_addr[1] == -1) { 197 return true; 198 } else { 199 tb_page_addr_t phys_page1; 200 target_ulong virt_page1; 201 202 /* 203 * We know that the first page matched, and an otherwise valid TB 204 * encountered an incomplete instruction at the end of that page, 205 * therefore we know that generating a new TB from the current PC 206 * must also require reading from the next page -- even if the 207 * second pages do not match, and therefore the resulting insn 208 * is different for the new TB. Therefore any exception raised 209 * here by the faulting lookup is not premature. 210 */ 211 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 212 phys_page1 = get_page_addr_code(desc->env, virt_page1); 213 if (tb->page_addr[1] == phys_page1) { 214 return true; 215 } 216 } 217 } 218 return false; 219 } 220 221 static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 222 target_ulong cs_base, uint32_t flags, 223 uint32_t cflags) 224 { 225 tb_page_addr_t phys_pc; 226 struct tb_desc desc; 227 uint32_t h; 228 229 desc.env = cpu->env_ptr; 230 desc.cs_base = cs_base; 231 desc.flags = flags; 232 desc.cflags = cflags; 233 desc.trace_vcpu_dstate = *cpu->trace_dstate; 234 desc.pc = pc; 235 phys_pc = get_page_addr_code(desc.env, pc); 236 if (phys_pc == -1) { 237 return NULL; 238 } 239 desc.page_addr0 = phys_pc; 240 h = tb_hash_func(phys_pc, (TARGET_TB_PCREL ? 0 : pc), 241 flags, cflags, *cpu->trace_dstate); 242 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 243 } 244 245 /* Might cause an exception, so have a longjmp destination ready */ 246 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc, 247 target_ulong cs_base, 248 uint32_t flags, uint32_t cflags) 249 { 250 TranslationBlock *tb; 251 CPUJumpCache *jc; 252 uint32_t hash; 253 254 /* we should never be trying to look up an INVALID tb */ 255 tcg_debug_assert(!(cflags & CF_INVALID)); 256 257 hash = tb_jmp_cache_hash_func(pc); 258 jc = cpu->tb_jmp_cache; 259 tb = tb_jmp_cache_get_tb(jc, hash); 260 261 if (likely(tb && 262 tb_jmp_cache_get_pc(jc, hash, tb) == pc && 263 tb->cs_base == cs_base && 264 tb->flags == flags && 265 tb->trace_vcpu_dstate == *cpu->trace_dstate && 266 tb_cflags(tb) == cflags)) { 267 return tb; 268 } 269 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 270 if (tb == NULL) { 271 return NULL; 272 } 273 tb_jmp_cache_set(jc, hash, tb, pc); 274 return tb; 275 } 276 277 static void log_cpu_exec(target_ulong pc, CPUState *cpu, 278 const TranslationBlock *tb) 279 { 280 if (qemu_log_in_addr_range(pc)) { 281 qemu_log_mask(CPU_LOG_EXEC, 282 "Trace %d: %p [" TARGET_FMT_lx 283 "/" TARGET_FMT_lx "/%08x/%08x] %s\n", 284 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 285 tb->flags, tb->cflags, lookup_symbol(pc)); 286 287 #if defined(DEBUG_DISAS) 288 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 289 FILE *logfile = qemu_log_trylock(); 290 if (logfile) { 291 int flags = 0; 292 293 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 294 flags |= CPU_DUMP_FPU; 295 } 296 #if defined(TARGET_I386) 297 flags |= CPU_DUMP_CCOP; 298 #endif 299 cpu_dump_state(cpu, logfile, flags); 300 qemu_log_unlock(logfile); 301 } 302 } 303 #endif /* DEBUG_DISAS */ 304 } 305 } 306 307 static bool check_for_breakpoints(CPUState *cpu, target_ulong pc, 308 uint32_t *cflags) 309 { 310 CPUBreakpoint *bp; 311 bool match_page = false; 312 313 if (likely(QTAILQ_EMPTY(&cpu->breakpoints))) { 314 return false; 315 } 316 317 /* 318 * Singlestep overrides breakpoints. 319 * This requirement is visible in the record-replay tests, where 320 * we would fail to make forward progress in reverse-continue. 321 * 322 * TODO: gdb singlestep should only override gdb breakpoints, 323 * so that one could (gdb) singlestep into the guest kernel's 324 * architectural breakpoint handler. 325 */ 326 if (cpu->singlestep_enabled) { 327 return false; 328 } 329 330 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 331 /* 332 * If we have an exact pc match, trigger the breakpoint. 333 * Otherwise, note matches within the page. 334 */ 335 if (pc == bp->pc) { 336 bool match_bp = false; 337 338 if (bp->flags & BP_GDB) { 339 match_bp = true; 340 } else if (bp->flags & BP_CPU) { 341 #ifdef CONFIG_USER_ONLY 342 g_assert_not_reached(); 343 #else 344 CPUClass *cc = CPU_GET_CLASS(cpu); 345 assert(cc->tcg_ops->debug_check_breakpoint); 346 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu); 347 #endif 348 } 349 350 if (match_bp) { 351 cpu->exception_index = EXCP_DEBUG; 352 return true; 353 } 354 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 355 match_page = true; 356 } 357 } 358 359 /* 360 * Within the same page as a breakpoint, single-step, 361 * returning to helper_lookup_tb_ptr after each insn looking 362 * for the actual breakpoint. 363 * 364 * TODO: Perhaps better to record all of the TBs associated 365 * with a given virtual page that contains a breakpoint, and 366 * then invalidate them when a new overlapping breakpoint is 367 * set on the page. Non-overlapping TBs would not be 368 * invalidated, nor would any TB need to be invalidated as 369 * breakpoints are removed. 370 */ 371 if (match_page) { 372 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1; 373 } 374 return false; 375 } 376 377 /** 378 * helper_lookup_tb_ptr: quick check for next tb 379 * @env: current cpu state 380 * 381 * Look for an existing TB matching the current cpu state. 382 * If found, return the code pointer. If not found, return 383 * the tcg epilogue so that we return into cpu_tb_exec. 384 */ 385 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 386 { 387 CPUState *cpu = env_cpu(env); 388 TranslationBlock *tb; 389 target_ulong cs_base, pc; 390 uint32_t flags, cflags; 391 392 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 393 394 cflags = curr_cflags(cpu); 395 if (check_for_breakpoints(cpu, pc, &cflags)) { 396 cpu_loop_exit(cpu); 397 } 398 399 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 400 if (tb == NULL) { 401 return tcg_code_gen_epilogue; 402 } 403 404 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 405 log_cpu_exec(pc, cpu, tb); 406 } 407 408 return tb->tc.ptr; 409 } 410 411 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 412 /* 413 * Disable CFI checks. 414 * TCG creates binary blobs at runtime, with the transformed code. 415 * A TB is a blob of binary code, created at runtime and called with an 416 * indirect function call. Since such function did not exist at compile time, 417 * the CFI runtime has no way to verify its signature and would fail. 418 * TCG is not considered a security-sensitive part of QEMU so this does not 419 * affect the impact of CFI in environment with high security requirements 420 */ 421 static inline TranslationBlock * QEMU_DISABLE_CFI 422 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 423 { 424 CPUArchState *env = cpu->env_ptr; 425 uintptr_t ret; 426 TranslationBlock *last_tb; 427 const void *tb_ptr = itb->tc.ptr; 428 429 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 430 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 431 } 432 433 qemu_thread_jit_execute(); 434 ret = tcg_qemu_tb_exec(env, tb_ptr); 435 cpu->can_do_io = 1; 436 /* 437 * TODO: Delay swapping back to the read-write region of the TB 438 * until we actually need to modify the TB. The read-only copy, 439 * coming from the rx region, shares the same host TLB entry as 440 * the code that executed the exit_tb opcode that arrived here. 441 * If we insist on touching both the RX and the RW pages, we 442 * double the host TLB pressure. 443 */ 444 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 445 *tb_exit = ret & TB_EXIT_MASK; 446 447 trace_exec_tb_exit(last_tb, *tb_exit); 448 449 if (*tb_exit > TB_EXIT_IDX1) { 450 /* We didn't start executing this TB (eg because the instruction 451 * counter hit zero); we must restore the guest PC to the address 452 * of the start of the TB. 453 */ 454 CPUClass *cc = CPU_GET_CLASS(cpu); 455 456 if (cc->tcg_ops->synchronize_from_tb) { 457 cc->tcg_ops->synchronize_from_tb(cpu, last_tb); 458 } else { 459 assert(!TARGET_TB_PCREL); 460 assert(cc->set_pc); 461 cc->set_pc(cpu, tb_pc(last_tb)); 462 } 463 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 464 target_ulong pc = log_pc(cpu, last_tb); 465 if (qemu_log_in_addr_range(pc)) { 466 qemu_log("Stopped execution of TB chain before %p [" 467 TARGET_FMT_lx "] %s\n", 468 last_tb->tc.ptr, pc, lookup_symbol(pc)); 469 } 470 } 471 } 472 473 /* 474 * If gdb single-step, and we haven't raised another exception, 475 * raise a debug exception. Single-step with another exception 476 * is handled in cpu_handle_exception. 477 */ 478 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 479 cpu->exception_index = EXCP_DEBUG; 480 cpu_loop_exit(cpu); 481 } 482 483 return last_tb; 484 } 485 486 487 static void cpu_exec_enter(CPUState *cpu) 488 { 489 CPUClass *cc = CPU_GET_CLASS(cpu); 490 491 if (cc->tcg_ops->cpu_exec_enter) { 492 cc->tcg_ops->cpu_exec_enter(cpu); 493 } 494 } 495 496 static void cpu_exec_exit(CPUState *cpu) 497 { 498 CPUClass *cc = CPU_GET_CLASS(cpu); 499 500 if (cc->tcg_ops->cpu_exec_exit) { 501 cc->tcg_ops->cpu_exec_exit(cpu); 502 } 503 } 504 505 void cpu_exec_step_atomic(CPUState *cpu) 506 { 507 CPUArchState *env = cpu->env_ptr; 508 TranslationBlock *tb; 509 target_ulong cs_base, pc; 510 uint32_t flags, cflags; 511 int tb_exit; 512 513 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 514 start_exclusive(); 515 g_assert(cpu == current_cpu); 516 g_assert(!cpu->running); 517 cpu->running = true; 518 519 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 520 521 cflags = curr_cflags(cpu); 522 /* Execute in a serial context. */ 523 cflags &= ~CF_PARALLEL; 524 /* After 1 insn, return and release the exclusive lock. */ 525 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 526 /* 527 * No need to check_for_breakpoints here. 528 * We only arrive in cpu_exec_step_atomic after beginning execution 529 * of an insn that includes an atomic operation we can't handle. 530 * Any breakpoint for this insn will have been recognized earlier. 531 */ 532 533 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 534 if (tb == NULL) { 535 mmap_lock(); 536 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 537 mmap_unlock(); 538 } 539 540 cpu_exec_enter(cpu); 541 /* execute the generated code */ 542 trace_exec_tb(tb, pc); 543 cpu_tb_exec(cpu, tb, &tb_exit); 544 cpu_exec_exit(cpu); 545 } else { 546 #ifndef CONFIG_SOFTMMU 547 clear_helper_retaddr(); 548 if (have_mmap_lock()) { 549 mmap_unlock(); 550 } 551 #endif 552 if (qemu_mutex_iothread_locked()) { 553 qemu_mutex_unlock_iothread(); 554 } 555 assert_no_pages_locked(); 556 qemu_plugin_disable_mem_helpers(cpu); 557 } 558 559 /* 560 * As we start the exclusive region before codegen we must still 561 * be in the region if we longjump out of either the codegen or 562 * the execution. 563 */ 564 g_assert(cpu_in_exclusive_context(cpu)); 565 cpu->running = false; 566 end_exclusive(); 567 } 568 569 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 570 { 571 if (TCG_TARGET_HAS_direct_jump) { 572 uintptr_t offset = tb->jmp_target_arg[n]; 573 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; 574 uintptr_t jmp_rx = tc_ptr + offset; 575 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 576 tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr); 577 } else { 578 tb->jmp_target_arg[n] = addr; 579 } 580 } 581 582 static inline void tb_add_jump(TranslationBlock *tb, int n, 583 TranslationBlock *tb_next) 584 { 585 uintptr_t old; 586 587 qemu_thread_jit_write(); 588 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 589 qemu_spin_lock(&tb_next->jmp_lock); 590 591 /* make sure the destination TB is valid */ 592 if (tb_next->cflags & CF_INVALID) { 593 goto out_unlock_next; 594 } 595 /* Atomically claim the jump destination slot only if it was NULL */ 596 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 597 (uintptr_t)tb_next); 598 if (old) { 599 goto out_unlock_next; 600 } 601 602 /* patch the native jump address */ 603 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 604 605 /* add in TB jmp list */ 606 tb->jmp_list_next[n] = tb_next->jmp_list_head; 607 tb_next->jmp_list_head = (uintptr_t)tb | n; 608 609 qemu_spin_unlock(&tb_next->jmp_lock); 610 611 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 612 tb->tc.ptr, n, tb_next->tc.ptr); 613 return; 614 615 out_unlock_next: 616 qemu_spin_unlock(&tb_next->jmp_lock); 617 return; 618 } 619 620 static inline bool cpu_handle_halt(CPUState *cpu) 621 { 622 #ifndef CONFIG_USER_ONLY 623 if (cpu->halted) { 624 #if defined(TARGET_I386) 625 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) { 626 X86CPU *x86_cpu = X86_CPU(cpu); 627 qemu_mutex_lock_iothread(); 628 apic_poll_irq(x86_cpu->apic_state); 629 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 630 qemu_mutex_unlock_iothread(); 631 } 632 #endif /* TARGET_I386 */ 633 if (!cpu_has_work(cpu)) { 634 return true; 635 } 636 637 cpu->halted = 0; 638 } 639 #endif /* !CONFIG_USER_ONLY */ 640 641 return false; 642 } 643 644 static inline void cpu_handle_debug_exception(CPUState *cpu) 645 { 646 CPUClass *cc = CPU_GET_CLASS(cpu); 647 CPUWatchpoint *wp; 648 649 if (!cpu->watchpoint_hit) { 650 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 651 wp->flags &= ~BP_WATCHPOINT_HIT; 652 } 653 } 654 655 if (cc->tcg_ops->debug_excp_handler) { 656 cc->tcg_ops->debug_excp_handler(cpu); 657 } 658 } 659 660 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 661 { 662 if (cpu->exception_index < 0) { 663 #ifndef CONFIG_USER_ONLY 664 if (replay_has_exception() 665 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) { 666 /* Execute just one insn to trigger exception pending in the log */ 667 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 668 | CF_NOIRQ | 1; 669 } 670 #endif 671 return false; 672 } 673 if (cpu->exception_index >= EXCP_INTERRUPT) { 674 /* exit request from the cpu execution loop */ 675 *ret = cpu->exception_index; 676 if (*ret == EXCP_DEBUG) { 677 cpu_handle_debug_exception(cpu); 678 } 679 cpu->exception_index = -1; 680 return true; 681 } else { 682 #if defined(CONFIG_USER_ONLY) 683 /* if user mode only, we simulate a fake exception 684 which will be handled outside the cpu execution 685 loop */ 686 #if defined(TARGET_I386) 687 CPUClass *cc = CPU_GET_CLASS(cpu); 688 cc->tcg_ops->fake_user_interrupt(cpu); 689 #endif /* TARGET_I386 */ 690 *ret = cpu->exception_index; 691 cpu->exception_index = -1; 692 return true; 693 #else 694 if (replay_exception()) { 695 CPUClass *cc = CPU_GET_CLASS(cpu); 696 qemu_mutex_lock_iothread(); 697 cc->tcg_ops->do_interrupt(cpu); 698 qemu_mutex_unlock_iothread(); 699 cpu->exception_index = -1; 700 701 if (unlikely(cpu->singlestep_enabled)) { 702 /* 703 * After processing the exception, ensure an EXCP_DEBUG is 704 * raised when single-stepping so that GDB doesn't miss the 705 * next instruction. 706 */ 707 *ret = EXCP_DEBUG; 708 cpu_handle_debug_exception(cpu); 709 return true; 710 } 711 } else if (!replay_has_interrupt()) { 712 /* give a chance to iothread in replay mode */ 713 *ret = EXCP_INTERRUPT; 714 return true; 715 } 716 #endif 717 } 718 719 return false; 720 } 721 722 #ifndef CONFIG_USER_ONLY 723 /* 724 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a 725 * "real" interrupt event later. It does not need to be recorded for 726 * replay purposes. 727 */ 728 static inline bool need_replay_interrupt(int interrupt_request) 729 { 730 #if defined(TARGET_I386) 731 return !(interrupt_request & CPU_INTERRUPT_POLL); 732 #else 733 return true; 734 #endif 735 } 736 #endif /* !CONFIG_USER_ONLY */ 737 738 static inline bool cpu_handle_interrupt(CPUState *cpu, 739 TranslationBlock **last_tb) 740 { 741 /* 742 * If we have requested custom cflags with CF_NOIRQ we should 743 * skip checking here. Any pending interrupts will get picked up 744 * by the next TB we execute under normal cflags. 745 */ 746 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 747 return false; 748 } 749 750 /* Clear the interrupt flag now since we're processing 751 * cpu->interrupt_request and cpu->exit_request. 752 * Ensure zeroing happens before reading cpu->exit_request or 753 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 754 */ 755 qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0); 756 757 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 758 int interrupt_request; 759 qemu_mutex_lock_iothread(); 760 interrupt_request = cpu->interrupt_request; 761 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 762 /* Mask out external interrupts for this step. */ 763 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 764 } 765 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 766 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 767 cpu->exception_index = EXCP_DEBUG; 768 qemu_mutex_unlock_iothread(); 769 return true; 770 } 771 #if !defined(CONFIG_USER_ONLY) 772 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 773 /* Do nothing */ 774 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 775 replay_interrupt(); 776 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 777 cpu->halted = 1; 778 cpu->exception_index = EXCP_HLT; 779 qemu_mutex_unlock_iothread(); 780 return true; 781 } 782 #if defined(TARGET_I386) 783 else if (interrupt_request & CPU_INTERRUPT_INIT) { 784 X86CPU *x86_cpu = X86_CPU(cpu); 785 CPUArchState *env = &x86_cpu->env; 786 replay_interrupt(); 787 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 788 do_cpu_init(x86_cpu); 789 cpu->exception_index = EXCP_HALTED; 790 qemu_mutex_unlock_iothread(); 791 return true; 792 } 793 #else 794 else if (interrupt_request & CPU_INTERRUPT_RESET) { 795 replay_interrupt(); 796 cpu_reset(cpu); 797 qemu_mutex_unlock_iothread(); 798 return true; 799 } 800 #endif /* !TARGET_I386 */ 801 /* The target hook has 3 exit conditions: 802 False when the interrupt isn't processed, 803 True when it is, and we should restart on a new TB, 804 and via longjmp via cpu_loop_exit. */ 805 else { 806 CPUClass *cc = CPU_GET_CLASS(cpu); 807 808 if (cc->tcg_ops->cpu_exec_interrupt && 809 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 810 if (need_replay_interrupt(interrupt_request)) { 811 replay_interrupt(); 812 } 813 /* 814 * After processing the interrupt, ensure an EXCP_DEBUG is 815 * raised when single-stepping so that GDB doesn't miss the 816 * next instruction. 817 */ 818 if (unlikely(cpu->singlestep_enabled)) { 819 cpu->exception_index = EXCP_DEBUG; 820 qemu_mutex_unlock_iothread(); 821 return true; 822 } 823 cpu->exception_index = -1; 824 *last_tb = NULL; 825 } 826 /* The target hook may have updated the 'cpu->interrupt_request'; 827 * reload the 'interrupt_request' value */ 828 interrupt_request = cpu->interrupt_request; 829 } 830 #endif /* !CONFIG_USER_ONLY */ 831 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 832 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 833 /* ensure that no TB jump will be modified as 834 the program flow was changed */ 835 *last_tb = NULL; 836 } 837 838 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 839 qemu_mutex_unlock_iothread(); 840 } 841 842 /* Finally, check if we need to exit to the main loop. */ 843 if (unlikely(qatomic_read(&cpu->exit_request)) 844 || (icount_enabled() 845 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT) 846 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) { 847 qatomic_set(&cpu->exit_request, 0); 848 if (cpu->exception_index == -1) { 849 cpu->exception_index = EXCP_INTERRUPT; 850 } 851 return true; 852 } 853 854 return false; 855 } 856 857 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 858 target_ulong pc, 859 TranslationBlock **last_tb, int *tb_exit) 860 { 861 int32_t insns_left; 862 863 trace_exec_tb(tb, pc); 864 tb = cpu_tb_exec(cpu, tb, tb_exit); 865 if (*tb_exit != TB_EXIT_REQUESTED) { 866 *last_tb = tb; 867 return; 868 } 869 870 *last_tb = NULL; 871 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32); 872 if (insns_left < 0) { 873 /* Something asked us to stop executing chained TBs; just 874 * continue round the main loop. Whatever requested the exit 875 * will also have set something else (eg exit_request or 876 * interrupt_request) which will be handled by 877 * cpu_handle_interrupt. cpu_handle_interrupt will also 878 * clear cpu->icount_decr.u16.high. 879 */ 880 return; 881 } 882 883 /* Instruction counter expired. */ 884 assert(icount_enabled()); 885 #ifndef CONFIG_USER_ONLY 886 /* Ensure global icount has gone forward */ 887 icount_update(cpu); 888 /* Refill decrementer and continue execution. */ 889 insns_left = MIN(0xffff, cpu->icount_budget); 890 cpu_neg(cpu)->icount_decr.u16.low = insns_left; 891 cpu->icount_extra = cpu->icount_budget - insns_left; 892 893 /* 894 * If the next tb has more instructions than we have left to 895 * execute we need to ensure we find/generate a TB with exactly 896 * insns_left instructions in it. 897 */ 898 if (insns_left > 0 && insns_left < tb->icount) { 899 assert(insns_left <= CF_COUNT_MASK); 900 assert(cpu->icount_extra == 0); 901 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 902 } 903 #endif 904 } 905 906 /* main execution loop */ 907 908 int cpu_exec(CPUState *cpu) 909 { 910 int ret; 911 SyncClocks sc = { 0 }; 912 913 /* replay_interrupt may need current_cpu */ 914 current_cpu = cpu; 915 916 if (cpu_handle_halt(cpu)) { 917 return EXCP_HALTED; 918 } 919 920 rcu_read_lock(); 921 922 cpu_exec_enter(cpu); 923 924 /* Calculate difference between guest clock and host clock. 925 * This delay includes the delay of the last cycle, so 926 * what we have to do is sleep until it is 0. As for the 927 * advance/delay we gain here, we try to fix it next time. 928 */ 929 init_delay_params(&sc, cpu); 930 931 /* prepare setjmp context for exception handling */ 932 if (sigsetjmp(cpu->jmp_env, 0) != 0) { 933 #if defined(__clang__) 934 /* 935 * Some compilers wrongly smash all local variables after 936 * siglongjmp (the spec requires that only non-volatile locals 937 * which are changed between the sigsetjmp and siglongjmp are 938 * permitted to be trashed). There were bug reports for gcc 939 * 4.5.0 and clang. The bug is fixed in all versions of gcc 940 * that we support, but is still unfixed in clang: 941 * https://bugs.llvm.org/show_bug.cgi?id=21183 942 * 943 * Reload an essential local variable here for those compilers. 944 * Newer versions of gcc would complain about this code (-Wclobbered), 945 * so we only perform the workaround for clang. 946 */ 947 cpu = current_cpu; 948 #else 949 /* Non-buggy compilers preserve this; assert the correct value. */ 950 g_assert(cpu == current_cpu); 951 #endif 952 953 #ifndef CONFIG_SOFTMMU 954 clear_helper_retaddr(); 955 if (have_mmap_lock()) { 956 mmap_unlock(); 957 } 958 #endif 959 if (qemu_mutex_iothread_locked()) { 960 qemu_mutex_unlock_iothread(); 961 } 962 qemu_plugin_disable_mem_helpers(cpu); 963 964 assert_no_pages_locked(); 965 } 966 967 /* if an exception is pending, we execute it here */ 968 while (!cpu_handle_exception(cpu, &ret)) { 969 TranslationBlock *last_tb = NULL; 970 int tb_exit = 0; 971 972 while (!cpu_handle_interrupt(cpu, &last_tb)) { 973 TranslationBlock *tb; 974 target_ulong cs_base, pc; 975 uint32_t flags, cflags; 976 977 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags); 978 979 /* 980 * When requested, use an exact setting for cflags for the next 981 * execution. This is used for icount, precise smc, and stop- 982 * after-access watchpoints. Since this request should never 983 * have CF_INVALID set, -1 is a convenient invalid value that 984 * does not require tcg headers for cpu_common_reset. 985 */ 986 cflags = cpu->cflags_next_tb; 987 if (cflags == -1) { 988 cflags = curr_cflags(cpu); 989 } else { 990 cpu->cflags_next_tb = -1; 991 } 992 993 if (check_for_breakpoints(cpu, pc, &cflags)) { 994 break; 995 } 996 997 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 998 if (tb == NULL) { 999 uint32_t h; 1000 1001 mmap_lock(); 1002 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 1003 mmap_unlock(); 1004 /* 1005 * We add the TB in the virtual pc hash table 1006 * for the fast lookup 1007 */ 1008 h = tb_jmp_cache_hash_func(pc); 1009 tb_jmp_cache_set(cpu->tb_jmp_cache, h, tb, pc); 1010 } 1011 1012 #ifndef CONFIG_USER_ONLY 1013 /* 1014 * We don't take care of direct jumps when address mapping 1015 * changes in system emulation. So it's not safe to make a 1016 * direct jump to a TB spanning two pages because the mapping 1017 * for the second page can change. 1018 */ 1019 if (tb->page_addr[1] != -1) { 1020 last_tb = NULL; 1021 } 1022 #endif 1023 /* See if we can patch the calling TB. */ 1024 if (last_tb) { 1025 tb_add_jump(last_tb, tb_exit, tb); 1026 } 1027 1028 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1029 1030 /* Try to align the host and virtual clocks 1031 if the guest is in advance */ 1032 align_clocks(&sc, cpu); 1033 } 1034 } 1035 1036 cpu_exec_exit(cpu); 1037 rcu_read_unlock(); 1038 1039 return ret; 1040 } 1041 1042 void tcg_exec_realizefn(CPUState *cpu, Error **errp) 1043 { 1044 static bool tcg_target_initialized; 1045 CPUClass *cc = CPU_GET_CLASS(cpu); 1046 1047 if (!tcg_target_initialized) { 1048 cc->tcg_ops->initialize(); 1049 tcg_target_initialized = true; 1050 } 1051 tlb_init(cpu); 1052 qemu_plugin_vcpu_init_hook(cpu); 1053 1054 #ifndef CONFIG_USER_ONLY 1055 tcg_iommu_init_notifier_list(cpu); 1056 #endif /* !CONFIG_USER_ONLY */ 1057 } 1058 1059 /* undo the initializations in reverse order */ 1060 void tcg_exec_unrealizefn(CPUState *cpu) 1061 { 1062 #ifndef CONFIG_USER_ONLY 1063 tcg_iommu_free_notifier_list(cpu); 1064 #endif /* !CONFIG_USER_ONLY */ 1065 1066 qemu_plugin_vcpu_exit_hook(cpu); 1067 tlb_destroy(cpu); 1068 } 1069 1070 #ifndef CONFIG_USER_ONLY 1071 1072 static void dump_drift_info(GString *buf) 1073 { 1074 if (!icount_enabled()) { 1075 return; 1076 } 1077 1078 g_string_append_printf(buf, "Host - Guest clock %"PRIi64" ms\n", 1079 (cpu_get_clock() - icount_get()) / SCALE_MS); 1080 if (icount_align_option) { 1081 g_string_append_printf(buf, "Max guest delay %"PRIi64" ms\n", 1082 -max_delay / SCALE_MS); 1083 g_string_append_printf(buf, "Max guest advance %"PRIi64" ms\n", 1084 max_advance / SCALE_MS); 1085 } else { 1086 g_string_append_printf(buf, "Max guest delay NA\n"); 1087 g_string_append_printf(buf, "Max guest advance NA\n"); 1088 } 1089 } 1090 1091 HumanReadableText *qmp_x_query_jit(Error **errp) 1092 { 1093 g_autoptr(GString) buf = g_string_new(""); 1094 1095 if (!tcg_enabled()) { 1096 error_setg(errp, "JIT information is only available with accel=tcg"); 1097 return NULL; 1098 } 1099 1100 dump_exec_info(buf); 1101 dump_drift_info(buf); 1102 1103 return human_readable_text_from_str(buf); 1104 } 1105 1106 HumanReadableText *qmp_x_query_opcount(Error **errp) 1107 { 1108 g_autoptr(GString) buf = g_string_new(""); 1109 1110 if (!tcg_enabled()) { 1111 error_setg(errp, "Opcode count information is only available with accel=tcg"); 1112 return NULL; 1113 } 1114 1115 tcg_dump_op_count(buf); 1116 1117 return human_readable_text_from_str(buf); 1118 } 1119 1120 #ifdef CONFIG_PROFILER 1121 1122 int64_t dev_time; 1123 1124 HumanReadableText *qmp_x_query_profile(Error **errp) 1125 { 1126 g_autoptr(GString) buf = g_string_new(""); 1127 static int64_t last_cpu_exec_time; 1128 int64_t cpu_exec_time; 1129 int64_t delta; 1130 1131 cpu_exec_time = tcg_cpu_exec_time(); 1132 delta = cpu_exec_time - last_cpu_exec_time; 1133 1134 g_string_append_printf(buf, "async time %" PRId64 " (%0.3f)\n", 1135 dev_time, dev_time / (double)NANOSECONDS_PER_SECOND); 1136 g_string_append_printf(buf, "qemu time %" PRId64 " (%0.3f)\n", 1137 delta, delta / (double)NANOSECONDS_PER_SECOND); 1138 last_cpu_exec_time = cpu_exec_time; 1139 dev_time = 0; 1140 1141 return human_readable_text_from_str(buf); 1142 } 1143 #else 1144 HumanReadableText *qmp_x_query_profile(Error **errp) 1145 { 1146 error_setg(errp, "Internal profiler not compiled"); 1147 return NULL; 1148 } 1149 #endif 1150 1151 #endif /* !CONFIG_USER_ONLY */ 1152