1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "qemu/qemu-print.h" 23 #include "qapi/error.h" 24 #include "qapi/qapi-commands-machine.h" 25 #include "qapi/type-helpers.h" 26 #include "hw/core/tcg-cpu-ops.h" 27 #include "trace.h" 28 #include "disas/disas.h" 29 #include "exec/exec-all.h" 30 #include "tcg/tcg.h" 31 #include "qemu/atomic.h" 32 #include "qemu/compiler.h" 33 #include "qemu/timer.h" 34 #include "qemu/rcu.h" 35 #include "exec/log.h" 36 #include "qemu/main-loop.h" 37 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 38 #include "hw/i386/apic.h" 39 #endif 40 #include "sysemu/cpus.h" 41 #include "exec/cpu-all.h" 42 #include "sysemu/cpu-timers.h" 43 #include "sysemu/replay.h" 44 #include "sysemu/tcg.h" 45 #include "exec/helper-proto.h" 46 #include "tb-hash.h" 47 #include "tb-context.h" 48 #include "internal.h" 49 50 /* -icount align implementation. */ 51 52 typedef struct SyncClocks { 53 int64_t diff_clk; 54 int64_t last_cpu_icount; 55 int64_t realtime_clock; 56 } SyncClocks; 57 58 #if !defined(CONFIG_USER_ONLY) 59 /* Allow the guest to have a max 3ms advance. 60 * The difference between the 2 clocks could therefore 61 * oscillate around 0. 62 */ 63 #define VM_CLOCK_ADVANCE 3000000 64 #define THRESHOLD_REDUCE 1.5 65 #define MAX_DELAY_PRINT_RATE 2000000000LL 66 #define MAX_NB_PRINTS 100 67 68 static int64_t max_delay; 69 static int64_t max_advance; 70 71 static void align_clocks(SyncClocks *sc, CPUState *cpu) 72 { 73 int64_t cpu_icount; 74 75 if (!icount_align_option) { 76 return; 77 } 78 79 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 80 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 81 sc->last_cpu_icount = cpu_icount; 82 83 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 84 #ifndef _WIN32 85 struct timespec sleep_delay, rem_delay; 86 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 87 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 88 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 89 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 90 } else { 91 sc->diff_clk = 0; 92 } 93 #else 94 Sleep(sc->diff_clk / SCALE_MS); 95 sc->diff_clk = 0; 96 #endif 97 } 98 } 99 100 static void print_delay(const SyncClocks *sc) 101 { 102 static float threshold_delay; 103 static int64_t last_realtime_clock; 104 static int nb_prints; 105 106 if (icount_align_option && 107 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 108 nb_prints < MAX_NB_PRINTS) { 109 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 110 (-sc->diff_clk / (float)1000000000LL < 111 (threshold_delay - THRESHOLD_REDUCE))) { 112 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 113 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 114 threshold_delay - 1, 115 threshold_delay); 116 nb_prints++; 117 last_realtime_clock = sc->realtime_clock; 118 } 119 } 120 } 121 122 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 123 { 124 if (!icount_align_option) { 125 return; 126 } 127 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 128 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 129 sc->last_cpu_icount 130 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 131 if (sc->diff_clk < max_delay) { 132 max_delay = sc->diff_clk; 133 } 134 if (sc->diff_clk > max_advance) { 135 max_advance = sc->diff_clk; 136 } 137 138 /* Print every 2s max if the guest is late. We limit the number 139 of printed messages to NB_PRINT_MAX(currently 100) */ 140 print_delay(sc); 141 } 142 #else 143 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 144 { 145 } 146 147 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 148 { 149 } 150 #endif /* CONFIG USER ONLY */ 151 152 uint32_t curr_cflags(CPUState *cpu) 153 { 154 uint32_t cflags = cpu->tcg_cflags; 155 156 /* 157 * Record gdb single-step. We should be exiting the TB by raising 158 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 159 * 160 * For singlestep and -d nochain, suppress goto_tb so that 161 * we can log -d cpu,exec after every TB. 162 */ 163 if (unlikely(cpu->singlestep_enabled)) { 164 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 165 } else if (singlestep) { 166 cflags |= CF_NO_GOTO_TB | 1; 167 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 168 cflags |= CF_NO_GOTO_TB; 169 } 170 171 return cflags; 172 } 173 174 /* Might cause an exception, so have a longjmp destination ready */ 175 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc, 176 target_ulong cs_base, 177 uint32_t flags, uint32_t cflags) 178 { 179 TranslationBlock *tb; 180 uint32_t hash; 181 182 /* we should never be trying to look up an INVALID tb */ 183 tcg_debug_assert(!(cflags & CF_INVALID)); 184 185 hash = tb_jmp_cache_hash_func(pc); 186 tb = qatomic_rcu_read(&cpu->tb_jmp_cache[hash]); 187 188 if (likely(tb && 189 tb->pc == pc && 190 tb->cs_base == cs_base && 191 tb->flags == flags && 192 tb->trace_vcpu_dstate == *cpu->trace_dstate && 193 tb_cflags(tb) == cflags)) { 194 return tb; 195 } 196 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 197 if (tb == NULL) { 198 return NULL; 199 } 200 qatomic_set(&cpu->tb_jmp_cache[hash], tb); 201 return tb; 202 } 203 204 static inline void log_cpu_exec(target_ulong pc, CPUState *cpu, 205 const TranslationBlock *tb) 206 { 207 if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) 208 && qemu_log_in_addr_range(pc)) { 209 210 qemu_log_mask(CPU_LOG_EXEC, 211 "Trace %d: %p [" TARGET_FMT_lx 212 "/" TARGET_FMT_lx "/%08x/%08x] %s\n", 213 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 214 tb->flags, tb->cflags, lookup_symbol(pc)); 215 216 #if defined(DEBUG_DISAS) 217 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 218 FILE *logfile = qemu_log_lock(); 219 int flags = 0; 220 221 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 222 flags |= CPU_DUMP_FPU; 223 } 224 #if defined(TARGET_I386) 225 flags |= CPU_DUMP_CCOP; 226 #endif 227 log_cpu_state(cpu, flags); 228 qemu_log_unlock(logfile); 229 } 230 #endif /* DEBUG_DISAS */ 231 } 232 } 233 234 static bool check_for_breakpoints(CPUState *cpu, target_ulong pc, 235 uint32_t *cflags) 236 { 237 CPUBreakpoint *bp; 238 bool match_page = false; 239 240 if (likely(QTAILQ_EMPTY(&cpu->breakpoints))) { 241 return false; 242 } 243 244 /* 245 * Singlestep overrides breakpoints. 246 * This requirement is visible in the record-replay tests, where 247 * we would fail to make forward progress in reverse-continue. 248 * 249 * TODO: gdb singlestep should only override gdb breakpoints, 250 * so that one could (gdb) singlestep into the guest kernel's 251 * architectural breakpoint handler. 252 */ 253 if (cpu->singlestep_enabled) { 254 return false; 255 } 256 257 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 258 /* 259 * If we have an exact pc match, trigger the breakpoint. 260 * Otherwise, note matches within the page. 261 */ 262 if (pc == bp->pc) { 263 bool match_bp = false; 264 265 if (bp->flags & BP_GDB) { 266 match_bp = true; 267 } else if (bp->flags & BP_CPU) { 268 #ifdef CONFIG_USER_ONLY 269 g_assert_not_reached(); 270 #else 271 CPUClass *cc = CPU_GET_CLASS(cpu); 272 assert(cc->tcg_ops->debug_check_breakpoint); 273 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu); 274 #endif 275 } 276 277 if (match_bp) { 278 cpu->exception_index = EXCP_DEBUG; 279 return true; 280 } 281 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 282 match_page = true; 283 } 284 } 285 286 /* 287 * Within the same page as a breakpoint, single-step, 288 * returning to helper_lookup_tb_ptr after each insn looking 289 * for the actual breakpoint. 290 * 291 * TODO: Perhaps better to record all of the TBs associated 292 * with a given virtual page that contains a breakpoint, and 293 * then invalidate them when a new overlapping breakpoint is 294 * set on the page. Non-overlapping TBs would not be 295 * invalidated, nor would any TB need to be invalidated as 296 * breakpoints are removed. 297 */ 298 if (match_page) { 299 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1; 300 } 301 return false; 302 } 303 304 /** 305 * helper_lookup_tb_ptr: quick check for next tb 306 * @env: current cpu state 307 * 308 * Look for an existing TB matching the current cpu state. 309 * If found, return the code pointer. If not found, return 310 * the tcg epilogue so that we return into cpu_tb_exec. 311 */ 312 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 313 { 314 CPUState *cpu = env_cpu(env); 315 TranslationBlock *tb; 316 target_ulong cs_base, pc; 317 uint32_t flags, cflags; 318 319 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 320 321 cflags = curr_cflags(cpu); 322 if (check_for_breakpoints(cpu, pc, &cflags)) { 323 cpu_loop_exit(cpu); 324 } 325 326 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 327 if (tb == NULL) { 328 return tcg_code_gen_epilogue; 329 } 330 331 log_cpu_exec(pc, cpu, tb); 332 333 return tb->tc.ptr; 334 } 335 336 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 337 /* 338 * Disable CFI checks. 339 * TCG creates binary blobs at runtime, with the transformed code. 340 * A TB is a blob of binary code, created at runtime and called with an 341 * indirect function call. Since such function did not exist at compile time, 342 * the CFI runtime has no way to verify its signature and would fail. 343 * TCG is not considered a security-sensitive part of QEMU so this does not 344 * affect the impact of CFI in environment with high security requirements 345 */ 346 static inline TranslationBlock * QEMU_DISABLE_CFI 347 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 348 { 349 CPUArchState *env = cpu->env_ptr; 350 uintptr_t ret; 351 TranslationBlock *last_tb; 352 const void *tb_ptr = itb->tc.ptr; 353 354 log_cpu_exec(itb->pc, cpu, itb); 355 356 qemu_thread_jit_execute(); 357 ret = tcg_qemu_tb_exec(env, tb_ptr); 358 cpu->can_do_io = 1; 359 /* 360 * TODO: Delay swapping back to the read-write region of the TB 361 * until we actually need to modify the TB. The read-only copy, 362 * coming from the rx region, shares the same host TLB entry as 363 * the code that executed the exit_tb opcode that arrived here. 364 * If we insist on touching both the RX and the RW pages, we 365 * double the host TLB pressure. 366 */ 367 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 368 *tb_exit = ret & TB_EXIT_MASK; 369 370 trace_exec_tb_exit(last_tb, *tb_exit); 371 372 if (*tb_exit > TB_EXIT_IDX1) { 373 /* We didn't start executing this TB (eg because the instruction 374 * counter hit zero); we must restore the guest PC to the address 375 * of the start of the TB. 376 */ 377 CPUClass *cc = CPU_GET_CLASS(cpu); 378 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, 379 "Stopped execution of TB chain before %p [" 380 TARGET_FMT_lx "] %s\n", 381 last_tb->tc.ptr, last_tb->pc, 382 lookup_symbol(last_tb->pc)); 383 if (cc->tcg_ops->synchronize_from_tb) { 384 cc->tcg_ops->synchronize_from_tb(cpu, last_tb); 385 } else { 386 assert(cc->set_pc); 387 cc->set_pc(cpu, last_tb->pc); 388 } 389 } 390 391 /* 392 * If gdb single-step, and we haven't raised another exception, 393 * raise a debug exception. Single-step with another exception 394 * is handled in cpu_handle_exception. 395 */ 396 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 397 cpu->exception_index = EXCP_DEBUG; 398 cpu_loop_exit(cpu); 399 } 400 401 return last_tb; 402 } 403 404 405 static void cpu_exec_enter(CPUState *cpu) 406 { 407 CPUClass *cc = CPU_GET_CLASS(cpu); 408 409 if (cc->tcg_ops->cpu_exec_enter) { 410 cc->tcg_ops->cpu_exec_enter(cpu); 411 } 412 } 413 414 static void cpu_exec_exit(CPUState *cpu) 415 { 416 CPUClass *cc = CPU_GET_CLASS(cpu); 417 418 if (cc->tcg_ops->cpu_exec_exit) { 419 cc->tcg_ops->cpu_exec_exit(cpu); 420 } 421 } 422 423 void cpu_exec_step_atomic(CPUState *cpu) 424 { 425 CPUArchState *env = (CPUArchState *)cpu->env_ptr; 426 TranslationBlock *tb; 427 target_ulong cs_base, pc; 428 uint32_t flags, cflags; 429 int tb_exit; 430 431 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 432 start_exclusive(); 433 g_assert(cpu == current_cpu); 434 g_assert(!cpu->running); 435 cpu->running = true; 436 437 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 438 439 cflags = curr_cflags(cpu); 440 /* Execute in a serial context. */ 441 cflags &= ~CF_PARALLEL; 442 /* After 1 insn, return and release the exclusive lock. */ 443 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 444 /* 445 * No need to check_for_breakpoints here. 446 * We only arrive in cpu_exec_step_atomic after beginning execution 447 * of an insn that includes an atomic operation we can't handle. 448 * Any breakpoint for this insn will have been recognized earlier. 449 */ 450 451 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 452 if (tb == NULL) { 453 mmap_lock(); 454 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 455 mmap_unlock(); 456 } 457 458 cpu_exec_enter(cpu); 459 /* execute the generated code */ 460 trace_exec_tb(tb, pc); 461 cpu_tb_exec(cpu, tb, &tb_exit); 462 cpu_exec_exit(cpu); 463 } else { 464 /* 465 * The mmap_lock is dropped by tb_gen_code if it runs out of 466 * memory. 467 */ 468 #ifndef CONFIG_SOFTMMU 469 clear_helper_retaddr(); 470 tcg_debug_assert(!have_mmap_lock()); 471 #endif 472 if (qemu_mutex_iothread_locked()) { 473 qemu_mutex_unlock_iothread(); 474 } 475 assert_no_pages_locked(); 476 qemu_plugin_disable_mem_helpers(cpu); 477 } 478 479 /* 480 * As we start the exclusive region before codegen we must still 481 * be in the region if we longjump out of either the codegen or 482 * the execution. 483 */ 484 g_assert(cpu_in_exclusive_context(cpu)); 485 cpu->running = false; 486 end_exclusive(); 487 } 488 489 struct tb_desc { 490 target_ulong pc; 491 target_ulong cs_base; 492 CPUArchState *env; 493 tb_page_addr_t phys_page1; 494 uint32_t flags; 495 uint32_t cflags; 496 uint32_t trace_vcpu_dstate; 497 }; 498 499 static bool tb_lookup_cmp(const void *p, const void *d) 500 { 501 const TranslationBlock *tb = p; 502 const struct tb_desc *desc = d; 503 504 if (tb->pc == desc->pc && 505 tb->page_addr[0] == desc->phys_page1 && 506 tb->cs_base == desc->cs_base && 507 tb->flags == desc->flags && 508 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 509 tb_cflags(tb) == desc->cflags) { 510 /* check next page if needed */ 511 if (tb->page_addr[1] == -1) { 512 return true; 513 } else { 514 tb_page_addr_t phys_page2; 515 target_ulong virt_page2; 516 517 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 518 phys_page2 = get_page_addr_code(desc->env, virt_page2); 519 if (tb->page_addr[1] == phys_page2) { 520 return true; 521 } 522 } 523 } 524 return false; 525 } 526 527 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 528 target_ulong cs_base, uint32_t flags, 529 uint32_t cflags) 530 { 531 tb_page_addr_t phys_pc; 532 struct tb_desc desc; 533 uint32_t h; 534 535 desc.env = (CPUArchState *)cpu->env_ptr; 536 desc.cs_base = cs_base; 537 desc.flags = flags; 538 desc.cflags = cflags; 539 desc.trace_vcpu_dstate = *cpu->trace_dstate; 540 desc.pc = pc; 541 phys_pc = get_page_addr_code(desc.env, pc); 542 if (phys_pc == -1) { 543 return NULL; 544 } 545 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; 546 h = tb_hash_func(phys_pc, pc, flags, cflags, *cpu->trace_dstate); 547 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 548 } 549 550 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 551 { 552 if (TCG_TARGET_HAS_direct_jump) { 553 uintptr_t offset = tb->jmp_target_arg[n]; 554 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; 555 uintptr_t jmp_rx = tc_ptr + offset; 556 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 557 tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr); 558 } else { 559 tb->jmp_target_arg[n] = addr; 560 } 561 } 562 563 static inline void tb_add_jump(TranslationBlock *tb, int n, 564 TranslationBlock *tb_next) 565 { 566 uintptr_t old; 567 568 qemu_thread_jit_write(); 569 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 570 qemu_spin_lock(&tb_next->jmp_lock); 571 572 /* make sure the destination TB is valid */ 573 if (tb_next->cflags & CF_INVALID) { 574 goto out_unlock_next; 575 } 576 /* Atomically claim the jump destination slot only if it was NULL */ 577 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 578 (uintptr_t)tb_next); 579 if (old) { 580 goto out_unlock_next; 581 } 582 583 /* patch the native jump address */ 584 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 585 586 /* add in TB jmp list */ 587 tb->jmp_list_next[n] = tb_next->jmp_list_head; 588 tb_next->jmp_list_head = (uintptr_t)tb | n; 589 590 qemu_spin_unlock(&tb_next->jmp_lock); 591 592 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 593 "Linking TBs %p [" TARGET_FMT_lx 594 "] index %d -> %p [" TARGET_FMT_lx "]\n", 595 tb->tc.ptr, tb->pc, n, 596 tb_next->tc.ptr, tb_next->pc); 597 return; 598 599 out_unlock_next: 600 qemu_spin_unlock(&tb_next->jmp_lock); 601 return; 602 } 603 604 static inline bool cpu_handle_halt(CPUState *cpu) 605 { 606 #ifndef CONFIG_USER_ONLY 607 if (cpu->halted) { 608 #if defined(TARGET_I386) 609 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) { 610 X86CPU *x86_cpu = X86_CPU(cpu); 611 qemu_mutex_lock_iothread(); 612 apic_poll_irq(x86_cpu->apic_state); 613 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 614 qemu_mutex_unlock_iothread(); 615 } 616 #endif /* TARGET_I386 */ 617 if (!cpu_has_work(cpu)) { 618 return true; 619 } 620 621 cpu->halted = 0; 622 } 623 #endif /* !CONFIG_USER_ONLY */ 624 625 return false; 626 } 627 628 static inline void cpu_handle_debug_exception(CPUState *cpu) 629 { 630 CPUClass *cc = CPU_GET_CLASS(cpu); 631 CPUWatchpoint *wp; 632 633 if (!cpu->watchpoint_hit) { 634 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 635 wp->flags &= ~BP_WATCHPOINT_HIT; 636 } 637 } 638 639 if (cc->tcg_ops->debug_excp_handler) { 640 cc->tcg_ops->debug_excp_handler(cpu); 641 } 642 } 643 644 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 645 { 646 if (cpu->exception_index < 0) { 647 #ifndef CONFIG_USER_ONLY 648 if (replay_has_exception() 649 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) { 650 /* Execute just one insn to trigger exception pending in the log */ 651 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) | 1; 652 } 653 #endif 654 return false; 655 } 656 if (cpu->exception_index >= EXCP_INTERRUPT) { 657 /* exit request from the cpu execution loop */ 658 *ret = cpu->exception_index; 659 if (*ret == EXCP_DEBUG) { 660 cpu_handle_debug_exception(cpu); 661 } 662 cpu->exception_index = -1; 663 return true; 664 } else { 665 #if defined(CONFIG_USER_ONLY) 666 /* if user mode only, we simulate a fake exception 667 which will be handled outside the cpu execution 668 loop */ 669 #if defined(TARGET_I386) 670 CPUClass *cc = CPU_GET_CLASS(cpu); 671 cc->tcg_ops->fake_user_interrupt(cpu); 672 #endif /* TARGET_I386 */ 673 *ret = cpu->exception_index; 674 cpu->exception_index = -1; 675 return true; 676 #else 677 if (replay_exception()) { 678 CPUClass *cc = CPU_GET_CLASS(cpu); 679 qemu_mutex_lock_iothread(); 680 cc->tcg_ops->do_interrupt(cpu); 681 qemu_mutex_unlock_iothread(); 682 cpu->exception_index = -1; 683 684 if (unlikely(cpu->singlestep_enabled)) { 685 /* 686 * After processing the exception, ensure an EXCP_DEBUG is 687 * raised when single-stepping so that GDB doesn't miss the 688 * next instruction. 689 */ 690 *ret = EXCP_DEBUG; 691 cpu_handle_debug_exception(cpu); 692 return true; 693 } 694 } else if (!replay_has_interrupt()) { 695 /* give a chance to iothread in replay mode */ 696 *ret = EXCP_INTERRUPT; 697 return true; 698 } 699 #endif 700 } 701 702 return false; 703 } 704 705 #ifndef CONFIG_USER_ONLY 706 /* 707 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a 708 * "real" interrupt event later. It does not need to be recorded for 709 * replay purposes. 710 */ 711 static inline bool need_replay_interrupt(int interrupt_request) 712 { 713 #if defined(TARGET_I386) 714 return !(interrupt_request & CPU_INTERRUPT_POLL); 715 #else 716 return true; 717 #endif 718 } 719 #endif /* !CONFIG_USER_ONLY */ 720 721 static inline bool cpu_handle_interrupt(CPUState *cpu, 722 TranslationBlock **last_tb) 723 { 724 /* Clear the interrupt flag now since we're processing 725 * cpu->interrupt_request and cpu->exit_request. 726 * Ensure zeroing happens before reading cpu->exit_request or 727 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 728 */ 729 qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0); 730 731 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 732 int interrupt_request; 733 qemu_mutex_lock_iothread(); 734 interrupt_request = cpu->interrupt_request; 735 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 736 /* Mask out external interrupts for this step. */ 737 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 738 } 739 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 740 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 741 cpu->exception_index = EXCP_DEBUG; 742 qemu_mutex_unlock_iothread(); 743 return true; 744 } 745 #if !defined(CONFIG_USER_ONLY) 746 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 747 /* Do nothing */ 748 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 749 replay_interrupt(); 750 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 751 cpu->halted = 1; 752 cpu->exception_index = EXCP_HLT; 753 qemu_mutex_unlock_iothread(); 754 return true; 755 } 756 #if defined(TARGET_I386) 757 else if (interrupt_request & CPU_INTERRUPT_INIT) { 758 X86CPU *x86_cpu = X86_CPU(cpu); 759 CPUArchState *env = &x86_cpu->env; 760 replay_interrupt(); 761 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 762 do_cpu_init(x86_cpu); 763 cpu->exception_index = EXCP_HALTED; 764 qemu_mutex_unlock_iothread(); 765 return true; 766 } 767 #else 768 else if (interrupt_request & CPU_INTERRUPT_RESET) { 769 replay_interrupt(); 770 cpu_reset(cpu); 771 qemu_mutex_unlock_iothread(); 772 return true; 773 } 774 #endif /* !TARGET_I386 */ 775 /* The target hook has 3 exit conditions: 776 False when the interrupt isn't processed, 777 True when it is, and we should restart on a new TB, 778 and via longjmp via cpu_loop_exit. */ 779 else { 780 CPUClass *cc = CPU_GET_CLASS(cpu); 781 782 if (cc->tcg_ops->cpu_exec_interrupt && 783 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 784 if (need_replay_interrupt(interrupt_request)) { 785 replay_interrupt(); 786 } 787 /* 788 * After processing the interrupt, ensure an EXCP_DEBUG is 789 * raised when single-stepping so that GDB doesn't miss the 790 * next instruction. 791 */ 792 cpu->exception_index = 793 (cpu->singlestep_enabled ? EXCP_DEBUG : -1); 794 *last_tb = NULL; 795 } 796 /* The target hook may have updated the 'cpu->interrupt_request'; 797 * reload the 'interrupt_request' value */ 798 interrupt_request = cpu->interrupt_request; 799 } 800 #endif /* !CONFIG_USER_ONLY */ 801 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 802 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 803 /* ensure that no TB jump will be modified as 804 the program flow was changed */ 805 *last_tb = NULL; 806 } 807 808 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 809 qemu_mutex_unlock_iothread(); 810 } 811 812 /* Finally, check if we need to exit to the main loop. */ 813 if (unlikely(qatomic_read(&cpu->exit_request)) 814 || (icount_enabled() 815 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT) 816 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) { 817 qatomic_set(&cpu->exit_request, 0); 818 if (cpu->exception_index == -1) { 819 cpu->exception_index = EXCP_INTERRUPT; 820 } 821 return true; 822 } 823 824 return false; 825 } 826 827 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 828 TranslationBlock **last_tb, int *tb_exit) 829 { 830 int32_t insns_left; 831 832 trace_exec_tb(tb, tb->pc); 833 tb = cpu_tb_exec(cpu, tb, tb_exit); 834 if (*tb_exit != TB_EXIT_REQUESTED) { 835 *last_tb = tb; 836 return; 837 } 838 839 *last_tb = NULL; 840 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32); 841 if (insns_left < 0) { 842 /* Something asked us to stop executing chained TBs; just 843 * continue round the main loop. Whatever requested the exit 844 * will also have set something else (eg exit_request or 845 * interrupt_request) which will be handled by 846 * cpu_handle_interrupt. cpu_handle_interrupt will also 847 * clear cpu->icount_decr.u16.high. 848 */ 849 return; 850 } 851 852 /* Instruction counter expired. */ 853 assert(icount_enabled()); 854 #ifndef CONFIG_USER_ONLY 855 /* Ensure global icount has gone forward */ 856 icount_update(cpu); 857 /* Refill decrementer and continue execution. */ 858 insns_left = MIN(0xffff, cpu->icount_budget); 859 cpu_neg(cpu)->icount_decr.u16.low = insns_left; 860 cpu->icount_extra = cpu->icount_budget - insns_left; 861 862 /* 863 * If the next tb has more instructions than we have left to 864 * execute we need to ensure we find/generate a TB with exactly 865 * insns_left instructions in it. 866 */ 867 if (insns_left > 0 && insns_left < tb->icount) { 868 assert(insns_left <= CF_COUNT_MASK); 869 assert(cpu->icount_extra == 0); 870 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 871 } 872 #endif 873 } 874 875 /* main execution loop */ 876 877 int cpu_exec(CPUState *cpu) 878 { 879 int ret; 880 SyncClocks sc = { 0 }; 881 882 /* replay_interrupt may need current_cpu */ 883 current_cpu = cpu; 884 885 if (cpu_handle_halt(cpu)) { 886 return EXCP_HALTED; 887 } 888 889 rcu_read_lock(); 890 891 cpu_exec_enter(cpu); 892 893 /* Calculate difference between guest clock and host clock. 894 * This delay includes the delay of the last cycle, so 895 * what we have to do is sleep until it is 0. As for the 896 * advance/delay we gain here, we try to fix it next time. 897 */ 898 init_delay_params(&sc, cpu); 899 900 /* prepare setjmp context for exception handling */ 901 if (sigsetjmp(cpu->jmp_env, 0) != 0) { 902 #if defined(__clang__) 903 /* 904 * Some compilers wrongly smash all local variables after 905 * siglongjmp (the spec requires that only non-volatile locals 906 * which are changed between the sigsetjmp and siglongjmp are 907 * permitted to be trashed). There were bug reports for gcc 908 * 4.5.0 and clang. The bug is fixed in all versions of gcc 909 * that we support, but is still unfixed in clang: 910 * https://bugs.llvm.org/show_bug.cgi?id=21183 911 * 912 * Reload an essential local variable here for those compilers. 913 * Newer versions of gcc would complain about this code (-Wclobbered), 914 * so we only perform the workaround for clang. 915 */ 916 cpu = current_cpu; 917 #else 918 /* Non-buggy compilers preserve this; assert the correct value. */ 919 g_assert(cpu == current_cpu); 920 #endif 921 922 #ifndef CONFIG_SOFTMMU 923 clear_helper_retaddr(); 924 tcg_debug_assert(!have_mmap_lock()); 925 #endif 926 if (qemu_mutex_iothread_locked()) { 927 qemu_mutex_unlock_iothread(); 928 } 929 qemu_plugin_disable_mem_helpers(cpu); 930 931 assert_no_pages_locked(); 932 } 933 934 /* if an exception is pending, we execute it here */ 935 while (!cpu_handle_exception(cpu, &ret)) { 936 TranslationBlock *last_tb = NULL; 937 int tb_exit = 0; 938 939 while (!cpu_handle_interrupt(cpu, &last_tb)) { 940 TranslationBlock *tb; 941 target_ulong cs_base, pc; 942 uint32_t flags, cflags; 943 944 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags); 945 946 /* 947 * When requested, use an exact setting for cflags for the next 948 * execution. This is used for icount, precise smc, and stop- 949 * after-access watchpoints. Since this request should never 950 * have CF_INVALID set, -1 is a convenient invalid value that 951 * does not require tcg headers for cpu_common_reset. 952 */ 953 cflags = cpu->cflags_next_tb; 954 if (cflags == -1) { 955 cflags = curr_cflags(cpu); 956 } else { 957 cpu->cflags_next_tb = -1; 958 } 959 960 if (check_for_breakpoints(cpu, pc, &cflags)) { 961 break; 962 } 963 964 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 965 if (tb == NULL) { 966 mmap_lock(); 967 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 968 mmap_unlock(); 969 /* 970 * We add the TB in the virtual pc hash table 971 * for the fast lookup 972 */ 973 qatomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); 974 } 975 976 #ifndef CONFIG_USER_ONLY 977 /* 978 * We don't take care of direct jumps when address mapping 979 * changes in system emulation. So it's not safe to make a 980 * direct jump to a TB spanning two pages because the mapping 981 * for the second page can change. 982 */ 983 if (tb->page_addr[1] != -1) { 984 last_tb = NULL; 985 } 986 #endif 987 /* See if we can patch the calling TB. */ 988 if (last_tb) { 989 tb_add_jump(last_tb, tb_exit, tb); 990 } 991 992 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); 993 994 /* Try to align the host and virtual clocks 995 if the guest is in advance */ 996 align_clocks(&sc, cpu); 997 } 998 } 999 1000 cpu_exec_exit(cpu); 1001 rcu_read_unlock(); 1002 1003 return ret; 1004 } 1005 1006 void tcg_exec_realizefn(CPUState *cpu, Error **errp) 1007 { 1008 static bool tcg_target_initialized; 1009 CPUClass *cc = CPU_GET_CLASS(cpu); 1010 1011 if (!tcg_target_initialized) { 1012 cc->tcg_ops->initialize(); 1013 tcg_target_initialized = true; 1014 } 1015 tlb_init(cpu); 1016 qemu_plugin_vcpu_init_hook(cpu); 1017 1018 #ifndef CONFIG_USER_ONLY 1019 tcg_iommu_init_notifier_list(cpu); 1020 #endif /* !CONFIG_USER_ONLY */ 1021 } 1022 1023 /* undo the initializations in reverse order */ 1024 void tcg_exec_unrealizefn(CPUState *cpu) 1025 { 1026 #ifndef CONFIG_USER_ONLY 1027 tcg_iommu_free_notifier_list(cpu); 1028 #endif /* !CONFIG_USER_ONLY */ 1029 1030 qemu_plugin_vcpu_exit_hook(cpu); 1031 tlb_destroy(cpu); 1032 } 1033 1034 #ifndef CONFIG_USER_ONLY 1035 1036 void dump_drift_info(GString *buf) 1037 { 1038 if (!icount_enabled()) { 1039 return; 1040 } 1041 1042 g_string_append_printf(buf, "Host - Guest clock %"PRIi64" ms\n", 1043 (cpu_get_clock() - icount_get()) / SCALE_MS); 1044 if (icount_align_option) { 1045 g_string_append_printf(buf, "Max guest delay %"PRIi64" ms\n", 1046 -max_delay / SCALE_MS); 1047 g_string_append_printf(buf, "Max guest advance %"PRIi64" ms\n", 1048 max_advance / SCALE_MS); 1049 } else { 1050 g_string_append_printf(buf, "Max guest delay NA\n"); 1051 g_string_append_printf(buf, "Max guest advance NA\n"); 1052 } 1053 } 1054 1055 HumanReadableText *qmp_x_query_jit(Error **errp) 1056 { 1057 g_autoptr(GString) buf = g_string_new(""); 1058 1059 if (!tcg_enabled()) { 1060 error_setg(errp, "JIT information is only available with accel=tcg"); 1061 return NULL; 1062 } 1063 1064 dump_exec_info(buf); 1065 dump_drift_info(buf); 1066 1067 return human_readable_text_from_str(buf); 1068 } 1069 1070 HumanReadableText *qmp_x_query_opcount(Error **errp) 1071 { 1072 g_autoptr(GString) buf = g_string_new(""); 1073 1074 if (!tcg_enabled()) { 1075 error_setg(errp, "Opcode count information is only available with accel=tcg"); 1076 return NULL; 1077 } 1078 1079 dump_opcount_info(buf); 1080 1081 return human_readable_text_from_str(buf); 1082 } 1083 1084 #endif /* !CONFIG_USER_ONLY */ 1085