xref: /openbmc/qemu/accel/tcg/cpu-exec.c (revision 835fde4a)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/qemu-print.h"
23 #include "cpu.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 #include "qemu/atomic.h"
30 #include "qemu/compiler.h"
31 #include "qemu/timer.h"
32 #include "qemu/rcu.h"
33 #include "exec/tb-hash.h"
34 #include "exec/tb-lookup.h"
35 #include "exec/log.h"
36 #include "qemu/main-loop.h"
37 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
38 #include "hw/i386/apic.h"
39 #endif
40 #include "sysemu/cpus.h"
41 #include "exec/cpu-all.h"
42 #include "sysemu/cpu-timers.h"
43 #include "sysemu/replay.h"
44 #include "internal.h"
45 
46 /* -icount align implementation. */
47 
48 typedef struct SyncClocks {
49     int64_t diff_clk;
50     int64_t last_cpu_icount;
51     int64_t realtime_clock;
52 } SyncClocks;
53 
54 #if !defined(CONFIG_USER_ONLY)
55 /* Allow the guest to have a max 3ms advance.
56  * The difference between the 2 clocks could therefore
57  * oscillate around 0.
58  */
59 #define VM_CLOCK_ADVANCE 3000000
60 #define THRESHOLD_REDUCE 1.5
61 #define MAX_DELAY_PRINT_RATE 2000000000LL
62 #define MAX_NB_PRINTS 100
63 
64 static int64_t max_delay;
65 static int64_t max_advance;
66 
67 static void align_clocks(SyncClocks *sc, CPUState *cpu)
68 {
69     int64_t cpu_icount;
70 
71     if (!icount_align_option) {
72         return;
73     }
74 
75     cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
76     sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
77     sc->last_cpu_icount = cpu_icount;
78 
79     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
80 #ifndef _WIN32
81         struct timespec sleep_delay, rem_delay;
82         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
83         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
84         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
85             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
86         } else {
87             sc->diff_clk = 0;
88         }
89 #else
90         Sleep(sc->diff_clk / SCALE_MS);
91         sc->diff_clk = 0;
92 #endif
93     }
94 }
95 
96 static void print_delay(const SyncClocks *sc)
97 {
98     static float threshold_delay;
99     static int64_t last_realtime_clock;
100     static int nb_prints;
101 
102     if (icount_align_option &&
103         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
104         nb_prints < MAX_NB_PRINTS) {
105         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
106             (-sc->diff_clk / (float)1000000000LL <
107              (threshold_delay - THRESHOLD_REDUCE))) {
108             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
109             qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
110                         threshold_delay - 1,
111                         threshold_delay);
112             nb_prints++;
113             last_realtime_clock = sc->realtime_clock;
114         }
115     }
116 }
117 
118 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
119 {
120     if (!icount_align_option) {
121         return;
122     }
123     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
124     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
125     sc->last_cpu_icount
126         = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
127     if (sc->diff_clk < max_delay) {
128         max_delay = sc->diff_clk;
129     }
130     if (sc->diff_clk > max_advance) {
131         max_advance = sc->diff_clk;
132     }
133 
134     /* Print every 2s max if the guest is late. We limit the number
135        of printed messages to NB_PRINT_MAX(currently 100) */
136     print_delay(sc);
137 }
138 #else
139 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
140 {
141 }
142 
143 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
144 {
145 }
146 #endif /* CONFIG USER ONLY */
147 
148 /* Execute a TB, and fix up the CPU state afterwards if necessary */
149 /*
150  * Disable CFI checks.
151  * TCG creates binary blobs at runtime, with the transformed code.
152  * A TB is a blob of binary code, created at runtime and called with an
153  * indirect function call. Since such function did not exist at compile time,
154  * the CFI runtime has no way to verify its signature and would fail.
155  * TCG is not considered a security-sensitive part of QEMU so this does not
156  * affect the impact of CFI in environment with high security requirements
157  */
158 static inline TranslationBlock * QEMU_DISABLE_CFI
159 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
160 {
161     CPUArchState *env = cpu->env_ptr;
162     uintptr_t ret;
163     TranslationBlock *last_tb;
164     const void *tb_ptr = itb->tc.ptr;
165 
166     qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
167                            "Trace %d: %p ["
168                            TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n",
169                            cpu->cpu_index, itb->tc.ptr,
170                            itb->cs_base, itb->pc, itb->flags,
171                            lookup_symbol(itb->pc));
172 
173 #if defined(DEBUG_DISAS)
174     if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
175         && qemu_log_in_addr_range(itb->pc)) {
176         FILE *logfile = qemu_log_lock();
177         int flags = 0;
178         if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
179             flags |= CPU_DUMP_FPU;
180         }
181 #if defined(TARGET_I386)
182         flags |= CPU_DUMP_CCOP;
183 #endif
184         log_cpu_state(cpu, flags);
185         qemu_log_unlock(logfile);
186     }
187 #endif /* DEBUG_DISAS */
188 
189     qemu_thread_jit_execute();
190     ret = tcg_qemu_tb_exec(env, tb_ptr);
191     cpu->can_do_io = 1;
192     /*
193      * TODO: Delay swapping back to the read-write region of the TB
194      * until we actually need to modify the TB.  The read-only copy,
195      * coming from the rx region, shares the same host TLB entry as
196      * the code that executed the exit_tb opcode that arrived here.
197      * If we insist on touching both the RX and the RW pages, we
198      * double the host TLB pressure.
199      */
200     last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
201     *tb_exit = ret & TB_EXIT_MASK;
202 
203     trace_exec_tb_exit(last_tb, *tb_exit);
204 
205     if (*tb_exit > TB_EXIT_IDX1) {
206         /* We didn't start executing this TB (eg because the instruction
207          * counter hit zero); we must restore the guest PC to the address
208          * of the start of the TB.
209          */
210         CPUClass *cc = CPU_GET_CLASS(cpu);
211         qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
212                                "Stopped execution of TB chain before %p ["
213                                TARGET_FMT_lx "] %s\n",
214                                last_tb->tc.ptr, last_tb->pc,
215                                lookup_symbol(last_tb->pc));
216         if (cc->tcg_ops->synchronize_from_tb) {
217             cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
218         } else {
219             assert(cc->set_pc);
220             cc->set_pc(cpu, last_tb->pc);
221         }
222     }
223     return last_tb;
224 }
225 
226 
227 static void cpu_exec_enter(CPUState *cpu)
228 {
229     CPUClass *cc = CPU_GET_CLASS(cpu);
230 
231     if (cc->tcg_ops->cpu_exec_enter) {
232         cc->tcg_ops->cpu_exec_enter(cpu);
233     }
234 }
235 
236 static void cpu_exec_exit(CPUState *cpu)
237 {
238     CPUClass *cc = CPU_GET_CLASS(cpu);
239 
240     if (cc->tcg_ops->cpu_exec_exit) {
241         cc->tcg_ops->cpu_exec_exit(cpu);
242     }
243 }
244 
245 void cpu_exec_step_atomic(CPUState *cpu)
246 {
247     CPUArchState *env = (CPUArchState *)cpu->env_ptr;
248     TranslationBlock *tb;
249     target_ulong cs_base, pc;
250     uint32_t flags;
251     uint32_t cflags = (curr_cflags(cpu) & ~CF_PARALLEL) | 1;
252     int tb_exit;
253 
254     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
255         start_exclusive();
256         g_assert(cpu == current_cpu);
257         g_assert(!cpu->running);
258         cpu->running = true;
259 
260         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
261         tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
262 
263         if (tb == NULL) {
264             mmap_lock();
265             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
266             mmap_unlock();
267         }
268 
269         cpu_exec_enter(cpu);
270         /* execute the generated code */
271         trace_exec_tb(tb, pc);
272         cpu_tb_exec(cpu, tb, &tb_exit);
273         cpu_exec_exit(cpu);
274     } else {
275         /*
276          * The mmap_lock is dropped by tb_gen_code if it runs out of
277          * memory.
278          */
279 #ifndef CONFIG_SOFTMMU
280         tcg_debug_assert(!have_mmap_lock());
281 #endif
282         if (qemu_mutex_iothread_locked()) {
283             qemu_mutex_unlock_iothread();
284         }
285         assert_no_pages_locked();
286         qemu_plugin_disable_mem_helpers(cpu);
287     }
288 
289 
290     /*
291      * As we start the exclusive region before codegen we must still
292      * be in the region if we longjump out of either the codegen or
293      * the execution.
294      */
295     g_assert(cpu_in_exclusive_context(cpu));
296     cpu->running = false;
297     end_exclusive();
298 }
299 
300 struct tb_desc {
301     target_ulong pc;
302     target_ulong cs_base;
303     CPUArchState *env;
304     tb_page_addr_t phys_page1;
305     uint32_t flags;
306     uint32_t cflags;
307     uint32_t trace_vcpu_dstate;
308 };
309 
310 static bool tb_lookup_cmp(const void *p, const void *d)
311 {
312     const TranslationBlock *tb = p;
313     const struct tb_desc *desc = d;
314 
315     if (tb->pc == desc->pc &&
316         tb->page_addr[0] == desc->phys_page1 &&
317         tb->cs_base == desc->cs_base &&
318         tb->flags == desc->flags &&
319         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
320         tb_cflags(tb) == desc->cflags) {
321         /* check next page if needed */
322         if (tb->page_addr[1] == -1) {
323             return true;
324         } else {
325             tb_page_addr_t phys_page2;
326             target_ulong virt_page2;
327 
328             virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
329             phys_page2 = get_page_addr_code(desc->env, virt_page2);
330             if (tb->page_addr[1] == phys_page2) {
331                 return true;
332             }
333         }
334     }
335     return false;
336 }
337 
338 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
339                                    target_ulong cs_base, uint32_t flags,
340                                    uint32_t cflags)
341 {
342     tb_page_addr_t phys_pc;
343     struct tb_desc desc;
344     uint32_t h;
345 
346     desc.env = (CPUArchState *)cpu->env_ptr;
347     desc.cs_base = cs_base;
348     desc.flags = flags;
349     desc.cflags = cflags;
350     desc.trace_vcpu_dstate = *cpu->trace_dstate;
351     desc.pc = pc;
352     phys_pc = get_page_addr_code(desc.env, pc);
353     if (phys_pc == -1) {
354         return NULL;
355     }
356     desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
357     h = tb_hash_func(phys_pc, pc, flags, cflags, *cpu->trace_dstate);
358     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
359 }
360 
361 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
362 {
363     if (TCG_TARGET_HAS_direct_jump) {
364         uintptr_t offset = tb->jmp_target_arg[n];
365         uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
366         uintptr_t jmp_rx = tc_ptr + offset;
367         uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
368         tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr);
369     } else {
370         tb->jmp_target_arg[n] = addr;
371     }
372 }
373 
374 static inline void tb_add_jump(TranslationBlock *tb, int n,
375                                TranslationBlock *tb_next)
376 {
377     uintptr_t old;
378 
379     qemu_thread_jit_write();
380     assert(n < ARRAY_SIZE(tb->jmp_list_next));
381     qemu_spin_lock(&tb_next->jmp_lock);
382 
383     /* make sure the destination TB is valid */
384     if (tb_next->cflags & CF_INVALID) {
385         goto out_unlock_next;
386     }
387     /* Atomically claim the jump destination slot only if it was NULL */
388     old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
389                           (uintptr_t)tb_next);
390     if (old) {
391         goto out_unlock_next;
392     }
393 
394     /* patch the native jump address */
395     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
396 
397     /* add in TB jmp list */
398     tb->jmp_list_next[n] = tb_next->jmp_list_head;
399     tb_next->jmp_list_head = (uintptr_t)tb | n;
400 
401     qemu_spin_unlock(&tb_next->jmp_lock);
402 
403     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
404                            "Linking TBs %p [" TARGET_FMT_lx
405                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
406                            tb->tc.ptr, tb->pc, n,
407                            tb_next->tc.ptr, tb_next->pc);
408     return;
409 
410  out_unlock_next:
411     qemu_spin_unlock(&tb_next->jmp_lock);
412     return;
413 }
414 
415 static inline TranslationBlock *tb_find(CPUState *cpu,
416                                         TranslationBlock *last_tb,
417                                         int tb_exit, uint32_t cflags)
418 {
419     CPUArchState *env = (CPUArchState *)cpu->env_ptr;
420     TranslationBlock *tb;
421     target_ulong cs_base, pc;
422     uint32_t flags;
423 
424     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
425 
426     tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
427     if (tb == NULL) {
428         mmap_lock();
429         tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
430         mmap_unlock();
431         /* We add the TB in the virtual pc hash table for the fast lookup */
432         qatomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
433     }
434 #ifndef CONFIG_USER_ONLY
435     /* We don't take care of direct jumps when address mapping changes in
436      * system emulation. So it's not safe to make a direct jump to a TB
437      * spanning two pages because the mapping for the second page can change.
438      */
439     if (tb->page_addr[1] != -1) {
440         last_tb = NULL;
441     }
442 #endif
443     /* See if we can patch the calling TB. */
444     if (last_tb) {
445         tb_add_jump(last_tb, tb_exit, tb);
446     }
447     return tb;
448 }
449 
450 static inline bool cpu_handle_halt(CPUState *cpu)
451 {
452     if (cpu->halted) {
453 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
454         if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
455             X86CPU *x86_cpu = X86_CPU(cpu);
456             qemu_mutex_lock_iothread();
457             apic_poll_irq(x86_cpu->apic_state);
458             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
459             qemu_mutex_unlock_iothread();
460         }
461 #endif
462         if (!cpu_has_work(cpu)) {
463             return true;
464         }
465 
466         cpu->halted = 0;
467     }
468 
469     return false;
470 }
471 
472 static inline void cpu_handle_debug_exception(CPUState *cpu)
473 {
474     CPUClass *cc = CPU_GET_CLASS(cpu);
475     CPUWatchpoint *wp;
476 
477     if (!cpu->watchpoint_hit) {
478         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
479             wp->flags &= ~BP_WATCHPOINT_HIT;
480         }
481     }
482 
483     if (cc->tcg_ops->debug_excp_handler) {
484         cc->tcg_ops->debug_excp_handler(cpu);
485     }
486 }
487 
488 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
489 {
490     if (cpu->exception_index < 0) {
491 #ifndef CONFIG_USER_ONLY
492         if (replay_has_exception()
493             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
494             /* Execute just one insn to trigger exception pending in the log */
495             cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) | 1;
496         }
497 #endif
498         return false;
499     }
500     if (cpu->exception_index >= EXCP_INTERRUPT) {
501         /* exit request from the cpu execution loop */
502         *ret = cpu->exception_index;
503         if (*ret == EXCP_DEBUG) {
504             cpu_handle_debug_exception(cpu);
505         }
506         cpu->exception_index = -1;
507         return true;
508     } else {
509 #if defined(CONFIG_USER_ONLY)
510         /* if user mode only, we simulate a fake exception
511            which will be handled outside the cpu execution
512            loop */
513 #if defined(TARGET_I386)
514         CPUClass *cc = CPU_GET_CLASS(cpu);
515         cc->tcg_ops->do_interrupt(cpu);
516 #endif
517         *ret = cpu->exception_index;
518         cpu->exception_index = -1;
519         return true;
520 #else
521         if (replay_exception()) {
522             CPUClass *cc = CPU_GET_CLASS(cpu);
523             qemu_mutex_lock_iothread();
524             cc->tcg_ops->do_interrupt(cpu);
525             qemu_mutex_unlock_iothread();
526             cpu->exception_index = -1;
527 
528             if (unlikely(cpu->singlestep_enabled)) {
529                 /*
530                  * After processing the exception, ensure an EXCP_DEBUG is
531                  * raised when single-stepping so that GDB doesn't miss the
532                  * next instruction.
533                  */
534                 *ret = EXCP_DEBUG;
535                 cpu_handle_debug_exception(cpu);
536                 return true;
537             }
538         } else if (!replay_has_interrupt()) {
539             /* give a chance to iothread in replay mode */
540             *ret = EXCP_INTERRUPT;
541             return true;
542         }
543 #endif
544     }
545 
546     return false;
547 }
548 
549 /*
550  * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
551  * "real" interrupt event later. It does not need to be recorded for
552  * replay purposes.
553  */
554 static inline bool need_replay_interrupt(int interrupt_request)
555 {
556 #if defined(TARGET_I386)
557     return !(interrupt_request & CPU_INTERRUPT_POLL);
558 #else
559     return true;
560 #endif
561 }
562 
563 static inline bool cpu_handle_interrupt(CPUState *cpu,
564                                         TranslationBlock **last_tb)
565 {
566     CPUClass *cc = CPU_GET_CLASS(cpu);
567 
568     /* Clear the interrupt flag now since we're processing
569      * cpu->interrupt_request and cpu->exit_request.
570      * Ensure zeroing happens before reading cpu->exit_request or
571      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
572      */
573     qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
574 
575     if (unlikely(qatomic_read(&cpu->interrupt_request))) {
576         int interrupt_request;
577         qemu_mutex_lock_iothread();
578         interrupt_request = cpu->interrupt_request;
579         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
580             /* Mask out external interrupts for this step. */
581             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
582         }
583         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
584             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
585             cpu->exception_index = EXCP_DEBUG;
586             qemu_mutex_unlock_iothread();
587             return true;
588         }
589         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
590             /* Do nothing */
591         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
592             replay_interrupt();
593             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
594             cpu->halted = 1;
595             cpu->exception_index = EXCP_HLT;
596             qemu_mutex_unlock_iothread();
597             return true;
598         }
599 #if defined(TARGET_I386)
600         else if (interrupt_request & CPU_INTERRUPT_INIT) {
601             X86CPU *x86_cpu = X86_CPU(cpu);
602             CPUArchState *env = &x86_cpu->env;
603             replay_interrupt();
604             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
605             do_cpu_init(x86_cpu);
606             cpu->exception_index = EXCP_HALTED;
607             qemu_mutex_unlock_iothread();
608             return true;
609         }
610 #else
611         else if (interrupt_request & CPU_INTERRUPT_RESET) {
612             replay_interrupt();
613             cpu_reset(cpu);
614             qemu_mutex_unlock_iothread();
615             return true;
616         }
617 #endif
618         /* The target hook has 3 exit conditions:
619            False when the interrupt isn't processed,
620            True when it is, and we should restart on a new TB,
621            and via longjmp via cpu_loop_exit.  */
622         else {
623             if (cc->tcg_ops->cpu_exec_interrupt &&
624                 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
625                 if (need_replay_interrupt(interrupt_request)) {
626                     replay_interrupt();
627                 }
628                 /*
629                  * After processing the interrupt, ensure an EXCP_DEBUG is
630                  * raised when single-stepping so that GDB doesn't miss the
631                  * next instruction.
632                  */
633                 cpu->exception_index =
634                     (cpu->singlestep_enabled ? EXCP_DEBUG : -1);
635                 *last_tb = NULL;
636             }
637             /* The target hook may have updated the 'cpu->interrupt_request';
638              * reload the 'interrupt_request' value */
639             interrupt_request = cpu->interrupt_request;
640         }
641         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
642             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
643             /* ensure that no TB jump will be modified as
644                the program flow was changed */
645             *last_tb = NULL;
646         }
647 
648         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
649         qemu_mutex_unlock_iothread();
650     }
651 
652     /* Finally, check if we need to exit to the main loop.  */
653     if (unlikely(qatomic_read(&cpu->exit_request))
654         || (icount_enabled()
655             && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
656             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
657         qatomic_set(&cpu->exit_request, 0);
658         if (cpu->exception_index == -1) {
659             cpu->exception_index = EXCP_INTERRUPT;
660         }
661         return true;
662     }
663 
664     return false;
665 }
666 
667 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
668                                     TranslationBlock **last_tb, int *tb_exit)
669 {
670     int32_t insns_left;
671 
672     trace_exec_tb(tb, tb->pc);
673     tb = cpu_tb_exec(cpu, tb, tb_exit);
674     if (*tb_exit != TB_EXIT_REQUESTED) {
675         *last_tb = tb;
676         return;
677     }
678 
679     *last_tb = NULL;
680     insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
681     if (insns_left < 0) {
682         /* Something asked us to stop executing chained TBs; just
683          * continue round the main loop. Whatever requested the exit
684          * will also have set something else (eg exit_request or
685          * interrupt_request) which will be handled by
686          * cpu_handle_interrupt.  cpu_handle_interrupt will also
687          * clear cpu->icount_decr.u16.high.
688          */
689         return;
690     }
691 
692     /* Instruction counter expired.  */
693     assert(icount_enabled());
694 #ifndef CONFIG_USER_ONLY
695     /* Ensure global icount has gone forward */
696     icount_update(cpu);
697     /* Refill decrementer and continue execution.  */
698     insns_left = MIN(CF_COUNT_MASK, cpu->icount_budget);
699     cpu_neg(cpu)->icount_decr.u16.low = insns_left;
700     cpu->icount_extra = cpu->icount_budget - insns_left;
701 
702     /*
703      * If the next tb has more instructions than we have left to
704      * execute we need to ensure we find/generate a TB with exactly
705      * insns_left instructions in it.
706      */
707     if (!cpu->icount_extra && insns_left > 0 && insns_left < tb->icount)  {
708         cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
709     }
710 #endif
711 }
712 
713 /* main execution loop */
714 
715 int cpu_exec(CPUState *cpu)
716 {
717     CPUClass *cc = CPU_GET_CLASS(cpu);
718     int ret;
719     SyncClocks sc = { 0 };
720 
721     /* replay_interrupt may need current_cpu */
722     current_cpu = cpu;
723 
724     if (cpu_handle_halt(cpu)) {
725         return EXCP_HALTED;
726     }
727 
728     rcu_read_lock();
729 
730     cpu_exec_enter(cpu);
731 
732     /* Calculate difference between guest clock and host clock.
733      * This delay includes the delay of the last cycle, so
734      * what we have to do is sleep until it is 0. As for the
735      * advance/delay we gain here, we try to fix it next time.
736      */
737     init_delay_params(&sc, cpu);
738 
739     /* prepare setjmp context for exception handling */
740     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
741 #if defined(__clang__)
742         /*
743          * Some compilers wrongly smash all local variables after
744          * siglongjmp (the spec requires that only non-volatile locals
745          * which are changed between the sigsetjmp and siglongjmp are
746          * permitted to be trashed). There were bug reports for gcc
747          * 4.5.0 and clang.  The bug is fixed in all versions of gcc
748          * that we support, but is still unfixed in clang:
749          *   https://bugs.llvm.org/show_bug.cgi?id=21183
750          *
751          * Reload essential local variables here for those compilers.
752          * Newer versions of gcc would complain about this code (-Wclobbered),
753          * so we only perform the workaround for clang.
754          */
755         cpu = current_cpu;
756         cc = CPU_GET_CLASS(cpu);
757 #else
758         /*
759          * Non-buggy compilers preserve these locals; assert that
760          * they have the correct value.
761          */
762         g_assert(cpu == current_cpu);
763         g_assert(cc == CPU_GET_CLASS(cpu));
764 #endif
765 
766 #ifndef CONFIG_SOFTMMU
767         tcg_debug_assert(!have_mmap_lock());
768 #endif
769         if (qemu_mutex_iothread_locked()) {
770             qemu_mutex_unlock_iothread();
771         }
772         qemu_plugin_disable_mem_helpers(cpu);
773 
774         assert_no_pages_locked();
775     }
776 
777     /* if an exception is pending, we execute it here */
778     while (!cpu_handle_exception(cpu, &ret)) {
779         TranslationBlock *last_tb = NULL;
780         int tb_exit = 0;
781 
782         while (!cpu_handle_interrupt(cpu, &last_tb)) {
783             uint32_t cflags = cpu->cflags_next_tb;
784             TranslationBlock *tb;
785 
786             /* When requested, use an exact setting for cflags for the next
787                execution.  This is used for icount, precise smc, and stop-
788                after-access watchpoints.  Since this request should never
789                have CF_INVALID set, -1 is a convenient invalid value that
790                does not require tcg headers for cpu_common_reset.  */
791             if (cflags == -1) {
792                 cflags = curr_cflags(cpu);
793             } else {
794                 cpu->cflags_next_tb = -1;
795             }
796 
797             tb = tb_find(cpu, last_tb, tb_exit, cflags);
798             cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
799             /* Try to align the host and virtual clocks
800                if the guest is in advance */
801             align_clocks(&sc, cpu);
802         }
803     }
804 
805     cpu_exec_exit(cpu);
806     rcu_read_unlock();
807 
808     return ret;
809 }
810 
811 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
812 {
813     static bool tcg_target_initialized;
814     CPUClass *cc = CPU_GET_CLASS(cpu);
815 
816     if (!tcg_target_initialized) {
817         cc->tcg_ops->initialize();
818         tcg_target_initialized = true;
819     }
820     tlb_init(cpu);
821     qemu_plugin_vcpu_init_hook(cpu);
822 
823 #ifndef CONFIG_USER_ONLY
824     tcg_iommu_init_notifier_list(cpu);
825 #endif /* !CONFIG_USER_ONLY */
826 }
827 
828 /* undo the initializations in reverse order */
829 void tcg_exec_unrealizefn(CPUState *cpu)
830 {
831 #ifndef CONFIG_USER_ONLY
832     tcg_iommu_free_notifier_list(cpu);
833 #endif /* !CONFIG_USER_ONLY */
834 
835     qemu_plugin_vcpu_exit_hook(cpu);
836     tlb_destroy(cpu);
837 }
838 
839 #ifndef CONFIG_USER_ONLY
840 
841 void dump_drift_info(void)
842 {
843     if (!icount_enabled()) {
844         return;
845     }
846 
847     qemu_printf("Host - Guest clock  %"PRIi64" ms\n",
848                 (cpu_get_clock() - icount_get()) / SCALE_MS);
849     if (icount_align_option) {
850         qemu_printf("Max guest delay     %"PRIi64" ms\n",
851                     -max_delay / SCALE_MS);
852         qemu_printf("Max guest advance   %"PRIi64" ms\n",
853                     max_advance / SCALE_MS);
854     } else {
855         qemu_printf("Max guest delay     NA\n");
856         qemu_printf("Max guest advance   NA\n");
857     }
858 }
859 
860 #endif /* !CONFIG_USER_ONLY */
861