1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "trace.h" 22 #include "disas/disas.h" 23 #include "exec/exec-all.h" 24 #include "tcg.h" 25 #include "qemu/atomic.h" 26 #include "sysemu/qtest.h" 27 #include "qemu/timer.h" 28 #include "qemu/rcu.h" 29 #include "exec/tb-hash.h" 30 #include "exec/tb-lookup.h" 31 #include "exec/log.h" 32 #include "qemu/main-loop.h" 33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 34 #include "hw/i386/apic.h" 35 #endif 36 #include "sysemu/cpus.h" 37 #include "sysemu/replay.h" 38 39 /* -icount align implementation. */ 40 41 typedef struct SyncClocks { 42 int64_t diff_clk; 43 int64_t last_cpu_icount; 44 int64_t realtime_clock; 45 } SyncClocks; 46 47 #if !defined(CONFIG_USER_ONLY) 48 /* Allow the guest to have a max 3ms advance. 49 * The difference between the 2 clocks could therefore 50 * oscillate around 0. 51 */ 52 #define VM_CLOCK_ADVANCE 3000000 53 #define THRESHOLD_REDUCE 1.5 54 #define MAX_DELAY_PRINT_RATE 2000000000LL 55 #define MAX_NB_PRINTS 100 56 57 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 58 { 59 int64_t cpu_icount; 60 61 if (!icount_align_option) { 62 return; 63 } 64 65 cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; 66 sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount); 67 sc->last_cpu_icount = cpu_icount; 68 69 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 70 #ifndef _WIN32 71 struct timespec sleep_delay, rem_delay; 72 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 73 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 74 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 75 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 76 } else { 77 sc->diff_clk = 0; 78 } 79 #else 80 Sleep(sc->diff_clk / SCALE_MS); 81 sc->diff_clk = 0; 82 #endif 83 } 84 } 85 86 static void print_delay(const SyncClocks *sc) 87 { 88 static float threshold_delay; 89 static int64_t last_realtime_clock; 90 static int nb_prints; 91 92 if (icount_align_option && 93 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 94 nb_prints < MAX_NB_PRINTS) { 95 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 96 (-sc->diff_clk / (float)1000000000LL < 97 (threshold_delay - THRESHOLD_REDUCE))) { 98 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 99 printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 100 threshold_delay - 1, 101 threshold_delay); 102 nb_prints++; 103 last_realtime_clock = sc->realtime_clock; 104 } 105 } 106 } 107 108 static void init_delay_params(SyncClocks *sc, 109 const CPUState *cpu) 110 { 111 if (!icount_align_option) { 112 return; 113 } 114 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 115 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 116 sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; 117 if (sc->diff_clk < max_delay) { 118 max_delay = sc->diff_clk; 119 } 120 if (sc->diff_clk > max_advance) { 121 max_advance = sc->diff_clk; 122 } 123 124 /* Print every 2s max if the guest is late. We limit the number 125 of printed messages to NB_PRINT_MAX(currently 100) */ 126 print_delay(sc); 127 } 128 #else 129 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 130 { 131 } 132 133 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 134 { 135 } 136 #endif /* CONFIG USER ONLY */ 137 138 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 139 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb) 140 { 141 CPUArchState *env = cpu->env_ptr; 142 uintptr_t ret; 143 TranslationBlock *last_tb; 144 int tb_exit; 145 uint8_t *tb_ptr = itb->tc.ptr; 146 147 qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc, 148 "Trace %d: %p [" 149 TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n", 150 cpu->cpu_index, itb->tc.ptr, 151 itb->cs_base, itb->pc, itb->flags, 152 lookup_symbol(itb->pc)); 153 154 #if defined(DEBUG_DISAS) 155 if (qemu_loglevel_mask(CPU_LOG_TB_CPU) 156 && qemu_log_in_addr_range(itb->pc)) { 157 qemu_log_lock(); 158 int flags = 0; 159 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 160 flags |= CPU_DUMP_FPU; 161 } 162 #if defined(TARGET_I386) 163 flags |= CPU_DUMP_CCOP; 164 #endif 165 log_cpu_state(cpu, flags); 166 qemu_log_unlock(); 167 } 168 #endif /* DEBUG_DISAS */ 169 170 cpu->can_do_io = !use_icount; 171 ret = tcg_qemu_tb_exec(env, tb_ptr); 172 cpu->can_do_io = 1; 173 last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 174 tb_exit = ret & TB_EXIT_MASK; 175 trace_exec_tb_exit(last_tb, tb_exit); 176 177 if (tb_exit > TB_EXIT_IDX1) { 178 /* We didn't start executing this TB (eg because the instruction 179 * counter hit zero); we must restore the guest PC to the address 180 * of the start of the TB. 181 */ 182 CPUClass *cc = CPU_GET_CLASS(cpu); 183 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, 184 "Stopped execution of TB chain before %p [" 185 TARGET_FMT_lx "] %s\n", 186 last_tb->tc.ptr, last_tb->pc, 187 lookup_symbol(last_tb->pc)); 188 if (cc->synchronize_from_tb) { 189 cc->synchronize_from_tb(cpu, last_tb); 190 } else { 191 assert(cc->set_pc); 192 cc->set_pc(cpu, last_tb->pc); 193 } 194 } 195 return ret; 196 } 197 198 #ifndef CONFIG_USER_ONLY 199 /* Execute the code without caching the generated code. An interpreter 200 could be used if available. */ 201 static void cpu_exec_nocache(CPUState *cpu, int max_cycles, 202 TranslationBlock *orig_tb, bool ignore_icount) 203 { 204 TranslationBlock *tb; 205 uint32_t cflags = curr_cflags() | CF_NOCACHE; 206 207 if (ignore_icount) { 208 cflags &= ~CF_USE_ICOUNT; 209 } 210 211 /* Should never happen. 212 We only end up here when an existing TB is too long. */ 213 cflags |= MIN(max_cycles, CF_COUNT_MASK); 214 215 mmap_lock(); 216 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, 217 orig_tb->flags, cflags); 218 tb->orig_tb = orig_tb; 219 mmap_unlock(); 220 221 /* execute the generated code */ 222 trace_exec_tb_nocache(tb, tb->pc); 223 cpu_tb_exec(cpu, tb); 224 225 mmap_lock(); 226 tb_phys_invalidate(tb, -1); 227 mmap_unlock(); 228 tcg_tb_remove(tb); 229 } 230 #endif 231 232 void cpu_exec_step_atomic(CPUState *cpu) 233 { 234 CPUClass *cc = CPU_GET_CLASS(cpu); 235 TranslationBlock *tb; 236 target_ulong cs_base, pc; 237 uint32_t flags; 238 uint32_t cflags = 1; 239 uint32_t cf_mask = cflags & CF_HASH_MASK; 240 /* volatile because we modify it between setjmp and longjmp */ 241 volatile bool in_exclusive_region = false; 242 243 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 244 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 245 if (tb == NULL) { 246 mmap_lock(); 247 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 248 mmap_unlock(); 249 } 250 251 start_exclusive(); 252 253 /* Since we got here, we know that parallel_cpus must be true. */ 254 parallel_cpus = false; 255 in_exclusive_region = true; 256 cc->cpu_exec_enter(cpu); 257 /* execute the generated code */ 258 trace_exec_tb(tb, pc); 259 cpu_tb_exec(cpu, tb); 260 cc->cpu_exec_exit(cpu); 261 } else { 262 /* 263 * The mmap_lock is dropped by tb_gen_code if it runs out of 264 * memory. 265 */ 266 #ifndef CONFIG_SOFTMMU 267 tcg_debug_assert(!have_mmap_lock()); 268 #endif 269 if (qemu_mutex_iothread_locked()) { 270 qemu_mutex_unlock_iothread(); 271 } 272 assert_no_pages_locked(); 273 } 274 275 if (in_exclusive_region) { 276 /* We might longjump out of either the codegen or the 277 * execution, so must make sure we only end the exclusive 278 * region if we started it. 279 */ 280 parallel_cpus = true; 281 end_exclusive(); 282 } 283 } 284 285 struct tb_desc { 286 target_ulong pc; 287 target_ulong cs_base; 288 CPUArchState *env; 289 tb_page_addr_t phys_page1; 290 uint32_t flags; 291 uint32_t cf_mask; 292 uint32_t trace_vcpu_dstate; 293 }; 294 295 static bool tb_lookup_cmp(const void *p, const void *d) 296 { 297 const TranslationBlock *tb = p; 298 const struct tb_desc *desc = d; 299 300 if (tb->pc == desc->pc && 301 tb->page_addr[0] == desc->phys_page1 && 302 tb->cs_base == desc->cs_base && 303 tb->flags == desc->flags && 304 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 305 (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) { 306 /* check next page if needed */ 307 if (tb->page_addr[1] == -1) { 308 return true; 309 } else { 310 tb_page_addr_t phys_page2; 311 target_ulong virt_page2; 312 313 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 314 phys_page2 = get_page_addr_code(desc->env, virt_page2); 315 if (tb->page_addr[1] == phys_page2) { 316 return true; 317 } 318 } 319 } 320 return false; 321 } 322 323 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 324 target_ulong cs_base, uint32_t flags, 325 uint32_t cf_mask) 326 { 327 tb_page_addr_t phys_pc; 328 struct tb_desc desc; 329 uint32_t h; 330 331 desc.env = (CPUArchState *)cpu->env_ptr; 332 desc.cs_base = cs_base; 333 desc.flags = flags; 334 desc.cf_mask = cf_mask; 335 desc.trace_vcpu_dstate = *cpu->trace_dstate; 336 desc.pc = pc; 337 phys_pc = get_page_addr_code(desc.env, pc); 338 if (phys_pc == -1) { 339 return NULL; 340 } 341 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; 342 h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate); 343 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 344 } 345 346 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 347 { 348 if (TCG_TARGET_HAS_direct_jump) { 349 uintptr_t offset = tb->jmp_target_arg[n]; 350 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; 351 tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr); 352 } else { 353 tb->jmp_target_arg[n] = addr; 354 } 355 } 356 357 static inline void tb_add_jump(TranslationBlock *tb, int n, 358 TranslationBlock *tb_next) 359 { 360 uintptr_t old; 361 362 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 363 qemu_spin_lock(&tb_next->jmp_lock); 364 365 /* make sure the destination TB is valid */ 366 if (tb_next->cflags & CF_INVALID) { 367 goto out_unlock_next; 368 } 369 /* Atomically claim the jump destination slot only if it was NULL */ 370 old = atomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, (uintptr_t)tb_next); 371 if (old) { 372 goto out_unlock_next; 373 } 374 375 /* patch the native jump address */ 376 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 377 378 /* add in TB jmp list */ 379 tb->jmp_list_next[n] = tb_next->jmp_list_head; 380 tb_next->jmp_list_head = (uintptr_t)tb | n; 381 382 qemu_spin_unlock(&tb_next->jmp_lock); 383 384 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 385 "Linking TBs %p [" TARGET_FMT_lx 386 "] index %d -> %p [" TARGET_FMT_lx "]\n", 387 tb->tc.ptr, tb->pc, n, 388 tb_next->tc.ptr, tb_next->pc); 389 return; 390 391 out_unlock_next: 392 qemu_spin_unlock(&tb_next->jmp_lock); 393 return; 394 } 395 396 static inline TranslationBlock *tb_find(CPUState *cpu, 397 TranslationBlock *last_tb, 398 int tb_exit, uint32_t cf_mask) 399 { 400 TranslationBlock *tb; 401 target_ulong cs_base, pc; 402 uint32_t flags; 403 404 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 405 if (tb == NULL) { 406 mmap_lock(); 407 tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask); 408 mmap_unlock(); 409 /* We add the TB in the virtual pc hash table for the fast lookup */ 410 atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); 411 } 412 #ifndef CONFIG_USER_ONLY 413 /* We don't take care of direct jumps when address mapping changes in 414 * system emulation. So it's not safe to make a direct jump to a TB 415 * spanning two pages because the mapping for the second page can change. 416 */ 417 if (tb->page_addr[1] != -1) { 418 last_tb = NULL; 419 } 420 #endif 421 /* See if we can patch the calling TB. */ 422 if (last_tb) { 423 tb_add_jump(last_tb, tb_exit, tb); 424 } 425 return tb; 426 } 427 428 static inline bool cpu_handle_halt(CPUState *cpu) 429 { 430 if (cpu->halted) { 431 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 432 if ((cpu->interrupt_request & CPU_INTERRUPT_POLL) 433 && replay_interrupt()) { 434 X86CPU *x86_cpu = X86_CPU(cpu); 435 qemu_mutex_lock_iothread(); 436 apic_poll_irq(x86_cpu->apic_state); 437 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 438 qemu_mutex_unlock_iothread(); 439 } 440 #endif 441 if (!cpu_has_work(cpu)) { 442 return true; 443 } 444 445 cpu->halted = 0; 446 } 447 448 return false; 449 } 450 451 static inline void cpu_handle_debug_exception(CPUState *cpu) 452 { 453 CPUClass *cc = CPU_GET_CLASS(cpu); 454 CPUWatchpoint *wp; 455 456 if (!cpu->watchpoint_hit) { 457 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 458 wp->flags &= ~BP_WATCHPOINT_HIT; 459 } 460 } 461 462 cc->debug_excp_handler(cpu); 463 } 464 465 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 466 { 467 if (cpu->exception_index < 0) { 468 #ifndef CONFIG_USER_ONLY 469 if (replay_has_exception() 470 && cpu->icount_decr.u16.low + cpu->icount_extra == 0) { 471 /* try to cause an exception pending in the log */ 472 cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true); 473 } 474 #endif 475 if (cpu->exception_index < 0) { 476 return false; 477 } 478 } 479 480 if (cpu->exception_index >= EXCP_INTERRUPT) { 481 /* exit request from the cpu execution loop */ 482 *ret = cpu->exception_index; 483 if (*ret == EXCP_DEBUG) { 484 cpu_handle_debug_exception(cpu); 485 } 486 cpu->exception_index = -1; 487 return true; 488 } else { 489 #if defined(CONFIG_USER_ONLY) 490 /* if user mode only, we simulate a fake exception 491 which will be handled outside the cpu execution 492 loop */ 493 #if defined(TARGET_I386) 494 CPUClass *cc = CPU_GET_CLASS(cpu); 495 cc->do_interrupt(cpu); 496 #endif 497 *ret = cpu->exception_index; 498 cpu->exception_index = -1; 499 return true; 500 #else 501 if (replay_exception()) { 502 CPUClass *cc = CPU_GET_CLASS(cpu); 503 qemu_mutex_lock_iothread(); 504 cc->do_interrupt(cpu); 505 qemu_mutex_unlock_iothread(); 506 cpu->exception_index = -1; 507 } else if (!replay_has_interrupt()) { 508 /* give a chance to iothread in replay mode */ 509 *ret = EXCP_INTERRUPT; 510 return true; 511 } 512 #endif 513 } 514 515 return false; 516 } 517 518 static inline bool cpu_handle_interrupt(CPUState *cpu, 519 TranslationBlock **last_tb) 520 { 521 CPUClass *cc = CPU_GET_CLASS(cpu); 522 523 /* Clear the interrupt flag now since we're processing 524 * cpu->interrupt_request and cpu->exit_request. 525 * Ensure zeroing happens before reading cpu->exit_request or 526 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 527 */ 528 atomic_mb_set(&cpu->icount_decr.u16.high, 0); 529 530 if (unlikely(atomic_read(&cpu->interrupt_request))) { 531 int interrupt_request; 532 qemu_mutex_lock_iothread(); 533 interrupt_request = cpu->interrupt_request; 534 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 535 /* Mask out external interrupts for this step. */ 536 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 537 } 538 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 539 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 540 cpu->exception_index = EXCP_DEBUG; 541 qemu_mutex_unlock_iothread(); 542 return true; 543 } 544 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 545 /* Do nothing */ 546 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 547 replay_interrupt(); 548 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 549 cpu->halted = 1; 550 cpu->exception_index = EXCP_HLT; 551 qemu_mutex_unlock_iothread(); 552 return true; 553 } 554 #if defined(TARGET_I386) 555 else if (interrupt_request & CPU_INTERRUPT_INIT) { 556 X86CPU *x86_cpu = X86_CPU(cpu); 557 CPUArchState *env = &x86_cpu->env; 558 replay_interrupt(); 559 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 560 do_cpu_init(x86_cpu); 561 cpu->exception_index = EXCP_HALTED; 562 qemu_mutex_unlock_iothread(); 563 return true; 564 } 565 #else 566 else if (interrupt_request & CPU_INTERRUPT_RESET) { 567 replay_interrupt(); 568 cpu_reset(cpu); 569 qemu_mutex_unlock_iothread(); 570 return true; 571 } 572 #endif 573 /* The target hook has 3 exit conditions: 574 False when the interrupt isn't processed, 575 True when it is, and we should restart on a new TB, 576 and via longjmp via cpu_loop_exit. */ 577 else { 578 if (cc->cpu_exec_interrupt(cpu, interrupt_request)) { 579 replay_interrupt(); 580 cpu->exception_index = -1; 581 *last_tb = NULL; 582 } 583 /* The target hook may have updated the 'cpu->interrupt_request'; 584 * reload the 'interrupt_request' value */ 585 interrupt_request = cpu->interrupt_request; 586 } 587 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 588 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 589 /* ensure that no TB jump will be modified as 590 the program flow was changed */ 591 *last_tb = NULL; 592 } 593 594 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 595 qemu_mutex_unlock_iothread(); 596 } 597 598 /* Finally, check if we need to exit to the main loop. */ 599 if (unlikely(atomic_read(&cpu->exit_request) 600 || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) { 601 atomic_set(&cpu->exit_request, 0); 602 if (cpu->exception_index == -1) { 603 cpu->exception_index = EXCP_INTERRUPT; 604 } 605 return true; 606 } 607 608 return false; 609 } 610 611 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 612 TranslationBlock **last_tb, int *tb_exit) 613 { 614 uintptr_t ret; 615 int32_t insns_left; 616 617 trace_exec_tb(tb, tb->pc); 618 ret = cpu_tb_exec(cpu, tb); 619 tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 620 *tb_exit = ret & TB_EXIT_MASK; 621 if (*tb_exit != TB_EXIT_REQUESTED) { 622 *last_tb = tb; 623 return; 624 } 625 626 *last_tb = NULL; 627 insns_left = atomic_read(&cpu->icount_decr.u32); 628 if (insns_left < 0) { 629 /* Something asked us to stop executing chained TBs; just 630 * continue round the main loop. Whatever requested the exit 631 * will also have set something else (eg exit_request or 632 * interrupt_request) which will be handled by 633 * cpu_handle_interrupt. cpu_handle_interrupt will also 634 * clear cpu->icount_decr.u16.high. 635 */ 636 return; 637 } 638 639 /* Instruction counter expired. */ 640 assert(use_icount); 641 #ifndef CONFIG_USER_ONLY 642 /* Ensure global icount has gone forward */ 643 cpu_update_icount(cpu); 644 /* Refill decrementer and continue execution. */ 645 insns_left = MIN(0xffff, cpu->icount_budget); 646 cpu->icount_decr.u16.low = insns_left; 647 cpu->icount_extra = cpu->icount_budget - insns_left; 648 if (!cpu->icount_extra) { 649 /* Execute any remaining instructions, then let the main loop 650 * handle the next event. 651 */ 652 if (insns_left > 0) { 653 cpu_exec_nocache(cpu, insns_left, tb, false); 654 } 655 } 656 #endif 657 } 658 659 /* main execution loop */ 660 661 int cpu_exec(CPUState *cpu) 662 { 663 CPUClass *cc = CPU_GET_CLASS(cpu); 664 int ret; 665 SyncClocks sc = { 0 }; 666 667 /* replay_interrupt may need current_cpu */ 668 current_cpu = cpu; 669 670 if (cpu_handle_halt(cpu)) { 671 return EXCP_HALTED; 672 } 673 674 rcu_read_lock(); 675 676 cc->cpu_exec_enter(cpu); 677 678 /* Calculate difference between guest clock and host clock. 679 * This delay includes the delay of the last cycle, so 680 * what we have to do is sleep until it is 0. As for the 681 * advance/delay we gain here, we try to fix it next time. 682 */ 683 init_delay_params(&sc, cpu); 684 685 /* prepare setjmp context for exception handling */ 686 if (sigsetjmp(cpu->jmp_env, 0) != 0) { 687 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6) 688 /* Some compilers wrongly smash all local variables after 689 * siglongjmp. There were bug reports for gcc 4.5.0 and clang. 690 * Reload essential local variables here for those compilers. 691 * Newer versions of gcc would complain about this code (-Wclobbered). */ 692 cpu = current_cpu; 693 cc = CPU_GET_CLASS(cpu); 694 #else /* buggy compiler */ 695 /* Assert that the compiler does not smash local variables. */ 696 g_assert(cpu == current_cpu); 697 g_assert(cc == CPU_GET_CLASS(cpu)); 698 #endif /* buggy compiler */ 699 #ifndef CONFIG_SOFTMMU 700 tcg_debug_assert(!have_mmap_lock()); 701 #endif 702 if (qemu_mutex_iothread_locked()) { 703 qemu_mutex_unlock_iothread(); 704 } 705 assert_no_pages_locked(); 706 } 707 708 /* if an exception is pending, we execute it here */ 709 while (!cpu_handle_exception(cpu, &ret)) { 710 TranslationBlock *last_tb = NULL; 711 int tb_exit = 0; 712 713 while (!cpu_handle_interrupt(cpu, &last_tb)) { 714 uint32_t cflags = cpu->cflags_next_tb; 715 TranslationBlock *tb; 716 717 /* When requested, use an exact setting for cflags for the next 718 execution. This is used for icount, precise smc, and stop- 719 after-access watchpoints. Since this request should never 720 have CF_INVALID set, -1 is a convenient invalid value that 721 does not require tcg headers for cpu_common_reset. */ 722 if (cflags == -1) { 723 cflags = curr_cflags(); 724 } else { 725 cpu->cflags_next_tb = -1; 726 } 727 728 tb = tb_find(cpu, last_tb, tb_exit, cflags); 729 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); 730 /* Try to align the host and virtual clocks 731 if the guest is in advance */ 732 align_clocks(&sc, cpu); 733 } 734 } 735 736 cc->cpu_exec_exit(cpu); 737 rcu_read_unlock(); 738 739 return ret; 740 } 741