1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "qemu/qemu-print.h" 23 #include "cpu.h" 24 #include "hw/core/tcg-cpu-ops.h" 25 #include "trace.h" 26 #include "disas/disas.h" 27 #include "exec/exec-all.h" 28 #include "tcg/tcg.h" 29 #include "qemu/atomic.h" 30 #include "qemu/compiler.h" 31 #include "sysemu/qtest.h" 32 #include "qemu/timer.h" 33 #include "qemu/rcu.h" 34 #include "exec/tb-hash.h" 35 #include "exec/tb-lookup.h" 36 #include "exec/log.h" 37 #include "qemu/main-loop.h" 38 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 39 #include "hw/i386/apic.h" 40 #endif 41 #include "sysemu/cpus.h" 42 #include "exec/cpu-all.h" 43 #include "sysemu/cpu-timers.h" 44 #include "sysemu/replay.h" 45 #include "internal.h" 46 47 /* -icount align implementation. */ 48 49 typedef struct SyncClocks { 50 int64_t diff_clk; 51 int64_t last_cpu_icount; 52 int64_t realtime_clock; 53 } SyncClocks; 54 55 #if !defined(CONFIG_USER_ONLY) 56 /* Allow the guest to have a max 3ms advance. 57 * The difference between the 2 clocks could therefore 58 * oscillate around 0. 59 */ 60 #define VM_CLOCK_ADVANCE 3000000 61 #define THRESHOLD_REDUCE 1.5 62 #define MAX_DELAY_PRINT_RATE 2000000000LL 63 #define MAX_NB_PRINTS 100 64 65 static int64_t max_delay; 66 static int64_t max_advance; 67 68 static void align_clocks(SyncClocks *sc, CPUState *cpu) 69 { 70 int64_t cpu_icount; 71 72 if (!icount_align_option) { 73 return; 74 } 75 76 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 77 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 78 sc->last_cpu_icount = cpu_icount; 79 80 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 81 #ifndef _WIN32 82 struct timespec sleep_delay, rem_delay; 83 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 84 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 85 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 86 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 87 } else { 88 sc->diff_clk = 0; 89 } 90 #else 91 Sleep(sc->diff_clk / SCALE_MS); 92 sc->diff_clk = 0; 93 #endif 94 } 95 } 96 97 static void print_delay(const SyncClocks *sc) 98 { 99 static float threshold_delay; 100 static int64_t last_realtime_clock; 101 static int nb_prints; 102 103 if (icount_align_option && 104 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 105 nb_prints < MAX_NB_PRINTS) { 106 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 107 (-sc->diff_clk / (float)1000000000LL < 108 (threshold_delay - THRESHOLD_REDUCE))) { 109 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 110 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 111 threshold_delay - 1, 112 threshold_delay); 113 nb_prints++; 114 last_realtime_clock = sc->realtime_clock; 115 } 116 } 117 } 118 119 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 120 { 121 if (!icount_align_option) { 122 return; 123 } 124 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 125 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 126 sc->last_cpu_icount 127 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 128 if (sc->diff_clk < max_delay) { 129 max_delay = sc->diff_clk; 130 } 131 if (sc->diff_clk > max_advance) { 132 max_advance = sc->diff_clk; 133 } 134 135 /* Print every 2s max if the guest is late. We limit the number 136 of printed messages to NB_PRINT_MAX(currently 100) */ 137 print_delay(sc); 138 } 139 #else 140 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 141 { 142 } 143 144 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 145 { 146 } 147 #endif /* CONFIG USER ONLY */ 148 149 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 150 /* 151 * Disable CFI checks. 152 * TCG creates binary blobs at runtime, with the transformed code. 153 * A TB is a blob of binary code, created at runtime and called with an 154 * indirect function call. Since such function did not exist at compile time, 155 * the CFI runtime has no way to verify its signature and would fail. 156 * TCG is not considered a security-sensitive part of QEMU so this does not 157 * affect the impact of CFI in environment with high security requirements 158 */ 159 static inline TranslationBlock * QEMU_DISABLE_CFI 160 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 161 { 162 CPUArchState *env = cpu->env_ptr; 163 uintptr_t ret; 164 TranslationBlock *last_tb; 165 const void *tb_ptr = itb->tc.ptr; 166 167 qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc, 168 "Trace %d: %p [" 169 TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n", 170 cpu->cpu_index, itb->tc.ptr, 171 itb->cs_base, itb->pc, itb->flags, 172 lookup_symbol(itb->pc)); 173 174 #if defined(DEBUG_DISAS) 175 if (qemu_loglevel_mask(CPU_LOG_TB_CPU) 176 && qemu_log_in_addr_range(itb->pc)) { 177 FILE *logfile = qemu_log_lock(); 178 int flags = 0; 179 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 180 flags |= CPU_DUMP_FPU; 181 } 182 #if defined(TARGET_I386) 183 flags |= CPU_DUMP_CCOP; 184 #endif 185 log_cpu_state(cpu, flags); 186 qemu_log_unlock(logfile); 187 } 188 #endif /* DEBUG_DISAS */ 189 190 qemu_thread_jit_execute(); 191 ret = tcg_qemu_tb_exec(env, tb_ptr); 192 cpu->can_do_io = 1; 193 /* 194 * TODO: Delay swapping back to the read-write region of the TB 195 * until we actually need to modify the TB. The read-only copy, 196 * coming from the rx region, shares the same host TLB entry as 197 * the code that executed the exit_tb opcode that arrived here. 198 * If we insist on touching both the RX and the RW pages, we 199 * double the host TLB pressure. 200 */ 201 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 202 *tb_exit = ret & TB_EXIT_MASK; 203 204 trace_exec_tb_exit(last_tb, *tb_exit); 205 206 if (*tb_exit > TB_EXIT_IDX1) { 207 /* We didn't start executing this TB (eg because the instruction 208 * counter hit zero); we must restore the guest PC to the address 209 * of the start of the TB. 210 */ 211 CPUClass *cc = CPU_GET_CLASS(cpu); 212 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, 213 "Stopped execution of TB chain before %p [" 214 TARGET_FMT_lx "] %s\n", 215 last_tb->tc.ptr, last_tb->pc, 216 lookup_symbol(last_tb->pc)); 217 if (cc->tcg_ops->synchronize_from_tb) { 218 cc->tcg_ops->synchronize_from_tb(cpu, last_tb); 219 } else { 220 assert(cc->set_pc); 221 cc->set_pc(cpu, last_tb->pc); 222 } 223 } 224 return last_tb; 225 } 226 227 #ifndef CONFIG_USER_ONLY 228 /* Execute the code without caching the generated code. An interpreter 229 could be used if available. */ 230 static void cpu_exec_nocache(CPUState *cpu, int max_cycles, 231 TranslationBlock *orig_tb, bool ignore_icount) 232 { 233 TranslationBlock *tb; 234 uint32_t cflags = curr_cflags() | CF_NOCACHE; 235 int tb_exit; 236 237 if (ignore_icount) { 238 cflags &= ~CF_USE_ICOUNT; 239 } 240 241 /* Should never happen. 242 We only end up here when an existing TB is too long. */ 243 cflags |= MIN(max_cycles, CF_COUNT_MASK); 244 245 mmap_lock(); 246 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, 247 orig_tb->flags, cflags); 248 tb->orig_tb = orig_tb; 249 mmap_unlock(); 250 251 /* execute the generated code */ 252 trace_exec_tb_nocache(tb, tb->pc); 253 cpu_tb_exec(cpu, tb, &tb_exit); 254 255 mmap_lock(); 256 tb_phys_invalidate(tb, -1); 257 mmap_unlock(); 258 tcg_tb_remove(tb); 259 } 260 #endif 261 262 static void cpu_exec_enter(CPUState *cpu) 263 { 264 CPUClass *cc = CPU_GET_CLASS(cpu); 265 266 if (cc->tcg_ops->cpu_exec_enter) { 267 cc->tcg_ops->cpu_exec_enter(cpu); 268 } 269 } 270 271 static void cpu_exec_exit(CPUState *cpu) 272 { 273 CPUClass *cc = CPU_GET_CLASS(cpu); 274 275 if (cc->tcg_ops->cpu_exec_exit) { 276 cc->tcg_ops->cpu_exec_exit(cpu); 277 } 278 } 279 280 void cpu_exec_step_atomic(CPUState *cpu) 281 { 282 TranslationBlock *tb; 283 target_ulong cs_base, pc; 284 uint32_t flags; 285 uint32_t cflags = 1; 286 uint32_t cf_mask = cflags & CF_HASH_MASK; 287 int tb_exit; 288 289 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 290 start_exclusive(); 291 g_assert(cpu == current_cpu); 292 g_assert(!cpu->running); 293 cpu->running = true; 294 295 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 296 if (tb == NULL) { 297 mmap_lock(); 298 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 299 mmap_unlock(); 300 } 301 302 /* Since we got here, we know that parallel_cpus must be true. */ 303 parallel_cpus = false; 304 cpu_exec_enter(cpu); 305 /* execute the generated code */ 306 trace_exec_tb(tb, pc); 307 cpu_tb_exec(cpu, tb, &tb_exit); 308 cpu_exec_exit(cpu); 309 } else { 310 /* 311 * The mmap_lock is dropped by tb_gen_code if it runs out of 312 * memory. 313 */ 314 #ifndef CONFIG_SOFTMMU 315 tcg_debug_assert(!have_mmap_lock()); 316 #endif 317 if (qemu_mutex_iothread_locked()) { 318 qemu_mutex_unlock_iothread(); 319 } 320 assert_no_pages_locked(); 321 qemu_plugin_disable_mem_helpers(cpu); 322 } 323 324 325 /* 326 * As we start the exclusive region before codegen we must still 327 * be in the region if we longjump out of either the codegen or 328 * the execution. 329 */ 330 g_assert(cpu_in_exclusive_context(cpu)); 331 parallel_cpus = true; 332 cpu->running = false; 333 end_exclusive(); 334 } 335 336 struct tb_desc { 337 target_ulong pc; 338 target_ulong cs_base; 339 CPUArchState *env; 340 tb_page_addr_t phys_page1; 341 uint32_t flags; 342 uint32_t cf_mask; 343 uint32_t trace_vcpu_dstate; 344 }; 345 346 static bool tb_lookup_cmp(const void *p, const void *d) 347 { 348 const TranslationBlock *tb = p; 349 const struct tb_desc *desc = d; 350 351 if (tb->pc == desc->pc && 352 tb->page_addr[0] == desc->phys_page1 && 353 tb->cs_base == desc->cs_base && 354 tb->flags == desc->flags && 355 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 356 (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) { 357 /* check next page if needed */ 358 if (tb->page_addr[1] == -1) { 359 return true; 360 } else { 361 tb_page_addr_t phys_page2; 362 target_ulong virt_page2; 363 364 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 365 phys_page2 = get_page_addr_code(desc->env, virt_page2); 366 if (tb->page_addr[1] == phys_page2) { 367 return true; 368 } 369 } 370 } 371 return false; 372 } 373 374 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 375 target_ulong cs_base, uint32_t flags, 376 uint32_t cf_mask) 377 { 378 tb_page_addr_t phys_pc; 379 struct tb_desc desc; 380 uint32_t h; 381 382 desc.env = (CPUArchState *)cpu->env_ptr; 383 desc.cs_base = cs_base; 384 desc.flags = flags; 385 desc.cf_mask = cf_mask; 386 desc.trace_vcpu_dstate = *cpu->trace_dstate; 387 desc.pc = pc; 388 phys_pc = get_page_addr_code(desc.env, pc); 389 if (phys_pc == -1) { 390 return NULL; 391 } 392 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; 393 h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate); 394 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 395 } 396 397 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 398 { 399 if (TCG_TARGET_HAS_direct_jump) { 400 uintptr_t offset = tb->jmp_target_arg[n]; 401 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; 402 uintptr_t jmp_rx = tc_ptr + offset; 403 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 404 tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr); 405 } else { 406 tb->jmp_target_arg[n] = addr; 407 } 408 } 409 410 static inline void tb_add_jump(TranslationBlock *tb, int n, 411 TranslationBlock *tb_next) 412 { 413 uintptr_t old; 414 415 qemu_thread_jit_write(); 416 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 417 qemu_spin_lock(&tb_next->jmp_lock); 418 419 /* make sure the destination TB is valid */ 420 if (tb_next->cflags & CF_INVALID) { 421 goto out_unlock_next; 422 } 423 /* Atomically claim the jump destination slot only if it was NULL */ 424 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 425 (uintptr_t)tb_next); 426 if (old) { 427 goto out_unlock_next; 428 } 429 430 /* patch the native jump address */ 431 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 432 433 /* add in TB jmp list */ 434 tb->jmp_list_next[n] = tb_next->jmp_list_head; 435 tb_next->jmp_list_head = (uintptr_t)tb | n; 436 437 qemu_spin_unlock(&tb_next->jmp_lock); 438 439 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 440 "Linking TBs %p [" TARGET_FMT_lx 441 "] index %d -> %p [" TARGET_FMT_lx "]\n", 442 tb->tc.ptr, tb->pc, n, 443 tb_next->tc.ptr, tb_next->pc); 444 return; 445 446 out_unlock_next: 447 qemu_spin_unlock(&tb_next->jmp_lock); 448 return; 449 } 450 451 static inline TranslationBlock *tb_find(CPUState *cpu, 452 TranslationBlock *last_tb, 453 int tb_exit, uint32_t cf_mask) 454 { 455 TranslationBlock *tb; 456 target_ulong cs_base, pc; 457 uint32_t flags; 458 459 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 460 if (tb == NULL) { 461 mmap_lock(); 462 tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask); 463 mmap_unlock(); 464 /* We add the TB in the virtual pc hash table for the fast lookup */ 465 qatomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); 466 } 467 #ifndef CONFIG_USER_ONLY 468 /* We don't take care of direct jumps when address mapping changes in 469 * system emulation. So it's not safe to make a direct jump to a TB 470 * spanning two pages because the mapping for the second page can change. 471 */ 472 if (tb->page_addr[1] != -1) { 473 last_tb = NULL; 474 } 475 #endif 476 /* See if we can patch the calling TB. */ 477 if (last_tb) { 478 tb_add_jump(last_tb, tb_exit, tb); 479 } 480 return tb; 481 } 482 483 static inline bool cpu_handle_halt(CPUState *cpu) 484 { 485 if (cpu->halted) { 486 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 487 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) { 488 X86CPU *x86_cpu = X86_CPU(cpu); 489 qemu_mutex_lock_iothread(); 490 apic_poll_irq(x86_cpu->apic_state); 491 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 492 qemu_mutex_unlock_iothread(); 493 } 494 #endif 495 if (!cpu_has_work(cpu)) { 496 return true; 497 } 498 499 cpu->halted = 0; 500 } 501 502 return false; 503 } 504 505 static inline void cpu_handle_debug_exception(CPUState *cpu) 506 { 507 CPUClass *cc = CPU_GET_CLASS(cpu); 508 CPUWatchpoint *wp; 509 510 if (!cpu->watchpoint_hit) { 511 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 512 wp->flags &= ~BP_WATCHPOINT_HIT; 513 } 514 } 515 516 if (cc->tcg_ops->debug_excp_handler) { 517 cc->tcg_ops->debug_excp_handler(cpu); 518 } 519 } 520 521 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 522 { 523 if (cpu->exception_index < 0) { 524 #ifndef CONFIG_USER_ONLY 525 if (replay_has_exception() 526 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) { 527 /* try to cause an exception pending in the log */ 528 cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true); 529 } 530 #endif 531 if (cpu->exception_index < 0) { 532 return false; 533 } 534 } 535 536 if (cpu->exception_index >= EXCP_INTERRUPT) { 537 /* exit request from the cpu execution loop */ 538 *ret = cpu->exception_index; 539 if (*ret == EXCP_DEBUG) { 540 cpu_handle_debug_exception(cpu); 541 } 542 cpu->exception_index = -1; 543 return true; 544 } else { 545 #if defined(CONFIG_USER_ONLY) 546 /* if user mode only, we simulate a fake exception 547 which will be handled outside the cpu execution 548 loop */ 549 #if defined(TARGET_I386) 550 CPUClass *cc = CPU_GET_CLASS(cpu); 551 cc->tcg_ops->do_interrupt(cpu); 552 #endif 553 *ret = cpu->exception_index; 554 cpu->exception_index = -1; 555 return true; 556 #else 557 if (replay_exception()) { 558 CPUClass *cc = CPU_GET_CLASS(cpu); 559 qemu_mutex_lock_iothread(); 560 cc->tcg_ops->do_interrupt(cpu); 561 qemu_mutex_unlock_iothread(); 562 cpu->exception_index = -1; 563 564 if (unlikely(cpu->singlestep_enabled)) { 565 /* 566 * After processing the exception, ensure an EXCP_DEBUG is 567 * raised when single-stepping so that GDB doesn't miss the 568 * next instruction. 569 */ 570 *ret = EXCP_DEBUG; 571 cpu_handle_debug_exception(cpu); 572 return true; 573 } 574 } else if (!replay_has_interrupt()) { 575 /* give a chance to iothread in replay mode */ 576 *ret = EXCP_INTERRUPT; 577 return true; 578 } 579 #endif 580 } 581 582 return false; 583 } 584 585 /* 586 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a 587 * "real" interrupt event later. It does not need to be recorded for 588 * replay purposes. 589 */ 590 static inline bool need_replay_interrupt(int interrupt_request) 591 { 592 #if defined(TARGET_I386) 593 return !(interrupt_request & CPU_INTERRUPT_POLL); 594 #else 595 return true; 596 #endif 597 } 598 599 static inline bool cpu_handle_interrupt(CPUState *cpu, 600 TranslationBlock **last_tb) 601 { 602 CPUClass *cc = CPU_GET_CLASS(cpu); 603 604 /* Clear the interrupt flag now since we're processing 605 * cpu->interrupt_request and cpu->exit_request. 606 * Ensure zeroing happens before reading cpu->exit_request or 607 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 608 */ 609 qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0); 610 611 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 612 int interrupt_request; 613 qemu_mutex_lock_iothread(); 614 interrupt_request = cpu->interrupt_request; 615 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 616 /* Mask out external interrupts for this step. */ 617 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 618 } 619 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 620 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 621 cpu->exception_index = EXCP_DEBUG; 622 qemu_mutex_unlock_iothread(); 623 return true; 624 } 625 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 626 /* Do nothing */ 627 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 628 replay_interrupt(); 629 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 630 cpu->halted = 1; 631 cpu->exception_index = EXCP_HLT; 632 qemu_mutex_unlock_iothread(); 633 return true; 634 } 635 #if defined(TARGET_I386) 636 else if (interrupt_request & CPU_INTERRUPT_INIT) { 637 X86CPU *x86_cpu = X86_CPU(cpu); 638 CPUArchState *env = &x86_cpu->env; 639 replay_interrupt(); 640 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 641 do_cpu_init(x86_cpu); 642 cpu->exception_index = EXCP_HALTED; 643 qemu_mutex_unlock_iothread(); 644 return true; 645 } 646 #else 647 else if (interrupt_request & CPU_INTERRUPT_RESET) { 648 replay_interrupt(); 649 cpu_reset(cpu); 650 qemu_mutex_unlock_iothread(); 651 return true; 652 } 653 #endif 654 /* The target hook has 3 exit conditions: 655 False when the interrupt isn't processed, 656 True when it is, and we should restart on a new TB, 657 and via longjmp via cpu_loop_exit. */ 658 else { 659 if (cc->tcg_ops->cpu_exec_interrupt && 660 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 661 if (need_replay_interrupt(interrupt_request)) { 662 replay_interrupt(); 663 } 664 /* 665 * After processing the interrupt, ensure an EXCP_DEBUG is 666 * raised when single-stepping so that GDB doesn't miss the 667 * next instruction. 668 */ 669 cpu->exception_index = 670 (cpu->singlestep_enabled ? EXCP_DEBUG : -1); 671 *last_tb = NULL; 672 } 673 /* The target hook may have updated the 'cpu->interrupt_request'; 674 * reload the 'interrupt_request' value */ 675 interrupt_request = cpu->interrupt_request; 676 } 677 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 678 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 679 /* ensure that no TB jump will be modified as 680 the program flow was changed */ 681 *last_tb = NULL; 682 } 683 684 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 685 qemu_mutex_unlock_iothread(); 686 } 687 688 /* Finally, check if we need to exit to the main loop. */ 689 if (unlikely(qatomic_read(&cpu->exit_request)) 690 || (icount_enabled() 691 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) { 692 qatomic_set(&cpu->exit_request, 0); 693 if (cpu->exception_index == -1) { 694 cpu->exception_index = EXCP_INTERRUPT; 695 } 696 return true; 697 } 698 699 return false; 700 } 701 702 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 703 TranslationBlock **last_tb, int *tb_exit) 704 { 705 int32_t insns_left; 706 707 trace_exec_tb(tb, tb->pc); 708 tb = cpu_tb_exec(cpu, tb, tb_exit); 709 if (*tb_exit != TB_EXIT_REQUESTED) { 710 *last_tb = tb; 711 return; 712 } 713 714 *last_tb = NULL; 715 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32); 716 if (insns_left < 0) { 717 /* Something asked us to stop executing chained TBs; just 718 * continue round the main loop. Whatever requested the exit 719 * will also have set something else (eg exit_request or 720 * interrupt_request) which will be handled by 721 * cpu_handle_interrupt. cpu_handle_interrupt will also 722 * clear cpu->icount_decr.u16.high. 723 */ 724 return; 725 } 726 727 /* Instruction counter expired. */ 728 assert(icount_enabled()); 729 #ifndef CONFIG_USER_ONLY 730 /* Ensure global icount has gone forward */ 731 icount_update(cpu); 732 /* Refill decrementer and continue execution. */ 733 insns_left = MIN(0xffff, cpu->icount_budget); 734 cpu_neg(cpu)->icount_decr.u16.low = insns_left; 735 cpu->icount_extra = cpu->icount_budget - insns_left; 736 if (!cpu->icount_extra && insns_left < tb->icount) { 737 /* Execute any remaining instructions, then let the main loop 738 * handle the next event. 739 */ 740 if (insns_left > 0) { 741 cpu_exec_nocache(cpu, insns_left, tb, false); 742 } 743 } 744 #endif 745 } 746 747 /* main execution loop */ 748 749 int cpu_exec(CPUState *cpu) 750 { 751 CPUClass *cc = CPU_GET_CLASS(cpu); 752 int ret; 753 SyncClocks sc = { 0 }; 754 755 /* replay_interrupt may need current_cpu */ 756 current_cpu = cpu; 757 758 if (cpu_handle_halt(cpu)) { 759 return EXCP_HALTED; 760 } 761 762 rcu_read_lock(); 763 764 cpu_exec_enter(cpu); 765 766 /* Calculate difference between guest clock and host clock. 767 * This delay includes the delay of the last cycle, so 768 * what we have to do is sleep until it is 0. As for the 769 * advance/delay we gain here, we try to fix it next time. 770 */ 771 init_delay_params(&sc, cpu); 772 773 /* prepare setjmp context for exception handling */ 774 if (sigsetjmp(cpu->jmp_env, 0) != 0) { 775 #if defined(__clang__) 776 /* Some compilers wrongly smash all local variables after 777 * siglongjmp. There were bug reports for gcc 4.5.0 and clang. 778 * Reload essential local variables here for those compilers. 779 * Newer versions of gcc would complain about this code (-Wclobbered). */ 780 cpu = current_cpu; 781 cc = CPU_GET_CLASS(cpu); 782 #else /* buggy compiler */ 783 /* Assert that the compiler does not smash local variables. */ 784 g_assert(cpu == current_cpu); 785 g_assert(cc == CPU_GET_CLASS(cpu)); 786 #endif /* buggy compiler */ 787 #ifndef CONFIG_SOFTMMU 788 tcg_debug_assert(!have_mmap_lock()); 789 #endif 790 if (qemu_mutex_iothread_locked()) { 791 qemu_mutex_unlock_iothread(); 792 } 793 qemu_plugin_disable_mem_helpers(cpu); 794 795 assert_no_pages_locked(); 796 } 797 798 /* if an exception is pending, we execute it here */ 799 while (!cpu_handle_exception(cpu, &ret)) { 800 TranslationBlock *last_tb = NULL; 801 int tb_exit = 0; 802 803 while (!cpu_handle_interrupt(cpu, &last_tb)) { 804 uint32_t cflags = cpu->cflags_next_tb; 805 TranslationBlock *tb; 806 807 /* When requested, use an exact setting for cflags for the next 808 execution. This is used for icount, precise smc, and stop- 809 after-access watchpoints. Since this request should never 810 have CF_INVALID set, -1 is a convenient invalid value that 811 does not require tcg headers for cpu_common_reset. */ 812 if (cflags == -1) { 813 cflags = curr_cflags(); 814 } else { 815 cpu->cflags_next_tb = -1; 816 } 817 818 tb = tb_find(cpu, last_tb, tb_exit, cflags); 819 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); 820 /* Try to align the host and virtual clocks 821 if the guest is in advance */ 822 align_clocks(&sc, cpu); 823 } 824 } 825 826 cpu_exec_exit(cpu); 827 rcu_read_unlock(); 828 829 return ret; 830 } 831 832 void tcg_exec_realizefn(CPUState *cpu, Error **errp) 833 { 834 static bool tcg_target_initialized; 835 CPUClass *cc = CPU_GET_CLASS(cpu); 836 837 if (!tcg_target_initialized) { 838 cc->tcg_ops->initialize(); 839 tcg_target_initialized = true; 840 } 841 tlb_init(cpu); 842 qemu_plugin_vcpu_init_hook(cpu); 843 844 #ifndef CONFIG_USER_ONLY 845 tcg_iommu_init_notifier_list(cpu); 846 #endif /* !CONFIG_USER_ONLY */ 847 } 848 849 /* undo the initializations in reverse order */ 850 void tcg_exec_unrealizefn(CPUState *cpu) 851 { 852 #ifndef CONFIG_USER_ONLY 853 tcg_iommu_free_notifier_list(cpu); 854 #endif /* !CONFIG_USER_ONLY */ 855 856 qemu_plugin_vcpu_exit_hook(cpu); 857 tlb_destroy(cpu); 858 } 859 860 #ifndef CONFIG_USER_ONLY 861 862 void dump_drift_info(void) 863 { 864 if (!icount_enabled()) { 865 return; 866 } 867 868 qemu_printf("Host - Guest clock %"PRIi64" ms\n", 869 (cpu_get_clock() - icount_get()) / SCALE_MS); 870 if (icount_align_option) { 871 qemu_printf("Max guest delay %"PRIi64" ms\n", 872 -max_delay / SCALE_MS); 873 qemu_printf("Max guest advance %"PRIi64" ms\n", 874 max_advance / SCALE_MS); 875 } else { 876 qemu_printf("Max guest delay NA\n"); 877 qemu_printf("Max guest advance NA\n"); 878 } 879 } 880 881 #endif /* !CONFIG_USER_ONLY */ 882