1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/qapi-commands-machine.h" 24 #include "qapi/type-helpers.h" 25 #include "hw/core/tcg-cpu-ops.h" 26 #include "trace.h" 27 #include "disas/disas.h" 28 #include "exec/exec-all.h" 29 #include "tcg/tcg.h" 30 #include "qemu/atomic.h" 31 #include "qemu/compiler.h" 32 #include "qemu/timer.h" 33 #include "qemu/rcu.h" 34 #include "exec/log.h" 35 #include "qemu/main-loop.h" 36 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 37 #include "hw/i386/apic.h" 38 #endif 39 #include "sysemu/cpus.h" 40 #include "exec/cpu-all.h" 41 #include "sysemu/cpu-timers.h" 42 #include "sysemu/replay.h" 43 #include "sysemu/tcg.h" 44 #include "exec/helper-proto.h" 45 #include "tb-jmp-cache.h" 46 #include "tb-hash.h" 47 #include "tb-context.h" 48 #include "internal.h" 49 50 /* -icount align implementation. */ 51 52 typedef struct SyncClocks { 53 int64_t diff_clk; 54 int64_t last_cpu_icount; 55 int64_t realtime_clock; 56 } SyncClocks; 57 58 #if !defined(CONFIG_USER_ONLY) 59 /* Allow the guest to have a max 3ms advance. 60 * The difference between the 2 clocks could therefore 61 * oscillate around 0. 62 */ 63 #define VM_CLOCK_ADVANCE 3000000 64 #define THRESHOLD_REDUCE 1.5 65 #define MAX_DELAY_PRINT_RATE 2000000000LL 66 #define MAX_NB_PRINTS 100 67 68 static int64_t max_delay; 69 static int64_t max_advance; 70 71 static void align_clocks(SyncClocks *sc, CPUState *cpu) 72 { 73 int64_t cpu_icount; 74 75 if (!icount_align_option) { 76 return; 77 } 78 79 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 80 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 81 sc->last_cpu_icount = cpu_icount; 82 83 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 84 #ifndef _WIN32 85 struct timespec sleep_delay, rem_delay; 86 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 87 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 88 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 89 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 90 } else { 91 sc->diff_clk = 0; 92 } 93 #else 94 Sleep(sc->diff_clk / SCALE_MS); 95 sc->diff_clk = 0; 96 #endif 97 } 98 } 99 100 static void print_delay(const SyncClocks *sc) 101 { 102 static float threshold_delay; 103 static int64_t last_realtime_clock; 104 static int nb_prints; 105 106 if (icount_align_option && 107 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 108 nb_prints < MAX_NB_PRINTS) { 109 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 110 (-sc->diff_clk / (float)1000000000LL < 111 (threshold_delay - THRESHOLD_REDUCE))) { 112 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 113 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 114 threshold_delay - 1, 115 threshold_delay); 116 nb_prints++; 117 last_realtime_clock = sc->realtime_clock; 118 } 119 } 120 } 121 122 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 123 { 124 if (!icount_align_option) { 125 return; 126 } 127 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 128 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 129 sc->last_cpu_icount 130 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 131 if (sc->diff_clk < max_delay) { 132 max_delay = sc->diff_clk; 133 } 134 if (sc->diff_clk > max_advance) { 135 max_advance = sc->diff_clk; 136 } 137 138 /* Print every 2s max if the guest is late. We limit the number 139 of printed messages to NB_PRINT_MAX(currently 100) */ 140 print_delay(sc); 141 } 142 #else 143 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 144 { 145 } 146 147 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 148 { 149 } 150 #endif /* CONFIG USER ONLY */ 151 152 uint32_t curr_cflags(CPUState *cpu) 153 { 154 uint32_t cflags = cpu->tcg_cflags; 155 156 /* 157 * Record gdb single-step. We should be exiting the TB by raising 158 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 159 * 160 * For singlestep and -d nochain, suppress goto_tb so that 161 * we can log -d cpu,exec after every TB. 162 */ 163 if (unlikely(cpu->singlestep_enabled)) { 164 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 165 } else if (singlestep) { 166 cflags |= CF_NO_GOTO_TB | 1; 167 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 168 cflags |= CF_NO_GOTO_TB; 169 } 170 171 return cflags; 172 } 173 174 struct tb_desc { 175 target_ulong pc; 176 target_ulong cs_base; 177 CPUArchState *env; 178 tb_page_addr_t page_addr0; 179 uint32_t flags; 180 uint32_t cflags; 181 uint32_t trace_vcpu_dstate; 182 }; 183 184 static bool tb_lookup_cmp(const void *p, const void *d) 185 { 186 const TranslationBlock *tb = p; 187 const struct tb_desc *desc = d; 188 189 if ((TARGET_TB_PCREL || tb_pc(tb) == desc->pc) && 190 tb_page_addr0(tb) == desc->page_addr0 && 191 tb->cs_base == desc->cs_base && 192 tb->flags == desc->flags && 193 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 194 tb_cflags(tb) == desc->cflags) { 195 /* check next page if needed */ 196 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 197 if (tb_phys_page1 == -1) { 198 return true; 199 } else { 200 tb_page_addr_t phys_page1; 201 target_ulong virt_page1; 202 203 /* 204 * We know that the first page matched, and an otherwise valid TB 205 * encountered an incomplete instruction at the end of that page, 206 * therefore we know that generating a new TB from the current PC 207 * must also require reading from the next page -- even if the 208 * second pages do not match, and therefore the resulting insn 209 * is different for the new TB. Therefore any exception raised 210 * here by the faulting lookup is not premature. 211 */ 212 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 213 phys_page1 = get_page_addr_code(desc->env, virt_page1); 214 if (tb_phys_page1 == phys_page1) { 215 return true; 216 } 217 } 218 } 219 return false; 220 } 221 222 static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 223 target_ulong cs_base, uint32_t flags, 224 uint32_t cflags) 225 { 226 tb_page_addr_t phys_pc; 227 struct tb_desc desc; 228 uint32_t h; 229 230 desc.env = cpu->env_ptr; 231 desc.cs_base = cs_base; 232 desc.flags = flags; 233 desc.cflags = cflags; 234 desc.trace_vcpu_dstate = *cpu->trace_dstate; 235 desc.pc = pc; 236 phys_pc = get_page_addr_code(desc.env, pc); 237 if (phys_pc == -1) { 238 return NULL; 239 } 240 desc.page_addr0 = phys_pc; 241 h = tb_hash_func(phys_pc, (TARGET_TB_PCREL ? 0 : pc), 242 flags, cflags, *cpu->trace_dstate); 243 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 244 } 245 246 /* Might cause an exception, so have a longjmp destination ready */ 247 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc, 248 target_ulong cs_base, 249 uint32_t flags, uint32_t cflags) 250 { 251 TranslationBlock *tb; 252 CPUJumpCache *jc; 253 uint32_t hash; 254 255 /* we should never be trying to look up an INVALID tb */ 256 tcg_debug_assert(!(cflags & CF_INVALID)); 257 258 hash = tb_jmp_cache_hash_func(pc); 259 jc = cpu->tb_jmp_cache; 260 tb = tb_jmp_cache_get_tb(jc, hash); 261 262 if (likely(tb && 263 tb_jmp_cache_get_pc(jc, hash, tb) == pc && 264 tb->cs_base == cs_base && 265 tb->flags == flags && 266 tb->trace_vcpu_dstate == *cpu->trace_dstate && 267 tb_cflags(tb) == cflags)) { 268 return tb; 269 } 270 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 271 if (tb == NULL) { 272 return NULL; 273 } 274 tb_jmp_cache_set(jc, hash, tb, pc); 275 return tb; 276 } 277 278 static void log_cpu_exec(target_ulong pc, CPUState *cpu, 279 const TranslationBlock *tb) 280 { 281 if (qemu_log_in_addr_range(pc)) { 282 qemu_log_mask(CPU_LOG_EXEC, 283 "Trace %d: %p [" TARGET_FMT_lx 284 "/" TARGET_FMT_lx "/%08x/%08x] %s\n", 285 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 286 tb->flags, tb->cflags, lookup_symbol(pc)); 287 288 #if defined(DEBUG_DISAS) 289 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 290 FILE *logfile = qemu_log_trylock(); 291 if (logfile) { 292 int flags = 0; 293 294 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 295 flags |= CPU_DUMP_FPU; 296 } 297 #if defined(TARGET_I386) 298 flags |= CPU_DUMP_CCOP; 299 #endif 300 cpu_dump_state(cpu, logfile, flags); 301 qemu_log_unlock(logfile); 302 } 303 } 304 #endif /* DEBUG_DISAS */ 305 } 306 } 307 308 static bool check_for_breakpoints_slow(CPUState *cpu, target_ulong pc, 309 uint32_t *cflags) 310 { 311 CPUBreakpoint *bp; 312 bool match_page = false; 313 314 /* 315 * Singlestep overrides breakpoints. 316 * This requirement is visible in the record-replay tests, where 317 * we would fail to make forward progress in reverse-continue. 318 * 319 * TODO: gdb singlestep should only override gdb breakpoints, 320 * so that one could (gdb) singlestep into the guest kernel's 321 * architectural breakpoint handler. 322 */ 323 if (cpu->singlestep_enabled) { 324 return false; 325 } 326 327 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 328 /* 329 * If we have an exact pc match, trigger the breakpoint. 330 * Otherwise, note matches within the page. 331 */ 332 if (pc == bp->pc) { 333 bool match_bp = false; 334 335 if (bp->flags & BP_GDB) { 336 match_bp = true; 337 } else if (bp->flags & BP_CPU) { 338 #ifdef CONFIG_USER_ONLY 339 g_assert_not_reached(); 340 #else 341 CPUClass *cc = CPU_GET_CLASS(cpu); 342 assert(cc->tcg_ops->debug_check_breakpoint); 343 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu); 344 #endif 345 } 346 347 if (match_bp) { 348 cpu->exception_index = EXCP_DEBUG; 349 return true; 350 } 351 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 352 match_page = true; 353 } 354 } 355 356 /* 357 * Within the same page as a breakpoint, single-step, 358 * returning to helper_lookup_tb_ptr after each insn looking 359 * for the actual breakpoint. 360 * 361 * TODO: Perhaps better to record all of the TBs associated 362 * with a given virtual page that contains a breakpoint, and 363 * then invalidate them when a new overlapping breakpoint is 364 * set on the page. Non-overlapping TBs would not be 365 * invalidated, nor would any TB need to be invalidated as 366 * breakpoints are removed. 367 */ 368 if (match_page) { 369 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1; 370 } 371 return false; 372 } 373 374 static inline bool check_for_breakpoints(CPUState *cpu, target_ulong pc, 375 uint32_t *cflags) 376 { 377 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 378 check_for_breakpoints_slow(cpu, pc, cflags); 379 } 380 381 /** 382 * helper_lookup_tb_ptr: quick check for next tb 383 * @env: current cpu state 384 * 385 * Look for an existing TB matching the current cpu state. 386 * If found, return the code pointer. If not found, return 387 * the tcg epilogue so that we return into cpu_tb_exec. 388 */ 389 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 390 { 391 CPUState *cpu = env_cpu(env); 392 TranslationBlock *tb; 393 target_ulong cs_base, pc; 394 uint32_t flags, cflags; 395 396 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 397 398 cflags = curr_cflags(cpu); 399 if (check_for_breakpoints(cpu, pc, &cflags)) { 400 cpu_loop_exit(cpu); 401 } 402 403 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 404 if (tb == NULL) { 405 return tcg_code_gen_epilogue; 406 } 407 408 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 409 log_cpu_exec(pc, cpu, tb); 410 } 411 412 return tb->tc.ptr; 413 } 414 415 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 416 /* 417 * Disable CFI checks. 418 * TCG creates binary blobs at runtime, with the transformed code. 419 * A TB is a blob of binary code, created at runtime and called with an 420 * indirect function call. Since such function did not exist at compile time, 421 * the CFI runtime has no way to verify its signature and would fail. 422 * TCG is not considered a security-sensitive part of QEMU so this does not 423 * affect the impact of CFI in environment with high security requirements 424 */ 425 static inline TranslationBlock * QEMU_DISABLE_CFI 426 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 427 { 428 CPUArchState *env = cpu->env_ptr; 429 uintptr_t ret; 430 TranslationBlock *last_tb; 431 const void *tb_ptr = itb->tc.ptr; 432 433 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 434 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 435 } 436 437 qemu_thread_jit_execute(); 438 ret = tcg_qemu_tb_exec(env, tb_ptr); 439 cpu->can_do_io = 1; 440 /* 441 * TODO: Delay swapping back to the read-write region of the TB 442 * until we actually need to modify the TB. The read-only copy, 443 * coming from the rx region, shares the same host TLB entry as 444 * the code that executed the exit_tb opcode that arrived here. 445 * If we insist on touching both the RX and the RW pages, we 446 * double the host TLB pressure. 447 */ 448 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 449 *tb_exit = ret & TB_EXIT_MASK; 450 451 trace_exec_tb_exit(last_tb, *tb_exit); 452 453 if (*tb_exit > TB_EXIT_IDX1) { 454 /* We didn't start executing this TB (eg because the instruction 455 * counter hit zero); we must restore the guest PC to the address 456 * of the start of the TB. 457 */ 458 CPUClass *cc = CPU_GET_CLASS(cpu); 459 460 if (cc->tcg_ops->synchronize_from_tb) { 461 cc->tcg_ops->synchronize_from_tb(cpu, last_tb); 462 } else { 463 assert(!TARGET_TB_PCREL); 464 assert(cc->set_pc); 465 cc->set_pc(cpu, tb_pc(last_tb)); 466 } 467 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 468 target_ulong pc = log_pc(cpu, last_tb); 469 if (qemu_log_in_addr_range(pc)) { 470 qemu_log("Stopped execution of TB chain before %p [" 471 TARGET_FMT_lx "] %s\n", 472 last_tb->tc.ptr, pc, lookup_symbol(pc)); 473 } 474 } 475 } 476 477 /* 478 * If gdb single-step, and we haven't raised another exception, 479 * raise a debug exception. Single-step with another exception 480 * is handled in cpu_handle_exception. 481 */ 482 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 483 cpu->exception_index = EXCP_DEBUG; 484 cpu_loop_exit(cpu); 485 } 486 487 return last_tb; 488 } 489 490 491 static void cpu_exec_enter(CPUState *cpu) 492 { 493 CPUClass *cc = CPU_GET_CLASS(cpu); 494 495 if (cc->tcg_ops->cpu_exec_enter) { 496 cc->tcg_ops->cpu_exec_enter(cpu); 497 } 498 } 499 500 static void cpu_exec_exit(CPUState *cpu) 501 { 502 CPUClass *cc = CPU_GET_CLASS(cpu); 503 504 if (cc->tcg_ops->cpu_exec_exit) { 505 cc->tcg_ops->cpu_exec_exit(cpu); 506 } 507 } 508 509 void cpu_exec_step_atomic(CPUState *cpu) 510 { 511 CPUArchState *env = cpu->env_ptr; 512 TranslationBlock *tb; 513 target_ulong cs_base, pc; 514 uint32_t flags, cflags; 515 int tb_exit; 516 517 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 518 start_exclusive(); 519 g_assert(cpu == current_cpu); 520 g_assert(!cpu->running); 521 cpu->running = true; 522 523 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 524 525 cflags = curr_cflags(cpu); 526 /* Execute in a serial context. */ 527 cflags &= ~CF_PARALLEL; 528 /* After 1 insn, return and release the exclusive lock. */ 529 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 530 /* 531 * No need to check_for_breakpoints here. 532 * We only arrive in cpu_exec_step_atomic after beginning execution 533 * of an insn that includes an atomic operation we can't handle. 534 * Any breakpoint for this insn will have been recognized earlier. 535 */ 536 537 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 538 if (tb == NULL) { 539 mmap_lock(); 540 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 541 mmap_unlock(); 542 } 543 544 cpu_exec_enter(cpu); 545 /* execute the generated code */ 546 trace_exec_tb(tb, pc); 547 cpu_tb_exec(cpu, tb, &tb_exit); 548 cpu_exec_exit(cpu); 549 } else { 550 #ifndef CONFIG_SOFTMMU 551 clear_helper_retaddr(); 552 if (have_mmap_lock()) { 553 mmap_unlock(); 554 } 555 #endif 556 if (qemu_mutex_iothread_locked()) { 557 qemu_mutex_unlock_iothread(); 558 } 559 assert_no_pages_locked(); 560 qemu_plugin_disable_mem_helpers(cpu); 561 } 562 563 /* 564 * As we start the exclusive region before codegen we must still 565 * be in the region if we longjump out of either the codegen or 566 * the execution. 567 */ 568 g_assert(cpu_in_exclusive_context(cpu)); 569 cpu->running = false; 570 end_exclusive(); 571 } 572 573 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 574 { 575 if (TCG_TARGET_HAS_direct_jump) { 576 uintptr_t offset = tb->jmp_target_arg[n]; 577 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; 578 uintptr_t jmp_rx = tc_ptr + offset; 579 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 580 tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr); 581 } else { 582 tb->jmp_target_arg[n] = addr; 583 } 584 } 585 586 static inline void tb_add_jump(TranslationBlock *tb, int n, 587 TranslationBlock *tb_next) 588 { 589 uintptr_t old; 590 591 qemu_thread_jit_write(); 592 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 593 qemu_spin_lock(&tb_next->jmp_lock); 594 595 /* make sure the destination TB is valid */ 596 if (tb_next->cflags & CF_INVALID) { 597 goto out_unlock_next; 598 } 599 /* Atomically claim the jump destination slot only if it was NULL */ 600 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 601 (uintptr_t)tb_next); 602 if (old) { 603 goto out_unlock_next; 604 } 605 606 /* patch the native jump address */ 607 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 608 609 /* add in TB jmp list */ 610 tb->jmp_list_next[n] = tb_next->jmp_list_head; 611 tb_next->jmp_list_head = (uintptr_t)tb | n; 612 613 qemu_spin_unlock(&tb_next->jmp_lock); 614 615 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 616 tb->tc.ptr, n, tb_next->tc.ptr); 617 return; 618 619 out_unlock_next: 620 qemu_spin_unlock(&tb_next->jmp_lock); 621 return; 622 } 623 624 static inline bool cpu_handle_halt(CPUState *cpu) 625 { 626 #ifndef CONFIG_USER_ONLY 627 if (cpu->halted) { 628 #if defined(TARGET_I386) 629 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) { 630 X86CPU *x86_cpu = X86_CPU(cpu); 631 qemu_mutex_lock_iothread(); 632 apic_poll_irq(x86_cpu->apic_state); 633 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 634 qemu_mutex_unlock_iothread(); 635 } 636 #endif /* TARGET_I386 */ 637 if (!cpu_has_work(cpu)) { 638 return true; 639 } 640 641 cpu->halted = 0; 642 } 643 #endif /* !CONFIG_USER_ONLY */ 644 645 return false; 646 } 647 648 static inline void cpu_handle_debug_exception(CPUState *cpu) 649 { 650 CPUClass *cc = CPU_GET_CLASS(cpu); 651 CPUWatchpoint *wp; 652 653 if (!cpu->watchpoint_hit) { 654 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 655 wp->flags &= ~BP_WATCHPOINT_HIT; 656 } 657 } 658 659 if (cc->tcg_ops->debug_excp_handler) { 660 cc->tcg_ops->debug_excp_handler(cpu); 661 } 662 } 663 664 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 665 { 666 if (cpu->exception_index < 0) { 667 #ifndef CONFIG_USER_ONLY 668 if (replay_has_exception() 669 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) { 670 /* Execute just one insn to trigger exception pending in the log */ 671 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 672 | CF_NOIRQ | 1; 673 } 674 #endif 675 return false; 676 } 677 if (cpu->exception_index >= EXCP_INTERRUPT) { 678 /* exit request from the cpu execution loop */ 679 *ret = cpu->exception_index; 680 if (*ret == EXCP_DEBUG) { 681 cpu_handle_debug_exception(cpu); 682 } 683 cpu->exception_index = -1; 684 return true; 685 } else { 686 #if defined(CONFIG_USER_ONLY) 687 /* if user mode only, we simulate a fake exception 688 which will be handled outside the cpu execution 689 loop */ 690 #if defined(TARGET_I386) 691 CPUClass *cc = CPU_GET_CLASS(cpu); 692 cc->tcg_ops->fake_user_interrupt(cpu); 693 #endif /* TARGET_I386 */ 694 *ret = cpu->exception_index; 695 cpu->exception_index = -1; 696 return true; 697 #else 698 if (replay_exception()) { 699 CPUClass *cc = CPU_GET_CLASS(cpu); 700 qemu_mutex_lock_iothread(); 701 cc->tcg_ops->do_interrupt(cpu); 702 qemu_mutex_unlock_iothread(); 703 cpu->exception_index = -1; 704 705 if (unlikely(cpu->singlestep_enabled)) { 706 /* 707 * After processing the exception, ensure an EXCP_DEBUG is 708 * raised when single-stepping so that GDB doesn't miss the 709 * next instruction. 710 */ 711 *ret = EXCP_DEBUG; 712 cpu_handle_debug_exception(cpu); 713 return true; 714 } 715 } else if (!replay_has_interrupt()) { 716 /* give a chance to iothread in replay mode */ 717 *ret = EXCP_INTERRUPT; 718 return true; 719 } 720 #endif 721 } 722 723 return false; 724 } 725 726 #ifndef CONFIG_USER_ONLY 727 /* 728 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a 729 * "real" interrupt event later. It does not need to be recorded for 730 * replay purposes. 731 */ 732 static inline bool need_replay_interrupt(int interrupt_request) 733 { 734 #if defined(TARGET_I386) 735 return !(interrupt_request & CPU_INTERRUPT_POLL); 736 #else 737 return true; 738 #endif 739 } 740 #endif /* !CONFIG_USER_ONLY */ 741 742 static inline bool cpu_handle_interrupt(CPUState *cpu, 743 TranslationBlock **last_tb) 744 { 745 /* 746 * If we have requested custom cflags with CF_NOIRQ we should 747 * skip checking here. Any pending interrupts will get picked up 748 * by the next TB we execute under normal cflags. 749 */ 750 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 751 return false; 752 } 753 754 /* Clear the interrupt flag now since we're processing 755 * cpu->interrupt_request and cpu->exit_request. 756 * Ensure zeroing happens before reading cpu->exit_request or 757 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 758 */ 759 qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0); 760 761 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 762 int interrupt_request; 763 qemu_mutex_lock_iothread(); 764 interrupt_request = cpu->interrupt_request; 765 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 766 /* Mask out external interrupts for this step. */ 767 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 768 } 769 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 770 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 771 cpu->exception_index = EXCP_DEBUG; 772 qemu_mutex_unlock_iothread(); 773 return true; 774 } 775 #if !defined(CONFIG_USER_ONLY) 776 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 777 /* Do nothing */ 778 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 779 replay_interrupt(); 780 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 781 cpu->halted = 1; 782 cpu->exception_index = EXCP_HLT; 783 qemu_mutex_unlock_iothread(); 784 return true; 785 } 786 #if defined(TARGET_I386) 787 else if (interrupt_request & CPU_INTERRUPT_INIT) { 788 X86CPU *x86_cpu = X86_CPU(cpu); 789 CPUArchState *env = &x86_cpu->env; 790 replay_interrupt(); 791 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 792 do_cpu_init(x86_cpu); 793 cpu->exception_index = EXCP_HALTED; 794 qemu_mutex_unlock_iothread(); 795 return true; 796 } 797 #else 798 else if (interrupt_request & CPU_INTERRUPT_RESET) { 799 replay_interrupt(); 800 cpu_reset(cpu); 801 qemu_mutex_unlock_iothread(); 802 return true; 803 } 804 #endif /* !TARGET_I386 */ 805 /* The target hook has 3 exit conditions: 806 False when the interrupt isn't processed, 807 True when it is, and we should restart on a new TB, 808 and via longjmp via cpu_loop_exit. */ 809 else { 810 CPUClass *cc = CPU_GET_CLASS(cpu); 811 812 if (cc->tcg_ops->cpu_exec_interrupt && 813 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 814 if (need_replay_interrupt(interrupt_request)) { 815 replay_interrupt(); 816 } 817 /* 818 * After processing the interrupt, ensure an EXCP_DEBUG is 819 * raised when single-stepping so that GDB doesn't miss the 820 * next instruction. 821 */ 822 if (unlikely(cpu->singlestep_enabled)) { 823 cpu->exception_index = EXCP_DEBUG; 824 qemu_mutex_unlock_iothread(); 825 return true; 826 } 827 cpu->exception_index = -1; 828 *last_tb = NULL; 829 } 830 /* The target hook may have updated the 'cpu->interrupt_request'; 831 * reload the 'interrupt_request' value */ 832 interrupt_request = cpu->interrupt_request; 833 } 834 #endif /* !CONFIG_USER_ONLY */ 835 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 836 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 837 /* ensure that no TB jump will be modified as 838 the program flow was changed */ 839 *last_tb = NULL; 840 } 841 842 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 843 qemu_mutex_unlock_iothread(); 844 } 845 846 /* Finally, check if we need to exit to the main loop. */ 847 if (unlikely(qatomic_read(&cpu->exit_request)) 848 || (icount_enabled() 849 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT) 850 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) { 851 qatomic_set(&cpu->exit_request, 0); 852 if (cpu->exception_index == -1) { 853 cpu->exception_index = EXCP_INTERRUPT; 854 } 855 return true; 856 } 857 858 return false; 859 } 860 861 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 862 target_ulong pc, 863 TranslationBlock **last_tb, int *tb_exit) 864 { 865 int32_t insns_left; 866 867 trace_exec_tb(tb, pc); 868 tb = cpu_tb_exec(cpu, tb, tb_exit); 869 if (*tb_exit != TB_EXIT_REQUESTED) { 870 *last_tb = tb; 871 return; 872 } 873 874 *last_tb = NULL; 875 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32); 876 if (insns_left < 0) { 877 /* Something asked us to stop executing chained TBs; just 878 * continue round the main loop. Whatever requested the exit 879 * will also have set something else (eg exit_request or 880 * interrupt_request) which will be handled by 881 * cpu_handle_interrupt. cpu_handle_interrupt will also 882 * clear cpu->icount_decr.u16.high. 883 */ 884 return; 885 } 886 887 /* Instruction counter expired. */ 888 assert(icount_enabled()); 889 #ifndef CONFIG_USER_ONLY 890 /* Ensure global icount has gone forward */ 891 icount_update(cpu); 892 /* Refill decrementer and continue execution. */ 893 insns_left = MIN(0xffff, cpu->icount_budget); 894 cpu_neg(cpu)->icount_decr.u16.low = insns_left; 895 cpu->icount_extra = cpu->icount_budget - insns_left; 896 897 /* 898 * If the next tb has more instructions than we have left to 899 * execute we need to ensure we find/generate a TB with exactly 900 * insns_left instructions in it. 901 */ 902 if (insns_left > 0 && insns_left < tb->icount) { 903 assert(insns_left <= CF_COUNT_MASK); 904 assert(cpu->icount_extra == 0); 905 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 906 } 907 #endif 908 } 909 910 /* main execution loop */ 911 912 int cpu_exec(CPUState *cpu) 913 { 914 int ret; 915 SyncClocks sc = { 0 }; 916 917 /* replay_interrupt may need current_cpu */ 918 current_cpu = cpu; 919 920 if (cpu_handle_halt(cpu)) { 921 return EXCP_HALTED; 922 } 923 924 rcu_read_lock(); 925 926 cpu_exec_enter(cpu); 927 928 /* Calculate difference between guest clock and host clock. 929 * This delay includes the delay of the last cycle, so 930 * what we have to do is sleep until it is 0. As for the 931 * advance/delay we gain here, we try to fix it next time. 932 */ 933 init_delay_params(&sc, cpu); 934 935 /* prepare setjmp context for exception handling */ 936 if (sigsetjmp(cpu->jmp_env, 0) != 0) { 937 #if defined(__clang__) 938 /* 939 * Some compilers wrongly smash all local variables after 940 * siglongjmp (the spec requires that only non-volatile locals 941 * which are changed between the sigsetjmp and siglongjmp are 942 * permitted to be trashed). There were bug reports for gcc 943 * 4.5.0 and clang. The bug is fixed in all versions of gcc 944 * that we support, but is still unfixed in clang: 945 * https://bugs.llvm.org/show_bug.cgi?id=21183 946 * 947 * Reload an essential local variable here for those compilers. 948 * Newer versions of gcc would complain about this code (-Wclobbered), 949 * so we only perform the workaround for clang. 950 */ 951 cpu = current_cpu; 952 #else 953 /* Non-buggy compilers preserve this; assert the correct value. */ 954 g_assert(cpu == current_cpu); 955 #endif 956 957 #ifndef CONFIG_SOFTMMU 958 clear_helper_retaddr(); 959 if (have_mmap_lock()) { 960 mmap_unlock(); 961 } 962 #endif 963 if (qemu_mutex_iothread_locked()) { 964 qemu_mutex_unlock_iothread(); 965 } 966 qemu_plugin_disable_mem_helpers(cpu); 967 968 assert_no_pages_locked(); 969 } 970 971 /* if an exception is pending, we execute it here */ 972 while (!cpu_handle_exception(cpu, &ret)) { 973 TranslationBlock *last_tb = NULL; 974 int tb_exit = 0; 975 976 while (!cpu_handle_interrupt(cpu, &last_tb)) { 977 TranslationBlock *tb; 978 target_ulong cs_base, pc; 979 uint32_t flags, cflags; 980 981 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags); 982 983 /* 984 * When requested, use an exact setting for cflags for the next 985 * execution. This is used for icount, precise smc, and stop- 986 * after-access watchpoints. Since this request should never 987 * have CF_INVALID set, -1 is a convenient invalid value that 988 * does not require tcg headers for cpu_common_reset. 989 */ 990 cflags = cpu->cflags_next_tb; 991 if (cflags == -1) { 992 cflags = curr_cflags(cpu); 993 } else { 994 cpu->cflags_next_tb = -1; 995 } 996 997 if (check_for_breakpoints(cpu, pc, &cflags)) { 998 break; 999 } 1000 1001 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 1002 if (tb == NULL) { 1003 uint32_t h; 1004 1005 mmap_lock(); 1006 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 1007 mmap_unlock(); 1008 /* 1009 * We add the TB in the virtual pc hash table 1010 * for the fast lookup 1011 */ 1012 h = tb_jmp_cache_hash_func(pc); 1013 tb_jmp_cache_set(cpu->tb_jmp_cache, h, tb, pc); 1014 } 1015 1016 #ifndef CONFIG_USER_ONLY 1017 /* 1018 * We don't take care of direct jumps when address mapping 1019 * changes in system emulation. So it's not safe to make a 1020 * direct jump to a TB spanning two pages because the mapping 1021 * for the second page can change. 1022 */ 1023 if (tb_page_addr1(tb) != -1) { 1024 last_tb = NULL; 1025 } 1026 #endif 1027 /* See if we can patch the calling TB. */ 1028 if (last_tb) { 1029 tb_add_jump(last_tb, tb_exit, tb); 1030 } 1031 1032 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1033 1034 /* Try to align the host and virtual clocks 1035 if the guest is in advance */ 1036 align_clocks(&sc, cpu); 1037 } 1038 } 1039 1040 cpu_exec_exit(cpu); 1041 rcu_read_unlock(); 1042 1043 return ret; 1044 } 1045 1046 void tcg_exec_realizefn(CPUState *cpu, Error **errp) 1047 { 1048 static bool tcg_target_initialized; 1049 CPUClass *cc = CPU_GET_CLASS(cpu); 1050 1051 if (!tcg_target_initialized) { 1052 cc->tcg_ops->initialize(); 1053 tcg_target_initialized = true; 1054 } 1055 1056 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1057 tlb_init(cpu); 1058 #ifndef CONFIG_USER_ONLY 1059 tcg_iommu_init_notifier_list(cpu); 1060 #endif /* !CONFIG_USER_ONLY */ 1061 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1062 } 1063 1064 /* undo the initializations in reverse order */ 1065 void tcg_exec_unrealizefn(CPUState *cpu) 1066 { 1067 qemu_plugin_vcpu_exit_hook(cpu); 1068 #ifndef CONFIG_USER_ONLY 1069 tcg_iommu_free_notifier_list(cpu); 1070 #endif /* !CONFIG_USER_ONLY */ 1071 1072 tlb_destroy(cpu); 1073 g_free(cpu->tb_jmp_cache); 1074 } 1075 1076 #ifndef CONFIG_USER_ONLY 1077 1078 static void dump_drift_info(GString *buf) 1079 { 1080 if (!icount_enabled()) { 1081 return; 1082 } 1083 1084 g_string_append_printf(buf, "Host - Guest clock %"PRIi64" ms\n", 1085 (cpu_get_clock() - icount_get()) / SCALE_MS); 1086 if (icount_align_option) { 1087 g_string_append_printf(buf, "Max guest delay %"PRIi64" ms\n", 1088 -max_delay / SCALE_MS); 1089 g_string_append_printf(buf, "Max guest advance %"PRIi64" ms\n", 1090 max_advance / SCALE_MS); 1091 } else { 1092 g_string_append_printf(buf, "Max guest delay NA\n"); 1093 g_string_append_printf(buf, "Max guest advance NA\n"); 1094 } 1095 } 1096 1097 HumanReadableText *qmp_x_query_jit(Error **errp) 1098 { 1099 g_autoptr(GString) buf = g_string_new(""); 1100 1101 if (!tcg_enabled()) { 1102 error_setg(errp, "JIT information is only available with accel=tcg"); 1103 return NULL; 1104 } 1105 1106 dump_exec_info(buf); 1107 dump_drift_info(buf); 1108 1109 return human_readable_text_from_str(buf); 1110 } 1111 1112 HumanReadableText *qmp_x_query_opcount(Error **errp) 1113 { 1114 g_autoptr(GString) buf = g_string_new(""); 1115 1116 if (!tcg_enabled()) { 1117 error_setg(errp, "Opcode count information is only available with accel=tcg"); 1118 return NULL; 1119 } 1120 1121 tcg_dump_op_count(buf); 1122 1123 return human_readable_text_from_str(buf); 1124 } 1125 1126 #ifdef CONFIG_PROFILER 1127 1128 int64_t dev_time; 1129 1130 HumanReadableText *qmp_x_query_profile(Error **errp) 1131 { 1132 g_autoptr(GString) buf = g_string_new(""); 1133 static int64_t last_cpu_exec_time; 1134 int64_t cpu_exec_time; 1135 int64_t delta; 1136 1137 cpu_exec_time = tcg_cpu_exec_time(); 1138 delta = cpu_exec_time - last_cpu_exec_time; 1139 1140 g_string_append_printf(buf, "async time %" PRId64 " (%0.3f)\n", 1141 dev_time, dev_time / (double)NANOSECONDS_PER_SECOND); 1142 g_string_append_printf(buf, "qemu time %" PRId64 " (%0.3f)\n", 1143 delta, delta / (double)NANOSECONDS_PER_SECOND); 1144 last_cpu_exec_time = cpu_exec_time; 1145 dev_time = 0; 1146 1147 return human_readable_text_from_str(buf); 1148 } 1149 #else 1150 HumanReadableText *qmp_x_query_profile(Error **errp) 1151 { 1152 error_setg(errp, "Internal profiler not compiled"); 1153 return NULL; 1154 } 1155 #endif 1156 1157 #endif /* !CONFIG_USER_ONLY */ 1158