xref: /openbmc/qemu/accel/tcg/cpu-exec.c (revision 80adf54e)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "trace.h"
22 #include "disas/disas.h"
23 #include "exec/exec-all.h"
24 #include "tcg.h"
25 #include "qemu/atomic.h"
26 #include "sysemu/qtest.h"
27 #include "qemu/timer.h"
28 #include "exec/address-spaces.h"
29 #include "qemu/rcu.h"
30 #include "exec/tb-hash.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
34 #include "hw/i386/apic.h"
35 #endif
36 #include "sysemu/cpus.h"
37 #include "sysemu/replay.h"
38 
39 /* -icount align implementation. */
40 
41 typedef struct SyncClocks {
42     int64_t diff_clk;
43     int64_t last_cpu_icount;
44     int64_t realtime_clock;
45 } SyncClocks;
46 
47 #if !defined(CONFIG_USER_ONLY)
48 /* Allow the guest to have a max 3ms advance.
49  * The difference between the 2 clocks could therefore
50  * oscillate around 0.
51  */
52 #define VM_CLOCK_ADVANCE 3000000
53 #define THRESHOLD_REDUCE 1.5
54 #define MAX_DELAY_PRINT_RATE 2000000000LL
55 #define MAX_NB_PRINTS 100
56 
57 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
58 {
59     int64_t cpu_icount;
60 
61     if (!icount_align_option) {
62         return;
63     }
64 
65     cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
66     sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
67     sc->last_cpu_icount = cpu_icount;
68 
69     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
70 #ifndef _WIN32
71         struct timespec sleep_delay, rem_delay;
72         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
73         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
74         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
75             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
76         } else {
77             sc->diff_clk = 0;
78         }
79 #else
80         Sleep(sc->diff_clk / SCALE_MS);
81         sc->diff_clk = 0;
82 #endif
83     }
84 }
85 
86 static void print_delay(const SyncClocks *sc)
87 {
88     static float threshold_delay;
89     static int64_t last_realtime_clock;
90     static int nb_prints;
91 
92     if (icount_align_option &&
93         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
94         nb_prints < MAX_NB_PRINTS) {
95         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
96             (-sc->diff_clk / (float)1000000000LL <
97              (threshold_delay - THRESHOLD_REDUCE))) {
98             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
99             printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
100                    threshold_delay - 1,
101                    threshold_delay);
102             nb_prints++;
103             last_realtime_clock = sc->realtime_clock;
104         }
105     }
106 }
107 
108 static void init_delay_params(SyncClocks *sc,
109                               const CPUState *cpu)
110 {
111     if (!icount_align_option) {
112         return;
113     }
114     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
115     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
116     sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
117     if (sc->diff_clk < max_delay) {
118         max_delay = sc->diff_clk;
119     }
120     if (sc->diff_clk > max_advance) {
121         max_advance = sc->diff_clk;
122     }
123 
124     /* Print every 2s max if the guest is late. We limit the number
125        of printed messages to NB_PRINT_MAX(currently 100) */
126     print_delay(sc);
127 }
128 #else
129 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
130 {
131 }
132 
133 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
134 {
135 }
136 #endif /* CONFIG USER ONLY */
137 
138 /* Execute a TB, and fix up the CPU state afterwards if necessary */
139 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
140 {
141     CPUArchState *env = cpu->env_ptr;
142     uintptr_t ret;
143     TranslationBlock *last_tb;
144     int tb_exit;
145     uint8_t *tb_ptr = itb->tc_ptr;
146 
147     qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
148                            "Trace %p [%d: " TARGET_FMT_lx "] %s\n",
149                            itb->tc_ptr, cpu->cpu_index, itb->pc,
150                            lookup_symbol(itb->pc));
151 
152 #if defined(DEBUG_DISAS)
153     if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
154         && qemu_log_in_addr_range(itb->pc)) {
155         qemu_log_lock();
156 #if defined(TARGET_I386)
157         log_cpu_state(cpu, CPU_DUMP_CCOP);
158 #else
159         log_cpu_state(cpu, 0);
160 #endif
161         qemu_log_unlock();
162     }
163 #endif /* DEBUG_DISAS */
164 
165     cpu->can_do_io = !use_icount;
166     ret = tcg_qemu_tb_exec(env, tb_ptr);
167     cpu->can_do_io = 1;
168     last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
169     tb_exit = ret & TB_EXIT_MASK;
170     trace_exec_tb_exit(last_tb, tb_exit);
171 
172     if (tb_exit > TB_EXIT_IDX1) {
173         /* We didn't start executing this TB (eg because the instruction
174          * counter hit zero); we must restore the guest PC to the address
175          * of the start of the TB.
176          */
177         CPUClass *cc = CPU_GET_CLASS(cpu);
178         qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
179                                "Stopped execution of TB chain before %p ["
180                                TARGET_FMT_lx "] %s\n",
181                                last_tb->tc_ptr, last_tb->pc,
182                                lookup_symbol(last_tb->pc));
183         if (cc->synchronize_from_tb) {
184             cc->synchronize_from_tb(cpu, last_tb);
185         } else {
186             assert(cc->set_pc);
187             cc->set_pc(cpu, last_tb->pc);
188         }
189     }
190     return ret;
191 }
192 
193 #ifndef CONFIG_USER_ONLY
194 /* Execute the code without caching the generated code. An interpreter
195    could be used if available. */
196 static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
197                              TranslationBlock *orig_tb, bool ignore_icount)
198 {
199     TranslationBlock *tb;
200 
201     /* Should never happen.
202        We only end up here when an existing TB is too long.  */
203     if (max_cycles > CF_COUNT_MASK)
204         max_cycles = CF_COUNT_MASK;
205 
206     tb_lock();
207     tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, orig_tb->flags,
208                      max_cycles | CF_NOCACHE
209                          | (ignore_icount ? CF_IGNORE_ICOUNT : 0));
210     tb->orig_tb = orig_tb;
211     tb_unlock();
212 
213     /* execute the generated code */
214     trace_exec_tb_nocache(tb, tb->pc);
215     cpu_tb_exec(cpu, tb);
216 
217     tb_lock();
218     tb_phys_invalidate(tb, -1);
219     tb_free(tb);
220     tb_unlock();
221 }
222 #endif
223 
224 static void cpu_exec_step(CPUState *cpu)
225 {
226     CPUClass *cc = CPU_GET_CLASS(cpu);
227     CPUArchState *env = (CPUArchState *)cpu->env_ptr;
228     TranslationBlock *tb;
229     target_ulong cs_base, pc;
230     uint32_t flags;
231 
232     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
233     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
234         mmap_lock();
235         tb_lock();
236         tb = tb_gen_code(cpu, pc, cs_base, flags,
237                          1 | CF_NOCACHE | CF_IGNORE_ICOUNT);
238         tb->orig_tb = NULL;
239         tb_unlock();
240         mmap_unlock();
241 
242         cc->cpu_exec_enter(cpu);
243         /* execute the generated code */
244         trace_exec_tb_nocache(tb, pc);
245         cpu_tb_exec(cpu, tb);
246         cc->cpu_exec_exit(cpu);
247 
248         tb_lock();
249         tb_phys_invalidate(tb, -1);
250         tb_free(tb);
251         tb_unlock();
252     } else {
253         /* We may have exited due to another problem here, so we need
254          * to reset any tb_locks we may have taken but didn't release.
255          * The mmap_lock is dropped by tb_gen_code if it runs out of
256          * memory.
257          */
258 #ifndef CONFIG_SOFTMMU
259         tcg_debug_assert(!have_mmap_lock());
260 #endif
261         tb_lock_reset();
262     }
263 }
264 
265 void cpu_exec_step_atomic(CPUState *cpu)
266 {
267     start_exclusive();
268 
269     /* Since we got here, we know that parallel_cpus must be true.  */
270     parallel_cpus = false;
271     cpu_exec_step(cpu);
272     parallel_cpus = true;
273 
274     end_exclusive();
275 }
276 
277 struct tb_desc {
278     target_ulong pc;
279     target_ulong cs_base;
280     CPUArchState *env;
281     tb_page_addr_t phys_page1;
282     uint32_t flags;
283     uint32_t trace_vcpu_dstate;
284 };
285 
286 static bool tb_cmp(const void *p, const void *d)
287 {
288     const TranslationBlock *tb = p;
289     const struct tb_desc *desc = d;
290 
291     if (tb->pc == desc->pc &&
292         tb->page_addr[0] == desc->phys_page1 &&
293         tb->cs_base == desc->cs_base &&
294         tb->flags == desc->flags &&
295         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
296         !atomic_read(&tb->invalid)) {
297         /* check next page if needed */
298         if (tb->page_addr[1] == -1) {
299             return true;
300         } else {
301             tb_page_addr_t phys_page2;
302             target_ulong virt_page2;
303 
304             virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
305             phys_page2 = get_page_addr_code(desc->env, virt_page2);
306             if (tb->page_addr[1] == phys_page2) {
307                 return true;
308             }
309         }
310     }
311     return false;
312 }
313 
314 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
315                                    target_ulong cs_base, uint32_t flags)
316 {
317     tb_page_addr_t phys_pc;
318     struct tb_desc desc;
319     uint32_t h;
320 
321     desc.env = (CPUArchState *)cpu->env_ptr;
322     desc.cs_base = cs_base;
323     desc.flags = flags;
324     desc.trace_vcpu_dstate = *cpu->trace_dstate;
325     desc.pc = pc;
326     phys_pc = get_page_addr_code(desc.env, pc);
327     desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
328     h = tb_hash_func(phys_pc, pc, flags, *cpu->trace_dstate);
329     return qht_lookup(&tcg_ctx.tb_ctx.htable, tb_cmp, &desc, h);
330 }
331 
332 static inline TranslationBlock *tb_find(CPUState *cpu,
333                                         TranslationBlock *last_tb,
334                                         int tb_exit)
335 {
336     CPUArchState *env = (CPUArchState *)cpu->env_ptr;
337     TranslationBlock *tb;
338     target_ulong cs_base, pc;
339     uint32_t flags;
340     bool have_tb_lock = false;
341 
342     /* we record a subset of the CPU state. It will
343        always be the same before a given translated block
344        is executed. */
345     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
346     tb = atomic_rcu_read(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)]);
347     if (unlikely(!tb || tb->pc != pc || tb->cs_base != cs_base ||
348                  tb->flags != flags ||
349                  tb->trace_vcpu_dstate != *cpu->trace_dstate)) {
350         tb = tb_htable_lookup(cpu, pc, cs_base, flags);
351         if (!tb) {
352 
353             /* mmap_lock is needed by tb_gen_code, and mmap_lock must be
354              * taken outside tb_lock. As system emulation is currently
355              * single threaded the locks are NOPs.
356              */
357             mmap_lock();
358             tb_lock();
359             have_tb_lock = true;
360 
361             /* There's a chance that our desired tb has been translated while
362              * taking the locks so we check again inside the lock.
363              */
364             tb = tb_htable_lookup(cpu, pc, cs_base, flags);
365             if (!tb) {
366                 /* if no translated code available, then translate it now */
367                 tb = tb_gen_code(cpu, pc, cs_base, flags, 0);
368             }
369 
370             mmap_unlock();
371         }
372 
373         /* We add the TB in the virtual pc hash table for the fast lookup */
374         atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
375     }
376 #ifndef CONFIG_USER_ONLY
377     /* We don't take care of direct jumps when address mapping changes in
378      * system emulation. So it's not safe to make a direct jump to a TB
379      * spanning two pages because the mapping for the second page can change.
380      */
381     if (tb->page_addr[1] != -1) {
382         last_tb = NULL;
383     }
384 #endif
385     /* See if we can patch the calling TB. */
386     if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
387         if (!have_tb_lock) {
388             tb_lock();
389             have_tb_lock = true;
390         }
391         if (!tb->invalid) {
392             tb_add_jump(last_tb, tb_exit, tb);
393         }
394     }
395     if (have_tb_lock) {
396         tb_unlock();
397     }
398     return tb;
399 }
400 
401 static inline bool cpu_handle_halt(CPUState *cpu)
402 {
403     if (cpu->halted) {
404 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
405         if ((cpu->interrupt_request & CPU_INTERRUPT_POLL)
406             && replay_interrupt()) {
407             X86CPU *x86_cpu = X86_CPU(cpu);
408             qemu_mutex_lock_iothread();
409             apic_poll_irq(x86_cpu->apic_state);
410             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
411             qemu_mutex_unlock_iothread();
412         }
413 #endif
414         if (!cpu_has_work(cpu)) {
415             return true;
416         }
417 
418         cpu->halted = 0;
419     }
420 
421     return false;
422 }
423 
424 static inline void cpu_handle_debug_exception(CPUState *cpu)
425 {
426     CPUClass *cc = CPU_GET_CLASS(cpu);
427     CPUWatchpoint *wp;
428 
429     if (!cpu->watchpoint_hit) {
430         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
431             wp->flags &= ~BP_WATCHPOINT_HIT;
432         }
433     }
434 
435     cc->debug_excp_handler(cpu);
436 }
437 
438 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
439 {
440     if (cpu->exception_index >= 0) {
441         if (cpu->exception_index >= EXCP_INTERRUPT) {
442             /* exit request from the cpu execution loop */
443             *ret = cpu->exception_index;
444             if (*ret == EXCP_DEBUG) {
445                 cpu_handle_debug_exception(cpu);
446             }
447             cpu->exception_index = -1;
448             return true;
449         } else {
450 #if defined(CONFIG_USER_ONLY)
451             /* if user mode only, we simulate a fake exception
452                which will be handled outside the cpu execution
453                loop */
454 #if defined(TARGET_I386)
455             CPUClass *cc = CPU_GET_CLASS(cpu);
456             cc->do_interrupt(cpu);
457 #endif
458             *ret = cpu->exception_index;
459             cpu->exception_index = -1;
460             return true;
461 #else
462             if (replay_exception()) {
463                 CPUClass *cc = CPU_GET_CLASS(cpu);
464                 qemu_mutex_lock_iothread();
465                 cc->do_interrupt(cpu);
466                 qemu_mutex_unlock_iothread();
467                 cpu->exception_index = -1;
468             } else if (!replay_has_interrupt()) {
469                 /* give a chance to iothread in replay mode */
470                 *ret = EXCP_INTERRUPT;
471                 return true;
472             }
473 #endif
474         }
475 #ifndef CONFIG_USER_ONLY
476     } else if (replay_has_exception()
477                && cpu->icount_decr.u16.low + cpu->icount_extra == 0) {
478         /* try to cause an exception pending in the log */
479         cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0), true);
480         *ret = -1;
481         return true;
482 #endif
483     }
484 
485     return false;
486 }
487 
488 static inline bool cpu_handle_interrupt(CPUState *cpu,
489                                         TranslationBlock **last_tb)
490 {
491     CPUClass *cc = CPU_GET_CLASS(cpu);
492 
493     if (unlikely(atomic_read(&cpu->interrupt_request))) {
494         int interrupt_request;
495         qemu_mutex_lock_iothread();
496         interrupt_request = cpu->interrupt_request;
497         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
498             /* Mask out external interrupts for this step. */
499             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
500         }
501         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
502             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
503             cpu->exception_index = EXCP_DEBUG;
504             qemu_mutex_unlock_iothread();
505             return true;
506         }
507         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
508             /* Do nothing */
509         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
510             replay_interrupt();
511             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
512             cpu->halted = 1;
513             cpu->exception_index = EXCP_HLT;
514             qemu_mutex_unlock_iothread();
515             return true;
516         }
517 #if defined(TARGET_I386)
518         else if (interrupt_request & CPU_INTERRUPT_INIT) {
519             X86CPU *x86_cpu = X86_CPU(cpu);
520             CPUArchState *env = &x86_cpu->env;
521             replay_interrupt();
522             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
523             do_cpu_init(x86_cpu);
524             cpu->exception_index = EXCP_HALTED;
525             qemu_mutex_unlock_iothread();
526             return true;
527         }
528 #else
529         else if (interrupt_request & CPU_INTERRUPT_RESET) {
530             replay_interrupt();
531             cpu_reset(cpu);
532             qemu_mutex_unlock_iothread();
533             return true;
534         }
535 #endif
536         /* The target hook has 3 exit conditions:
537            False when the interrupt isn't processed,
538            True when it is, and we should restart on a new TB,
539            and via longjmp via cpu_loop_exit.  */
540         else {
541             if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
542                 replay_interrupt();
543                 *last_tb = NULL;
544             }
545             /* The target hook may have updated the 'cpu->interrupt_request';
546              * reload the 'interrupt_request' value */
547             interrupt_request = cpu->interrupt_request;
548         }
549         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
550             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
551             /* ensure that no TB jump will be modified as
552                the program flow was changed */
553             *last_tb = NULL;
554         }
555 
556         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
557         qemu_mutex_unlock_iothread();
558     }
559 
560     /* Finally, check if we need to exit to the main loop.  */
561     if (unlikely(atomic_read(&cpu->exit_request)
562         || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) {
563         atomic_set(&cpu->exit_request, 0);
564         cpu->exception_index = EXCP_INTERRUPT;
565         return true;
566     }
567 
568     return false;
569 }
570 
571 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
572                                     TranslationBlock **last_tb, int *tb_exit)
573 {
574     uintptr_t ret;
575     int32_t insns_left;
576 
577     trace_exec_tb(tb, tb->pc);
578     ret = cpu_tb_exec(cpu, tb);
579     tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
580     *tb_exit = ret & TB_EXIT_MASK;
581     if (*tb_exit != TB_EXIT_REQUESTED) {
582         *last_tb = tb;
583         return;
584     }
585 
586     *last_tb = NULL;
587     insns_left = atomic_read(&cpu->icount_decr.u32);
588     atomic_set(&cpu->icount_decr.u16.high, 0);
589     if (insns_left < 0) {
590         /* Something asked us to stop executing chained TBs; just
591          * continue round the main loop. Whatever requested the exit
592          * will also have set something else (eg exit_request or
593          * interrupt_request) which we will handle next time around
594          * the loop.  But we need to ensure the zeroing of icount_decr
595          * comes before the next read of cpu->exit_request
596          * or cpu->interrupt_request.
597          */
598         smp_mb();
599         return;
600     }
601 
602     /* Instruction counter expired.  */
603     assert(use_icount);
604 #ifndef CONFIG_USER_ONLY
605     /* Ensure global icount has gone forward */
606     cpu_update_icount(cpu);
607     /* Refill decrementer and continue execution.  */
608     insns_left = MIN(0xffff, cpu->icount_budget);
609     cpu->icount_decr.u16.low = insns_left;
610     cpu->icount_extra = cpu->icount_budget - insns_left;
611     if (!cpu->icount_extra) {
612         /* Execute any remaining instructions, then let the main loop
613          * handle the next event.
614          */
615         if (insns_left > 0) {
616             cpu_exec_nocache(cpu, insns_left, tb, false);
617         }
618     }
619 #endif
620 }
621 
622 /* main execution loop */
623 
624 int cpu_exec(CPUState *cpu)
625 {
626     CPUClass *cc = CPU_GET_CLASS(cpu);
627     int ret;
628     SyncClocks sc = { 0 };
629 
630     /* replay_interrupt may need current_cpu */
631     current_cpu = cpu;
632 
633     if (cpu_handle_halt(cpu)) {
634         return EXCP_HALTED;
635     }
636 
637     rcu_read_lock();
638 
639     cc->cpu_exec_enter(cpu);
640 
641     /* Calculate difference between guest clock and host clock.
642      * This delay includes the delay of the last cycle, so
643      * what we have to do is sleep until it is 0. As for the
644      * advance/delay we gain here, we try to fix it next time.
645      */
646     init_delay_params(&sc, cpu);
647 
648     /* prepare setjmp context for exception handling */
649     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
650 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6)
651         /* Some compilers wrongly smash all local variables after
652          * siglongjmp. There were bug reports for gcc 4.5.0 and clang.
653          * Reload essential local variables here for those compilers.
654          * Newer versions of gcc would complain about this code (-Wclobbered). */
655         cpu = current_cpu;
656         cc = CPU_GET_CLASS(cpu);
657 #else /* buggy compiler */
658         /* Assert that the compiler does not smash local variables. */
659         g_assert(cpu == current_cpu);
660         g_assert(cc == CPU_GET_CLASS(cpu));
661 #endif /* buggy compiler */
662         cpu->can_do_io = 1;
663         tb_lock_reset();
664         if (qemu_mutex_iothread_locked()) {
665             qemu_mutex_unlock_iothread();
666         }
667     }
668 
669     /* if an exception is pending, we execute it here */
670     while (!cpu_handle_exception(cpu, &ret)) {
671         TranslationBlock *last_tb = NULL;
672         int tb_exit = 0;
673 
674         while (!cpu_handle_interrupt(cpu, &last_tb)) {
675             TranslationBlock *tb = tb_find(cpu, last_tb, tb_exit);
676             cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
677             /* Try to align the host and virtual clocks
678                if the guest is in advance */
679             align_clocks(&sc, cpu);
680         }
681     }
682 
683     cc->cpu_exec_exit(cpu);
684     rcu_read_unlock();
685 
686     return ret;
687 }
688