1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "trace.h" 22 #include "disas/disas.h" 23 #include "exec/exec-all.h" 24 #include "tcg.h" 25 #include "qemu/atomic.h" 26 #include "sysemu/qtest.h" 27 #include "qemu/timer.h" 28 #include "qemu/rcu.h" 29 #include "exec/tb-hash.h" 30 #include "exec/tb-lookup.h" 31 #include "exec/log.h" 32 #include "qemu/main-loop.h" 33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 34 #include "hw/i386/apic.h" 35 #endif 36 #include "sysemu/cpus.h" 37 #include "sysemu/replay.h" 38 39 /* -icount align implementation. */ 40 41 typedef struct SyncClocks { 42 int64_t diff_clk; 43 int64_t last_cpu_icount; 44 int64_t realtime_clock; 45 } SyncClocks; 46 47 #if !defined(CONFIG_USER_ONLY) 48 /* Allow the guest to have a max 3ms advance. 49 * The difference between the 2 clocks could therefore 50 * oscillate around 0. 51 */ 52 #define VM_CLOCK_ADVANCE 3000000 53 #define THRESHOLD_REDUCE 1.5 54 #define MAX_DELAY_PRINT_RATE 2000000000LL 55 #define MAX_NB_PRINTS 100 56 57 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 58 { 59 int64_t cpu_icount; 60 61 if (!icount_align_option) { 62 return; 63 } 64 65 cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; 66 sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount); 67 sc->last_cpu_icount = cpu_icount; 68 69 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 70 #ifndef _WIN32 71 struct timespec sleep_delay, rem_delay; 72 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 73 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 74 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 75 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 76 } else { 77 sc->diff_clk = 0; 78 } 79 #else 80 Sleep(sc->diff_clk / SCALE_MS); 81 sc->diff_clk = 0; 82 #endif 83 } 84 } 85 86 static void print_delay(const SyncClocks *sc) 87 { 88 static float threshold_delay; 89 static int64_t last_realtime_clock; 90 static int nb_prints; 91 92 if (icount_align_option && 93 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 94 nb_prints < MAX_NB_PRINTS) { 95 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 96 (-sc->diff_clk / (float)1000000000LL < 97 (threshold_delay - THRESHOLD_REDUCE))) { 98 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 99 printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 100 threshold_delay - 1, 101 threshold_delay); 102 nb_prints++; 103 last_realtime_clock = sc->realtime_clock; 104 } 105 } 106 } 107 108 static void init_delay_params(SyncClocks *sc, 109 const CPUState *cpu) 110 { 111 if (!icount_align_option) { 112 return; 113 } 114 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 115 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 116 sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; 117 if (sc->diff_clk < max_delay) { 118 max_delay = sc->diff_clk; 119 } 120 if (sc->diff_clk > max_advance) { 121 max_advance = sc->diff_clk; 122 } 123 124 /* Print every 2s max if the guest is late. We limit the number 125 of printed messages to NB_PRINT_MAX(currently 100) */ 126 print_delay(sc); 127 } 128 #else 129 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 130 { 131 } 132 133 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 134 { 135 } 136 #endif /* CONFIG USER ONLY */ 137 138 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 139 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb) 140 { 141 CPUArchState *env = cpu->env_ptr; 142 uintptr_t ret; 143 TranslationBlock *last_tb; 144 int tb_exit; 145 uint8_t *tb_ptr = itb->tc.ptr; 146 147 qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc, 148 "Trace %d: %p [" 149 TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n", 150 cpu->cpu_index, itb->tc.ptr, 151 itb->cs_base, itb->pc, itb->flags, 152 lookup_symbol(itb->pc)); 153 154 #if defined(DEBUG_DISAS) 155 if (qemu_loglevel_mask(CPU_LOG_TB_CPU) 156 && qemu_log_in_addr_range(itb->pc)) { 157 qemu_log_lock(); 158 int flags = 0; 159 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 160 flags |= CPU_DUMP_FPU; 161 } 162 #if defined(TARGET_I386) 163 flags |= CPU_DUMP_CCOP; 164 #endif 165 log_cpu_state(cpu, flags); 166 qemu_log_unlock(); 167 } 168 #endif /* DEBUG_DISAS */ 169 170 cpu->can_do_io = !use_icount; 171 ret = tcg_qemu_tb_exec(env, tb_ptr); 172 cpu->can_do_io = 1; 173 last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 174 tb_exit = ret & TB_EXIT_MASK; 175 trace_exec_tb_exit(last_tb, tb_exit); 176 177 if (tb_exit > TB_EXIT_IDX1) { 178 /* We didn't start executing this TB (eg because the instruction 179 * counter hit zero); we must restore the guest PC to the address 180 * of the start of the TB. 181 */ 182 CPUClass *cc = CPU_GET_CLASS(cpu); 183 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, 184 "Stopped execution of TB chain before %p [" 185 TARGET_FMT_lx "] %s\n", 186 last_tb->tc.ptr, last_tb->pc, 187 lookup_symbol(last_tb->pc)); 188 if (cc->synchronize_from_tb) { 189 cc->synchronize_from_tb(cpu, last_tb); 190 } else { 191 assert(cc->set_pc); 192 cc->set_pc(cpu, last_tb->pc); 193 } 194 } 195 return ret; 196 } 197 198 #ifndef CONFIG_USER_ONLY 199 /* Execute the code without caching the generated code. An interpreter 200 could be used if available. */ 201 static void cpu_exec_nocache(CPUState *cpu, int max_cycles, 202 TranslationBlock *orig_tb, bool ignore_icount) 203 { 204 TranslationBlock *tb; 205 uint32_t cflags = curr_cflags() | CF_NOCACHE; 206 207 if (ignore_icount) { 208 cflags &= ~CF_USE_ICOUNT; 209 } 210 211 /* Should never happen. 212 We only end up here when an existing TB is too long. */ 213 cflags |= MIN(max_cycles, CF_COUNT_MASK); 214 215 tb_lock(); 216 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, 217 orig_tb->flags, cflags); 218 tb->orig_tb = orig_tb; 219 tb_unlock(); 220 221 /* execute the generated code */ 222 trace_exec_tb_nocache(tb, tb->pc); 223 cpu_tb_exec(cpu, tb); 224 225 tb_lock(); 226 tb_phys_invalidate(tb, -1); 227 tcg_tb_remove(tb); 228 tb_unlock(); 229 } 230 #endif 231 232 void cpu_exec_step_atomic(CPUState *cpu) 233 { 234 CPUClass *cc = CPU_GET_CLASS(cpu); 235 TranslationBlock *tb; 236 target_ulong cs_base, pc; 237 uint32_t flags; 238 uint32_t cflags = 1; 239 uint32_t cf_mask = cflags & CF_HASH_MASK; 240 /* volatile because we modify it between setjmp and longjmp */ 241 volatile bool in_exclusive_region = false; 242 243 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 244 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 245 if (tb == NULL) { 246 mmap_lock(); 247 tb_lock(); 248 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 249 tb_unlock(); 250 mmap_unlock(); 251 } 252 253 start_exclusive(); 254 255 /* Since we got here, we know that parallel_cpus must be true. */ 256 parallel_cpus = false; 257 in_exclusive_region = true; 258 cc->cpu_exec_enter(cpu); 259 /* execute the generated code */ 260 trace_exec_tb(tb, pc); 261 cpu_tb_exec(cpu, tb); 262 cc->cpu_exec_exit(cpu); 263 } else { 264 /* We may have exited due to another problem here, so we need 265 * to reset any tb_locks we may have taken but didn't release. 266 * The mmap_lock is dropped by tb_gen_code if it runs out of 267 * memory. 268 */ 269 #ifndef CONFIG_SOFTMMU 270 tcg_debug_assert(!have_mmap_lock()); 271 #endif 272 tb_lock_reset(); 273 assert_no_pages_locked(); 274 } 275 276 if (in_exclusive_region) { 277 /* We might longjump out of either the codegen or the 278 * execution, so must make sure we only end the exclusive 279 * region if we started it. 280 */ 281 parallel_cpus = true; 282 end_exclusive(); 283 } 284 } 285 286 struct tb_desc { 287 target_ulong pc; 288 target_ulong cs_base; 289 CPUArchState *env; 290 tb_page_addr_t phys_page1; 291 uint32_t flags; 292 uint32_t cf_mask; 293 uint32_t trace_vcpu_dstate; 294 }; 295 296 static bool tb_lookup_cmp(const void *p, const void *d) 297 { 298 const TranslationBlock *tb = p; 299 const struct tb_desc *desc = d; 300 301 if (tb->pc == desc->pc && 302 tb->page_addr[0] == desc->phys_page1 && 303 tb->cs_base == desc->cs_base && 304 tb->flags == desc->flags && 305 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 306 (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) { 307 /* check next page if needed */ 308 if (tb->page_addr[1] == -1) { 309 return true; 310 } else { 311 tb_page_addr_t phys_page2; 312 target_ulong virt_page2; 313 314 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 315 phys_page2 = get_page_addr_code(desc->env, virt_page2); 316 if (tb->page_addr[1] == phys_page2) { 317 return true; 318 } 319 } 320 } 321 return false; 322 } 323 324 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 325 target_ulong cs_base, uint32_t flags, 326 uint32_t cf_mask) 327 { 328 tb_page_addr_t phys_pc; 329 struct tb_desc desc; 330 uint32_t h; 331 332 desc.env = (CPUArchState *)cpu->env_ptr; 333 desc.cs_base = cs_base; 334 desc.flags = flags; 335 desc.cf_mask = cf_mask; 336 desc.trace_vcpu_dstate = *cpu->trace_dstate; 337 desc.pc = pc; 338 phys_pc = get_page_addr_code(desc.env, pc); 339 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; 340 h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate); 341 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 342 } 343 344 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 345 { 346 if (TCG_TARGET_HAS_direct_jump) { 347 uintptr_t offset = tb->jmp_target_arg[n]; 348 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; 349 tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr); 350 } else { 351 tb->jmp_target_arg[n] = addr; 352 } 353 } 354 355 /* Called with tb_lock held. */ 356 static inline void tb_add_jump(TranslationBlock *tb, int n, 357 TranslationBlock *tb_next) 358 { 359 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 360 if (tb->jmp_list_next[n]) { 361 /* Another thread has already done this while we were 362 * outside of the lock; nothing to do in this case */ 363 return; 364 } 365 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 366 "Linking TBs %p [" TARGET_FMT_lx 367 "] index %d -> %p [" TARGET_FMT_lx "]\n", 368 tb->tc.ptr, tb->pc, n, 369 tb_next->tc.ptr, tb_next->pc); 370 371 /* patch the native jump address */ 372 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 373 374 /* add in TB jmp circular list */ 375 tb->jmp_list_next[n] = tb_next->jmp_list_first; 376 tb_next->jmp_list_first = (uintptr_t)tb | n; 377 } 378 379 static inline TranslationBlock *tb_find(CPUState *cpu, 380 TranslationBlock *last_tb, 381 int tb_exit, uint32_t cf_mask) 382 { 383 TranslationBlock *tb; 384 target_ulong cs_base, pc; 385 uint32_t flags; 386 bool acquired_tb_lock = false; 387 388 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 389 if (tb == NULL) { 390 /* mmap_lock is needed by tb_gen_code, and mmap_lock must be 391 * taken outside tb_lock. As system emulation is currently 392 * single threaded the locks are NOPs. 393 */ 394 mmap_lock(); 395 tb_lock(); 396 acquired_tb_lock = true; 397 398 tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask); 399 400 mmap_unlock(); 401 /* We add the TB in the virtual pc hash table for the fast lookup */ 402 atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); 403 } 404 #ifndef CONFIG_USER_ONLY 405 /* We don't take care of direct jumps when address mapping changes in 406 * system emulation. So it's not safe to make a direct jump to a TB 407 * spanning two pages because the mapping for the second page can change. 408 */ 409 if (tb->page_addr[1] != -1) { 410 last_tb = NULL; 411 } 412 #endif 413 /* See if we can patch the calling TB. */ 414 if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 415 if (!acquired_tb_lock) { 416 tb_lock(); 417 acquired_tb_lock = true; 418 } 419 if (!(tb->cflags & CF_INVALID)) { 420 tb_add_jump(last_tb, tb_exit, tb); 421 } 422 } 423 if (acquired_tb_lock) { 424 tb_unlock(); 425 } 426 return tb; 427 } 428 429 static inline bool cpu_handle_halt(CPUState *cpu) 430 { 431 if (cpu->halted) { 432 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 433 if ((cpu->interrupt_request & CPU_INTERRUPT_POLL) 434 && replay_interrupt()) { 435 X86CPU *x86_cpu = X86_CPU(cpu); 436 qemu_mutex_lock_iothread(); 437 apic_poll_irq(x86_cpu->apic_state); 438 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 439 qemu_mutex_unlock_iothread(); 440 } 441 #endif 442 if (!cpu_has_work(cpu)) { 443 return true; 444 } 445 446 cpu->halted = 0; 447 } 448 449 return false; 450 } 451 452 static inline void cpu_handle_debug_exception(CPUState *cpu) 453 { 454 CPUClass *cc = CPU_GET_CLASS(cpu); 455 CPUWatchpoint *wp; 456 457 if (!cpu->watchpoint_hit) { 458 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 459 wp->flags &= ~BP_WATCHPOINT_HIT; 460 } 461 } 462 463 cc->debug_excp_handler(cpu); 464 } 465 466 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 467 { 468 if (cpu->exception_index < 0) { 469 #ifndef CONFIG_USER_ONLY 470 if (replay_has_exception() 471 && cpu->icount_decr.u16.low + cpu->icount_extra == 0) { 472 /* try to cause an exception pending in the log */ 473 cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true); 474 } 475 #endif 476 if (cpu->exception_index < 0) { 477 return false; 478 } 479 } 480 481 if (cpu->exception_index >= EXCP_INTERRUPT) { 482 /* exit request from the cpu execution loop */ 483 *ret = cpu->exception_index; 484 if (*ret == EXCP_DEBUG) { 485 cpu_handle_debug_exception(cpu); 486 } 487 cpu->exception_index = -1; 488 return true; 489 } else { 490 #if defined(CONFIG_USER_ONLY) 491 /* if user mode only, we simulate a fake exception 492 which will be handled outside the cpu execution 493 loop */ 494 #if defined(TARGET_I386) 495 CPUClass *cc = CPU_GET_CLASS(cpu); 496 cc->do_interrupt(cpu); 497 #endif 498 *ret = cpu->exception_index; 499 cpu->exception_index = -1; 500 return true; 501 #else 502 if (replay_exception()) { 503 CPUClass *cc = CPU_GET_CLASS(cpu); 504 qemu_mutex_lock_iothread(); 505 cc->do_interrupt(cpu); 506 qemu_mutex_unlock_iothread(); 507 cpu->exception_index = -1; 508 } else if (!replay_has_interrupt()) { 509 /* give a chance to iothread in replay mode */ 510 *ret = EXCP_INTERRUPT; 511 return true; 512 } 513 #endif 514 } 515 516 return false; 517 } 518 519 static inline bool cpu_handle_interrupt(CPUState *cpu, 520 TranslationBlock **last_tb) 521 { 522 CPUClass *cc = CPU_GET_CLASS(cpu); 523 524 /* Clear the interrupt flag now since we're processing 525 * cpu->interrupt_request and cpu->exit_request. 526 * Ensure zeroing happens before reading cpu->exit_request or 527 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 528 */ 529 atomic_mb_set(&cpu->icount_decr.u16.high, 0); 530 531 if (unlikely(atomic_read(&cpu->interrupt_request))) { 532 int interrupt_request; 533 qemu_mutex_lock_iothread(); 534 interrupt_request = cpu->interrupt_request; 535 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 536 /* Mask out external interrupts for this step. */ 537 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 538 } 539 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 540 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 541 cpu->exception_index = EXCP_DEBUG; 542 qemu_mutex_unlock_iothread(); 543 return true; 544 } 545 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 546 /* Do nothing */ 547 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 548 replay_interrupt(); 549 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 550 cpu->halted = 1; 551 cpu->exception_index = EXCP_HLT; 552 qemu_mutex_unlock_iothread(); 553 return true; 554 } 555 #if defined(TARGET_I386) 556 else if (interrupt_request & CPU_INTERRUPT_INIT) { 557 X86CPU *x86_cpu = X86_CPU(cpu); 558 CPUArchState *env = &x86_cpu->env; 559 replay_interrupt(); 560 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 561 do_cpu_init(x86_cpu); 562 cpu->exception_index = EXCP_HALTED; 563 qemu_mutex_unlock_iothread(); 564 return true; 565 } 566 #else 567 else if (interrupt_request & CPU_INTERRUPT_RESET) { 568 replay_interrupt(); 569 cpu_reset(cpu); 570 qemu_mutex_unlock_iothread(); 571 return true; 572 } 573 #endif 574 /* The target hook has 3 exit conditions: 575 False when the interrupt isn't processed, 576 True when it is, and we should restart on a new TB, 577 and via longjmp via cpu_loop_exit. */ 578 else { 579 if (cc->cpu_exec_interrupt(cpu, interrupt_request)) { 580 replay_interrupt(); 581 cpu->exception_index = -1; 582 *last_tb = NULL; 583 } 584 /* The target hook may have updated the 'cpu->interrupt_request'; 585 * reload the 'interrupt_request' value */ 586 interrupt_request = cpu->interrupt_request; 587 } 588 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 589 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 590 /* ensure that no TB jump will be modified as 591 the program flow was changed */ 592 *last_tb = NULL; 593 } 594 595 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 596 qemu_mutex_unlock_iothread(); 597 } 598 599 /* Finally, check if we need to exit to the main loop. */ 600 if (unlikely(atomic_read(&cpu->exit_request) 601 || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) { 602 atomic_set(&cpu->exit_request, 0); 603 if (cpu->exception_index == -1) { 604 cpu->exception_index = EXCP_INTERRUPT; 605 } 606 return true; 607 } 608 609 return false; 610 } 611 612 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 613 TranslationBlock **last_tb, int *tb_exit) 614 { 615 uintptr_t ret; 616 int32_t insns_left; 617 618 trace_exec_tb(tb, tb->pc); 619 ret = cpu_tb_exec(cpu, tb); 620 tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 621 *tb_exit = ret & TB_EXIT_MASK; 622 if (*tb_exit != TB_EXIT_REQUESTED) { 623 *last_tb = tb; 624 return; 625 } 626 627 *last_tb = NULL; 628 insns_left = atomic_read(&cpu->icount_decr.u32); 629 if (insns_left < 0) { 630 /* Something asked us to stop executing chained TBs; just 631 * continue round the main loop. Whatever requested the exit 632 * will also have set something else (eg exit_request or 633 * interrupt_request) which will be handled by 634 * cpu_handle_interrupt. cpu_handle_interrupt will also 635 * clear cpu->icount_decr.u16.high. 636 */ 637 return; 638 } 639 640 /* Instruction counter expired. */ 641 assert(use_icount); 642 #ifndef CONFIG_USER_ONLY 643 /* Ensure global icount has gone forward */ 644 cpu_update_icount(cpu); 645 /* Refill decrementer and continue execution. */ 646 insns_left = MIN(0xffff, cpu->icount_budget); 647 cpu->icount_decr.u16.low = insns_left; 648 cpu->icount_extra = cpu->icount_budget - insns_left; 649 if (!cpu->icount_extra) { 650 /* Execute any remaining instructions, then let the main loop 651 * handle the next event. 652 */ 653 if (insns_left > 0) { 654 cpu_exec_nocache(cpu, insns_left, tb, false); 655 } 656 } 657 #endif 658 } 659 660 /* main execution loop */ 661 662 int cpu_exec(CPUState *cpu) 663 { 664 CPUClass *cc = CPU_GET_CLASS(cpu); 665 int ret; 666 SyncClocks sc = { 0 }; 667 668 /* replay_interrupt may need current_cpu */ 669 current_cpu = cpu; 670 671 if (cpu_handle_halt(cpu)) { 672 return EXCP_HALTED; 673 } 674 675 rcu_read_lock(); 676 677 cc->cpu_exec_enter(cpu); 678 679 /* Calculate difference between guest clock and host clock. 680 * This delay includes the delay of the last cycle, so 681 * what we have to do is sleep until it is 0. As for the 682 * advance/delay we gain here, we try to fix it next time. 683 */ 684 init_delay_params(&sc, cpu); 685 686 /* prepare setjmp context for exception handling */ 687 if (sigsetjmp(cpu->jmp_env, 0) != 0) { 688 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6) 689 /* Some compilers wrongly smash all local variables after 690 * siglongjmp. There were bug reports for gcc 4.5.0 and clang. 691 * Reload essential local variables here for those compilers. 692 * Newer versions of gcc would complain about this code (-Wclobbered). */ 693 cpu = current_cpu; 694 cc = CPU_GET_CLASS(cpu); 695 #else /* buggy compiler */ 696 /* Assert that the compiler does not smash local variables. */ 697 g_assert(cpu == current_cpu); 698 g_assert(cc == CPU_GET_CLASS(cpu)); 699 #endif /* buggy compiler */ 700 tb_lock_reset(); 701 if (qemu_mutex_iothread_locked()) { 702 qemu_mutex_unlock_iothread(); 703 } 704 } 705 706 /* if an exception is pending, we execute it here */ 707 while (!cpu_handle_exception(cpu, &ret)) { 708 TranslationBlock *last_tb = NULL; 709 int tb_exit = 0; 710 711 while (!cpu_handle_interrupt(cpu, &last_tb)) { 712 uint32_t cflags = cpu->cflags_next_tb; 713 TranslationBlock *tb; 714 715 /* When requested, use an exact setting for cflags for the next 716 execution. This is used for icount, precise smc, and stop- 717 after-access watchpoints. Since this request should never 718 have CF_INVALID set, -1 is a convenient invalid value that 719 does not require tcg headers for cpu_common_reset. */ 720 if (cflags == -1) { 721 cflags = curr_cflags(); 722 } else { 723 cpu->cflags_next_tb = -1; 724 } 725 726 tb = tb_find(cpu, last_tb, tb_exit, cflags); 727 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); 728 /* Try to align the host and virtual clocks 729 if the guest is in advance */ 730 align_clocks(&sc, cpu); 731 } 732 } 733 734 cc->cpu_exec_exit(cpu); 735 rcu_read_unlock(); 736 737 return ret; 738 } 739