1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "trace.h" 22 #include "disas/disas.h" 23 #include "exec/exec-all.h" 24 #include "tcg.h" 25 #include "qemu/atomic.h" 26 #include "sysemu/qtest.h" 27 #include "qemu/timer.h" 28 #include "exec/address-spaces.h" 29 #include "qemu/rcu.h" 30 #include "exec/tb-hash.h" 31 #include "exec/tb-lookup.h" 32 #include "exec/log.h" 33 #include "qemu/main-loop.h" 34 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 35 #include "hw/i386/apic.h" 36 #endif 37 #include "sysemu/cpus.h" 38 #include "sysemu/replay.h" 39 40 /* -icount align implementation. */ 41 42 typedef struct SyncClocks { 43 int64_t diff_clk; 44 int64_t last_cpu_icount; 45 int64_t realtime_clock; 46 } SyncClocks; 47 48 #if !defined(CONFIG_USER_ONLY) 49 /* Allow the guest to have a max 3ms advance. 50 * The difference between the 2 clocks could therefore 51 * oscillate around 0. 52 */ 53 #define VM_CLOCK_ADVANCE 3000000 54 #define THRESHOLD_REDUCE 1.5 55 #define MAX_DELAY_PRINT_RATE 2000000000LL 56 #define MAX_NB_PRINTS 100 57 58 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 59 { 60 int64_t cpu_icount; 61 62 if (!icount_align_option) { 63 return; 64 } 65 66 cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; 67 sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount); 68 sc->last_cpu_icount = cpu_icount; 69 70 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 71 #ifndef _WIN32 72 struct timespec sleep_delay, rem_delay; 73 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 74 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 75 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 76 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 77 } else { 78 sc->diff_clk = 0; 79 } 80 #else 81 Sleep(sc->diff_clk / SCALE_MS); 82 sc->diff_clk = 0; 83 #endif 84 } 85 } 86 87 static void print_delay(const SyncClocks *sc) 88 { 89 static float threshold_delay; 90 static int64_t last_realtime_clock; 91 static int nb_prints; 92 93 if (icount_align_option && 94 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 95 nb_prints < MAX_NB_PRINTS) { 96 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 97 (-sc->diff_clk / (float)1000000000LL < 98 (threshold_delay - THRESHOLD_REDUCE))) { 99 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 100 printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 101 threshold_delay - 1, 102 threshold_delay); 103 nb_prints++; 104 last_realtime_clock = sc->realtime_clock; 105 } 106 } 107 } 108 109 static void init_delay_params(SyncClocks *sc, 110 const CPUState *cpu) 111 { 112 if (!icount_align_option) { 113 return; 114 } 115 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 116 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 117 sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; 118 if (sc->diff_clk < max_delay) { 119 max_delay = sc->diff_clk; 120 } 121 if (sc->diff_clk > max_advance) { 122 max_advance = sc->diff_clk; 123 } 124 125 /* Print every 2s max if the guest is late. We limit the number 126 of printed messages to NB_PRINT_MAX(currently 100) */ 127 print_delay(sc); 128 } 129 #else 130 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 131 { 132 } 133 134 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 135 { 136 } 137 #endif /* CONFIG USER ONLY */ 138 139 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 140 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb) 141 { 142 CPUArchState *env = cpu->env_ptr; 143 uintptr_t ret; 144 TranslationBlock *last_tb; 145 int tb_exit; 146 uint8_t *tb_ptr = itb->tc.ptr; 147 148 qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc, 149 "Trace %d: %p [" 150 TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n", 151 cpu->cpu_index, itb->tc.ptr, 152 itb->cs_base, itb->pc, itb->flags, 153 lookup_symbol(itb->pc)); 154 155 #if defined(DEBUG_DISAS) 156 if (qemu_loglevel_mask(CPU_LOG_TB_CPU) 157 && qemu_log_in_addr_range(itb->pc)) { 158 qemu_log_lock(); 159 #if defined(TARGET_I386) 160 log_cpu_state(cpu, CPU_DUMP_CCOP); 161 #else 162 log_cpu_state(cpu, 0); 163 #endif 164 qemu_log_unlock(); 165 } 166 #endif /* DEBUG_DISAS */ 167 168 cpu->can_do_io = !use_icount; 169 ret = tcg_qemu_tb_exec(env, tb_ptr); 170 cpu->can_do_io = 1; 171 last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 172 tb_exit = ret & TB_EXIT_MASK; 173 trace_exec_tb_exit(last_tb, tb_exit); 174 175 if (tb_exit > TB_EXIT_IDX1) { 176 /* We didn't start executing this TB (eg because the instruction 177 * counter hit zero); we must restore the guest PC to the address 178 * of the start of the TB. 179 */ 180 CPUClass *cc = CPU_GET_CLASS(cpu); 181 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, 182 "Stopped execution of TB chain before %p [" 183 TARGET_FMT_lx "] %s\n", 184 last_tb->tc.ptr, last_tb->pc, 185 lookup_symbol(last_tb->pc)); 186 if (cc->synchronize_from_tb) { 187 cc->synchronize_from_tb(cpu, last_tb); 188 } else { 189 assert(cc->set_pc); 190 cc->set_pc(cpu, last_tb->pc); 191 } 192 } 193 return ret; 194 } 195 196 #ifndef CONFIG_USER_ONLY 197 /* Execute the code without caching the generated code. An interpreter 198 could be used if available. */ 199 static void cpu_exec_nocache(CPUState *cpu, int max_cycles, 200 TranslationBlock *orig_tb, bool ignore_icount) 201 { 202 TranslationBlock *tb; 203 uint32_t cflags = curr_cflags() | CF_NOCACHE; 204 205 if (ignore_icount) { 206 cflags &= ~CF_USE_ICOUNT; 207 } 208 209 /* Should never happen. 210 We only end up here when an existing TB is too long. */ 211 cflags |= MIN(max_cycles, CF_COUNT_MASK); 212 213 tb_lock(); 214 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, 215 orig_tb->flags, cflags); 216 tb->orig_tb = orig_tb; 217 tb_unlock(); 218 219 /* execute the generated code */ 220 trace_exec_tb_nocache(tb, tb->pc); 221 cpu_tb_exec(cpu, tb); 222 223 tb_lock(); 224 tb_phys_invalidate(tb, -1); 225 tb_remove(tb); 226 tb_unlock(); 227 } 228 #endif 229 230 void cpu_exec_step_atomic(CPUState *cpu) 231 { 232 CPUClass *cc = CPU_GET_CLASS(cpu); 233 TranslationBlock *tb; 234 target_ulong cs_base, pc; 235 uint32_t flags; 236 uint32_t cflags = 1; 237 uint32_t cf_mask = cflags & CF_HASH_MASK; 238 /* volatile because we modify it between setjmp and longjmp */ 239 volatile bool in_exclusive_region = false; 240 241 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 242 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 243 if (tb == NULL) { 244 mmap_lock(); 245 tb_lock(); 246 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask); 247 if (likely(tb == NULL)) { 248 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 249 } 250 tb_unlock(); 251 mmap_unlock(); 252 } 253 254 start_exclusive(); 255 256 /* Since we got here, we know that parallel_cpus must be true. */ 257 parallel_cpus = false; 258 in_exclusive_region = true; 259 cc->cpu_exec_enter(cpu); 260 /* execute the generated code */ 261 trace_exec_tb(tb, pc); 262 cpu_tb_exec(cpu, tb); 263 cc->cpu_exec_exit(cpu); 264 } else { 265 /* We may have exited due to another problem here, so we need 266 * to reset any tb_locks we may have taken but didn't release. 267 * The mmap_lock is dropped by tb_gen_code if it runs out of 268 * memory. 269 */ 270 #ifndef CONFIG_SOFTMMU 271 tcg_debug_assert(!have_mmap_lock()); 272 #endif 273 tb_lock_reset(); 274 } 275 276 if (in_exclusive_region) { 277 /* We might longjump out of either the codegen or the 278 * execution, so must make sure we only end the exclusive 279 * region if we started it. 280 */ 281 parallel_cpus = true; 282 end_exclusive(); 283 } 284 } 285 286 struct tb_desc { 287 target_ulong pc; 288 target_ulong cs_base; 289 CPUArchState *env; 290 tb_page_addr_t phys_page1; 291 uint32_t flags; 292 uint32_t cf_mask; 293 uint32_t trace_vcpu_dstate; 294 }; 295 296 static bool tb_cmp(const void *p, const void *d) 297 { 298 const TranslationBlock *tb = p; 299 const struct tb_desc *desc = d; 300 301 if (tb->pc == desc->pc && 302 tb->page_addr[0] == desc->phys_page1 && 303 tb->cs_base == desc->cs_base && 304 tb->flags == desc->flags && 305 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 306 (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) { 307 /* check next page if needed */ 308 if (tb->page_addr[1] == -1) { 309 return true; 310 } else { 311 tb_page_addr_t phys_page2; 312 target_ulong virt_page2; 313 314 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 315 phys_page2 = get_page_addr_code(desc->env, virt_page2); 316 if (tb->page_addr[1] == phys_page2) { 317 return true; 318 } 319 } 320 } 321 return false; 322 } 323 324 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 325 target_ulong cs_base, uint32_t flags, 326 uint32_t cf_mask) 327 { 328 tb_page_addr_t phys_pc; 329 struct tb_desc desc; 330 uint32_t h; 331 332 desc.env = (CPUArchState *)cpu->env_ptr; 333 desc.cs_base = cs_base; 334 desc.flags = flags; 335 desc.cf_mask = cf_mask; 336 desc.trace_vcpu_dstate = *cpu->trace_dstate; 337 desc.pc = pc; 338 phys_pc = get_page_addr_code(desc.env, pc); 339 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; 340 h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate); 341 return qht_lookup(&tb_ctx.htable, tb_cmp, &desc, h); 342 } 343 344 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 345 { 346 if (TCG_TARGET_HAS_direct_jump) { 347 uintptr_t offset = tb->jmp_target_arg[n]; 348 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; 349 tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr); 350 } else { 351 tb->jmp_target_arg[n] = addr; 352 } 353 } 354 355 /* Called with tb_lock held. */ 356 static inline void tb_add_jump(TranslationBlock *tb, int n, 357 TranslationBlock *tb_next) 358 { 359 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 360 if (tb->jmp_list_next[n]) { 361 /* Another thread has already done this while we were 362 * outside of the lock; nothing to do in this case */ 363 return; 364 } 365 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 366 "Linking TBs %p [" TARGET_FMT_lx 367 "] index %d -> %p [" TARGET_FMT_lx "]\n", 368 tb->tc.ptr, tb->pc, n, 369 tb_next->tc.ptr, tb_next->pc); 370 371 /* patch the native jump address */ 372 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 373 374 /* add in TB jmp circular list */ 375 tb->jmp_list_next[n] = tb_next->jmp_list_first; 376 tb_next->jmp_list_first = (uintptr_t)tb | n; 377 } 378 379 static inline TranslationBlock *tb_find(CPUState *cpu, 380 TranslationBlock *last_tb, 381 int tb_exit, uint32_t cf_mask) 382 { 383 TranslationBlock *tb; 384 target_ulong cs_base, pc; 385 uint32_t flags; 386 bool acquired_tb_lock = false; 387 388 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 389 if (tb == NULL) { 390 /* mmap_lock is needed by tb_gen_code, and mmap_lock must be 391 * taken outside tb_lock. As system emulation is currently 392 * single threaded the locks are NOPs. 393 */ 394 mmap_lock(); 395 tb_lock(); 396 acquired_tb_lock = true; 397 398 /* There's a chance that our desired tb has been translated while 399 * taking the locks so we check again inside the lock. 400 */ 401 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask); 402 if (likely(tb == NULL)) { 403 /* if no translated code available, then translate it now */ 404 tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask); 405 } 406 407 mmap_unlock(); 408 /* We add the TB in the virtual pc hash table for the fast lookup */ 409 atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); 410 } 411 #ifndef CONFIG_USER_ONLY 412 /* We don't take care of direct jumps when address mapping changes in 413 * system emulation. So it's not safe to make a direct jump to a TB 414 * spanning two pages because the mapping for the second page can change. 415 */ 416 if (tb->page_addr[1] != -1) { 417 last_tb = NULL; 418 } 419 #endif 420 /* See if we can patch the calling TB. */ 421 if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 422 if (!acquired_tb_lock) { 423 tb_lock(); 424 acquired_tb_lock = true; 425 } 426 if (!(tb->cflags & CF_INVALID)) { 427 tb_add_jump(last_tb, tb_exit, tb); 428 } 429 } 430 if (acquired_tb_lock) { 431 tb_unlock(); 432 } 433 return tb; 434 } 435 436 static inline bool cpu_handle_halt(CPUState *cpu) 437 { 438 if (cpu->halted) { 439 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 440 if ((cpu->interrupt_request & CPU_INTERRUPT_POLL) 441 && replay_interrupt()) { 442 X86CPU *x86_cpu = X86_CPU(cpu); 443 qemu_mutex_lock_iothread(); 444 apic_poll_irq(x86_cpu->apic_state); 445 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 446 qemu_mutex_unlock_iothread(); 447 } 448 #endif 449 if (!cpu_has_work(cpu)) { 450 return true; 451 } 452 453 cpu->halted = 0; 454 } 455 456 return false; 457 } 458 459 static inline void cpu_handle_debug_exception(CPUState *cpu) 460 { 461 CPUClass *cc = CPU_GET_CLASS(cpu); 462 CPUWatchpoint *wp; 463 464 if (!cpu->watchpoint_hit) { 465 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 466 wp->flags &= ~BP_WATCHPOINT_HIT; 467 } 468 } 469 470 cc->debug_excp_handler(cpu); 471 } 472 473 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 474 { 475 if (cpu->exception_index < 0) { 476 #ifndef CONFIG_USER_ONLY 477 if (replay_has_exception() 478 && cpu->icount_decr.u16.low + cpu->icount_extra == 0) { 479 /* try to cause an exception pending in the log */ 480 cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true); 481 } 482 #endif 483 if (cpu->exception_index < 0) { 484 return false; 485 } 486 } 487 488 if (cpu->exception_index >= EXCP_INTERRUPT) { 489 /* exit request from the cpu execution loop */ 490 *ret = cpu->exception_index; 491 if (*ret == EXCP_DEBUG) { 492 cpu_handle_debug_exception(cpu); 493 } 494 cpu->exception_index = -1; 495 return true; 496 } else { 497 #if defined(CONFIG_USER_ONLY) 498 /* if user mode only, we simulate a fake exception 499 which will be handled outside the cpu execution 500 loop */ 501 #if defined(TARGET_I386) 502 CPUClass *cc = CPU_GET_CLASS(cpu); 503 cc->do_interrupt(cpu); 504 #endif 505 *ret = cpu->exception_index; 506 cpu->exception_index = -1; 507 return true; 508 #else 509 if (replay_exception()) { 510 CPUClass *cc = CPU_GET_CLASS(cpu); 511 qemu_mutex_lock_iothread(); 512 cc->do_interrupt(cpu); 513 qemu_mutex_unlock_iothread(); 514 cpu->exception_index = -1; 515 } else if (!replay_has_interrupt()) { 516 /* give a chance to iothread in replay mode */ 517 *ret = EXCP_INTERRUPT; 518 return true; 519 } 520 #endif 521 } 522 523 return false; 524 } 525 526 static inline bool cpu_handle_interrupt(CPUState *cpu, 527 TranslationBlock **last_tb) 528 { 529 CPUClass *cc = CPU_GET_CLASS(cpu); 530 531 /* Clear the interrupt flag now since we're processing 532 * cpu->interrupt_request and cpu->exit_request. 533 * Ensure zeroing happens before reading cpu->exit_request or 534 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 535 */ 536 atomic_mb_set(&cpu->icount_decr.u16.high, 0); 537 538 if (unlikely(atomic_read(&cpu->interrupt_request))) { 539 int interrupt_request; 540 qemu_mutex_lock_iothread(); 541 interrupt_request = cpu->interrupt_request; 542 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 543 /* Mask out external interrupts for this step. */ 544 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 545 } 546 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 547 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 548 cpu->exception_index = EXCP_DEBUG; 549 qemu_mutex_unlock_iothread(); 550 return true; 551 } 552 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 553 /* Do nothing */ 554 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 555 replay_interrupt(); 556 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 557 cpu->halted = 1; 558 cpu->exception_index = EXCP_HLT; 559 qemu_mutex_unlock_iothread(); 560 return true; 561 } 562 #if defined(TARGET_I386) 563 else if (interrupt_request & CPU_INTERRUPT_INIT) { 564 X86CPU *x86_cpu = X86_CPU(cpu); 565 CPUArchState *env = &x86_cpu->env; 566 replay_interrupt(); 567 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 568 do_cpu_init(x86_cpu); 569 cpu->exception_index = EXCP_HALTED; 570 qemu_mutex_unlock_iothread(); 571 return true; 572 } 573 #else 574 else if (interrupt_request & CPU_INTERRUPT_RESET) { 575 replay_interrupt(); 576 cpu_reset(cpu); 577 qemu_mutex_unlock_iothread(); 578 return true; 579 } 580 #endif 581 /* The target hook has 3 exit conditions: 582 False when the interrupt isn't processed, 583 True when it is, and we should restart on a new TB, 584 and via longjmp via cpu_loop_exit. */ 585 else { 586 if (cc->cpu_exec_interrupt(cpu, interrupt_request)) { 587 replay_interrupt(); 588 *last_tb = NULL; 589 } 590 /* The target hook may have updated the 'cpu->interrupt_request'; 591 * reload the 'interrupt_request' value */ 592 interrupt_request = cpu->interrupt_request; 593 } 594 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 595 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 596 /* ensure that no TB jump will be modified as 597 the program flow was changed */ 598 *last_tb = NULL; 599 } 600 601 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 602 qemu_mutex_unlock_iothread(); 603 } 604 605 /* Finally, check if we need to exit to the main loop. */ 606 if (unlikely(atomic_read(&cpu->exit_request) 607 || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) { 608 atomic_set(&cpu->exit_request, 0); 609 cpu->exception_index = EXCP_INTERRUPT; 610 return true; 611 } 612 613 return false; 614 } 615 616 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 617 TranslationBlock **last_tb, int *tb_exit) 618 { 619 uintptr_t ret; 620 int32_t insns_left; 621 622 trace_exec_tb(tb, tb->pc); 623 ret = cpu_tb_exec(cpu, tb); 624 tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 625 *tb_exit = ret & TB_EXIT_MASK; 626 if (*tb_exit != TB_EXIT_REQUESTED) { 627 *last_tb = tb; 628 return; 629 } 630 631 *last_tb = NULL; 632 insns_left = atomic_read(&cpu->icount_decr.u32); 633 if (insns_left < 0) { 634 /* Something asked us to stop executing chained TBs; just 635 * continue round the main loop. Whatever requested the exit 636 * will also have set something else (eg exit_request or 637 * interrupt_request) which will be handled by 638 * cpu_handle_interrupt. cpu_handle_interrupt will also 639 * clear cpu->icount_decr.u16.high. 640 */ 641 return; 642 } 643 644 /* Instruction counter expired. */ 645 assert(use_icount); 646 #ifndef CONFIG_USER_ONLY 647 /* Ensure global icount has gone forward */ 648 cpu_update_icount(cpu); 649 /* Refill decrementer and continue execution. */ 650 insns_left = MIN(0xffff, cpu->icount_budget); 651 cpu->icount_decr.u16.low = insns_left; 652 cpu->icount_extra = cpu->icount_budget - insns_left; 653 if (!cpu->icount_extra) { 654 /* Execute any remaining instructions, then let the main loop 655 * handle the next event. 656 */ 657 if (insns_left > 0) { 658 cpu_exec_nocache(cpu, insns_left, tb, false); 659 } 660 } 661 #endif 662 } 663 664 /* main execution loop */ 665 666 int cpu_exec(CPUState *cpu) 667 { 668 CPUClass *cc = CPU_GET_CLASS(cpu); 669 int ret; 670 SyncClocks sc = { 0 }; 671 672 /* replay_interrupt may need current_cpu */ 673 current_cpu = cpu; 674 675 if (cpu_handle_halt(cpu)) { 676 return EXCP_HALTED; 677 } 678 679 rcu_read_lock(); 680 681 cc->cpu_exec_enter(cpu); 682 683 /* Calculate difference between guest clock and host clock. 684 * This delay includes the delay of the last cycle, so 685 * what we have to do is sleep until it is 0. As for the 686 * advance/delay we gain here, we try to fix it next time. 687 */ 688 init_delay_params(&sc, cpu); 689 690 /* prepare setjmp context for exception handling */ 691 if (sigsetjmp(cpu->jmp_env, 0) != 0) { 692 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6) 693 /* Some compilers wrongly smash all local variables after 694 * siglongjmp. There were bug reports for gcc 4.5.0 and clang. 695 * Reload essential local variables here for those compilers. 696 * Newer versions of gcc would complain about this code (-Wclobbered). */ 697 cpu = current_cpu; 698 cc = CPU_GET_CLASS(cpu); 699 #else /* buggy compiler */ 700 /* Assert that the compiler does not smash local variables. */ 701 g_assert(cpu == current_cpu); 702 g_assert(cc == CPU_GET_CLASS(cpu)); 703 #endif /* buggy compiler */ 704 cpu->can_do_io = 1; 705 tb_lock_reset(); 706 if (qemu_mutex_iothread_locked()) { 707 qemu_mutex_unlock_iothread(); 708 } 709 } 710 711 /* if an exception is pending, we execute it here */ 712 while (!cpu_handle_exception(cpu, &ret)) { 713 TranslationBlock *last_tb = NULL; 714 int tb_exit = 0; 715 716 while (!cpu_handle_interrupt(cpu, &last_tb)) { 717 uint32_t cflags = cpu->cflags_next_tb; 718 TranslationBlock *tb; 719 720 /* When requested, use an exact setting for cflags for the next 721 execution. This is used for icount, precise smc, and stop- 722 after-access watchpoints. Since this request should never 723 have CF_INVALID set, -1 is a convenient invalid value that 724 does not require tcg headers for cpu_common_reset. */ 725 if (cflags == -1) { 726 cflags = curr_cflags(); 727 } else { 728 cpu->cflags_next_tb = -1; 729 } 730 731 tb = tb_find(cpu, last_tb, tb_exit, cflags); 732 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); 733 /* Try to align the host and virtual clocks 734 if the guest is in advance */ 735 align_clocks(&sc, cpu); 736 } 737 } 738 739 cc->cpu_exec_exit(cpu); 740 rcu_read_unlock(); 741 742 return ret; 743 } 744