xref: /openbmc/qemu/accel/tcg/cpu-exec.c (revision 73944a4b)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/qemu-print.h"
23 #include "qapi/error.h"
24 #include "qapi/qapi-commands-machine.h"
25 #include "qapi/type-helpers.h"
26 #include "hw/core/tcg-cpu-ops.h"
27 #include "trace.h"
28 #include "disas/disas.h"
29 #include "exec/exec-all.h"
30 #include "tcg/tcg.h"
31 #include "qemu/atomic.h"
32 #include "qemu/compiler.h"
33 #include "qemu/timer.h"
34 #include "qemu/rcu.h"
35 #include "exec/log.h"
36 #include "qemu/main-loop.h"
37 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
38 #include "hw/i386/apic.h"
39 #endif
40 #include "sysemu/cpus.h"
41 #include "exec/cpu-all.h"
42 #include "sysemu/cpu-timers.h"
43 #include "sysemu/replay.h"
44 #include "sysemu/tcg.h"
45 #include "exec/helper-proto.h"
46 #include "tb-hash.h"
47 #include "tb-context.h"
48 #include "internal.h"
49 
50 /* -icount align implementation. */
51 
52 typedef struct SyncClocks {
53     int64_t diff_clk;
54     int64_t last_cpu_icount;
55     int64_t realtime_clock;
56 } SyncClocks;
57 
58 #if !defined(CONFIG_USER_ONLY)
59 /* Allow the guest to have a max 3ms advance.
60  * The difference between the 2 clocks could therefore
61  * oscillate around 0.
62  */
63 #define VM_CLOCK_ADVANCE 3000000
64 #define THRESHOLD_REDUCE 1.5
65 #define MAX_DELAY_PRINT_RATE 2000000000LL
66 #define MAX_NB_PRINTS 100
67 
68 static int64_t max_delay;
69 static int64_t max_advance;
70 
71 static void align_clocks(SyncClocks *sc, CPUState *cpu)
72 {
73     int64_t cpu_icount;
74 
75     if (!icount_align_option) {
76         return;
77     }
78 
79     cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
80     sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
81     sc->last_cpu_icount = cpu_icount;
82 
83     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
84 #ifndef _WIN32
85         struct timespec sleep_delay, rem_delay;
86         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
87         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
88         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
89             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
90         } else {
91             sc->diff_clk = 0;
92         }
93 #else
94         Sleep(sc->diff_clk / SCALE_MS);
95         sc->diff_clk = 0;
96 #endif
97     }
98 }
99 
100 static void print_delay(const SyncClocks *sc)
101 {
102     static float threshold_delay;
103     static int64_t last_realtime_clock;
104     static int nb_prints;
105 
106     if (icount_align_option &&
107         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
108         nb_prints < MAX_NB_PRINTS) {
109         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
110             (-sc->diff_clk / (float)1000000000LL <
111              (threshold_delay - THRESHOLD_REDUCE))) {
112             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
113             qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
114                         threshold_delay - 1,
115                         threshold_delay);
116             nb_prints++;
117             last_realtime_clock = sc->realtime_clock;
118         }
119     }
120 }
121 
122 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
123 {
124     if (!icount_align_option) {
125         return;
126     }
127     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
128     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
129     sc->last_cpu_icount
130         = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
131     if (sc->diff_clk < max_delay) {
132         max_delay = sc->diff_clk;
133     }
134     if (sc->diff_clk > max_advance) {
135         max_advance = sc->diff_clk;
136     }
137 
138     /* Print every 2s max if the guest is late. We limit the number
139        of printed messages to NB_PRINT_MAX(currently 100) */
140     print_delay(sc);
141 }
142 #else
143 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
144 {
145 }
146 
147 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
148 {
149 }
150 #endif /* CONFIG USER ONLY */
151 
152 uint32_t curr_cflags(CPUState *cpu)
153 {
154     uint32_t cflags = cpu->tcg_cflags;
155 
156     /*
157      * Record gdb single-step.  We should be exiting the TB by raising
158      * EXCP_DEBUG, but to simplify other tests, disable chaining too.
159      *
160      * For singlestep and -d nochain, suppress goto_tb so that
161      * we can log -d cpu,exec after every TB.
162      */
163     if (unlikely(cpu->singlestep_enabled)) {
164         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
165     } else if (singlestep) {
166         cflags |= CF_NO_GOTO_TB | 1;
167     } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
168         cflags |= CF_NO_GOTO_TB;
169     }
170 
171     return cflags;
172 }
173 
174 /* Might cause an exception, so have a longjmp destination ready */
175 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
176                                           target_ulong cs_base,
177                                           uint32_t flags, uint32_t cflags)
178 {
179     TranslationBlock *tb;
180     uint32_t hash;
181 
182     /* we should never be trying to look up an INVALID tb */
183     tcg_debug_assert(!(cflags & CF_INVALID));
184 
185     hash = tb_jmp_cache_hash_func(pc);
186     tb = qatomic_rcu_read(&cpu->tb_jmp_cache[hash]);
187 
188     if (likely(tb &&
189                tb->pc == pc &&
190                tb->cs_base == cs_base &&
191                tb->flags == flags &&
192                tb->trace_vcpu_dstate == *cpu->trace_dstate &&
193                tb_cflags(tb) == cflags)) {
194         return tb;
195     }
196     tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
197     if (tb == NULL) {
198         return NULL;
199     }
200     qatomic_set(&cpu->tb_jmp_cache[hash], tb);
201     return tb;
202 }
203 
204 static inline void log_cpu_exec(target_ulong pc, CPUState *cpu,
205                                 const TranslationBlock *tb)
206 {
207     if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC))
208         && qemu_log_in_addr_range(pc)) {
209 
210         qemu_log_mask(CPU_LOG_EXEC,
211                       "Trace %d: %p [" TARGET_FMT_lx
212                       "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
213                       cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
214                       tb->flags, tb->cflags, lookup_symbol(pc));
215 
216 #if defined(DEBUG_DISAS)
217         if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
218             FILE *logfile = qemu_log_lock();
219             int flags = 0;
220 
221             if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
222                 flags |= CPU_DUMP_FPU;
223             }
224 #if defined(TARGET_I386)
225             flags |= CPU_DUMP_CCOP;
226 #endif
227             log_cpu_state(cpu, flags);
228             qemu_log_unlock(logfile);
229         }
230 #endif /* DEBUG_DISAS */
231     }
232 }
233 
234 static bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
235                                   uint32_t *cflags)
236 {
237     CPUBreakpoint *bp;
238     bool match_page = false;
239 
240     if (likely(QTAILQ_EMPTY(&cpu->breakpoints))) {
241         return false;
242     }
243 
244     /*
245      * Singlestep overrides breakpoints.
246      * This requirement is visible in the record-replay tests, where
247      * we would fail to make forward progress in reverse-continue.
248      *
249      * TODO: gdb singlestep should only override gdb breakpoints,
250      * so that one could (gdb) singlestep into the guest kernel's
251      * architectural breakpoint handler.
252      */
253     if (cpu->singlestep_enabled) {
254         return false;
255     }
256 
257     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
258         /*
259          * If we have an exact pc match, trigger the breakpoint.
260          * Otherwise, note matches within the page.
261          */
262         if (pc == bp->pc) {
263             bool match_bp = false;
264 
265             if (bp->flags & BP_GDB) {
266                 match_bp = true;
267             } else if (bp->flags & BP_CPU) {
268 #ifdef CONFIG_USER_ONLY
269                 g_assert_not_reached();
270 #else
271                 CPUClass *cc = CPU_GET_CLASS(cpu);
272                 assert(cc->tcg_ops->debug_check_breakpoint);
273                 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
274 #endif
275             }
276 
277             if (match_bp) {
278                 cpu->exception_index = EXCP_DEBUG;
279                 return true;
280             }
281         } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
282             match_page = true;
283         }
284     }
285 
286     /*
287      * Within the same page as a breakpoint, single-step,
288      * returning to helper_lookup_tb_ptr after each insn looking
289      * for the actual breakpoint.
290      *
291      * TODO: Perhaps better to record all of the TBs associated
292      * with a given virtual page that contains a breakpoint, and
293      * then invalidate them when a new overlapping breakpoint is
294      * set on the page.  Non-overlapping TBs would not be
295      * invalidated, nor would any TB need to be invalidated as
296      * breakpoints are removed.
297      */
298     if (match_page) {
299         *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
300     }
301     return false;
302 }
303 
304 /**
305  * helper_lookup_tb_ptr: quick check for next tb
306  * @env: current cpu state
307  *
308  * Look for an existing TB matching the current cpu state.
309  * If found, return the code pointer.  If not found, return
310  * the tcg epilogue so that we return into cpu_tb_exec.
311  */
312 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
313 {
314     CPUState *cpu = env_cpu(env);
315     TranslationBlock *tb;
316     target_ulong cs_base, pc;
317     uint32_t flags, cflags;
318 
319     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
320 
321     cflags = curr_cflags(cpu);
322     if (check_for_breakpoints(cpu, pc, &cflags)) {
323         cpu_loop_exit(cpu);
324     }
325 
326     tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
327     if (tb == NULL) {
328         return tcg_code_gen_epilogue;
329     }
330 
331     log_cpu_exec(pc, cpu, tb);
332 
333     return tb->tc.ptr;
334 }
335 
336 /* Execute a TB, and fix up the CPU state afterwards if necessary */
337 /*
338  * Disable CFI checks.
339  * TCG creates binary blobs at runtime, with the transformed code.
340  * A TB is a blob of binary code, created at runtime and called with an
341  * indirect function call. Since such function did not exist at compile time,
342  * the CFI runtime has no way to verify its signature and would fail.
343  * TCG is not considered a security-sensitive part of QEMU so this does not
344  * affect the impact of CFI in environment with high security requirements
345  */
346 static inline TranslationBlock * QEMU_DISABLE_CFI
347 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
348 {
349     CPUArchState *env = cpu->env_ptr;
350     uintptr_t ret;
351     TranslationBlock *last_tb;
352     const void *tb_ptr = itb->tc.ptr;
353 
354     log_cpu_exec(itb->pc, cpu, itb);
355 
356     qemu_thread_jit_execute();
357     ret = tcg_qemu_tb_exec(env, tb_ptr);
358     cpu->can_do_io = 1;
359     /*
360      * TODO: Delay swapping back to the read-write region of the TB
361      * until we actually need to modify the TB.  The read-only copy,
362      * coming from the rx region, shares the same host TLB entry as
363      * the code that executed the exit_tb opcode that arrived here.
364      * If we insist on touching both the RX and the RW pages, we
365      * double the host TLB pressure.
366      */
367     last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
368     *tb_exit = ret & TB_EXIT_MASK;
369 
370     trace_exec_tb_exit(last_tb, *tb_exit);
371 
372     if (*tb_exit > TB_EXIT_IDX1) {
373         /* We didn't start executing this TB (eg because the instruction
374          * counter hit zero); we must restore the guest PC to the address
375          * of the start of the TB.
376          */
377         CPUClass *cc = CPU_GET_CLASS(cpu);
378         qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
379                                "Stopped execution of TB chain before %p ["
380                                TARGET_FMT_lx "] %s\n",
381                                last_tb->tc.ptr, last_tb->pc,
382                                lookup_symbol(last_tb->pc));
383         if (cc->tcg_ops->synchronize_from_tb) {
384             cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
385         } else {
386             assert(cc->set_pc);
387             cc->set_pc(cpu, last_tb->pc);
388         }
389     }
390 
391     /*
392      * If gdb single-step, and we haven't raised another exception,
393      * raise a debug exception.  Single-step with another exception
394      * is handled in cpu_handle_exception.
395      */
396     if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
397         cpu->exception_index = EXCP_DEBUG;
398         cpu_loop_exit(cpu);
399     }
400 
401     return last_tb;
402 }
403 
404 
405 static void cpu_exec_enter(CPUState *cpu)
406 {
407     CPUClass *cc = CPU_GET_CLASS(cpu);
408 
409     if (cc->tcg_ops->cpu_exec_enter) {
410         cc->tcg_ops->cpu_exec_enter(cpu);
411     }
412 }
413 
414 static void cpu_exec_exit(CPUState *cpu)
415 {
416     CPUClass *cc = CPU_GET_CLASS(cpu);
417 
418     if (cc->tcg_ops->cpu_exec_exit) {
419         cc->tcg_ops->cpu_exec_exit(cpu);
420     }
421 }
422 
423 void cpu_exec_step_atomic(CPUState *cpu)
424 {
425     CPUArchState *env = (CPUArchState *)cpu->env_ptr;
426     TranslationBlock *tb;
427     target_ulong cs_base, pc;
428     uint32_t flags, cflags;
429     int tb_exit;
430 
431     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
432         start_exclusive();
433         g_assert(cpu == current_cpu);
434         g_assert(!cpu->running);
435         cpu->running = true;
436 
437         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
438 
439         cflags = curr_cflags(cpu);
440         /* Execute in a serial context. */
441         cflags &= ~CF_PARALLEL;
442         /* After 1 insn, return and release the exclusive lock. */
443         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
444         /*
445          * No need to check_for_breakpoints here.
446          * We only arrive in cpu_exec_step_atomic after beginning execution
447          * of an insn that includes an atomic operation we can't handle.
448          * Any breakpoint for this insn will have been recognized earlier.
449          */
450 
451         tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
452         if (tb == NULL) {
453             mmap_lock();
454             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
455             mmap_unlock();
456         }
457 
458         cpu_exec_enter(cpu);
459         /* execute the generated code */
460         trace_exec_tb(tb, pc);
461         cpu_tb_exec(cpu, tb, &tb_exit);
462         cpu_exec_exit(cpu);
463     } else {
464         /*
465          * The mmap_lock is dropped by tb_gen_code if it runs out of
466          * memory.
467          */
468 #ifndef CONFIG_SOFTMMU
469         clear_helper_retaddr();
470         tcg_debug_assert(!have_mmap_lock());
471 #endif
472         if (qemu_mutex_iothread_locked()) {
473             qemu_mutex_unlock_iothread();
474         }
475         assert_no_pages_locked();
476         qemu_plugin_disable_mem_helpers(cpu);
477     }
478 
479     /*
480      * As we start the exclusive region before codegen we must still
481      * be in the region if we longjump out of either the codegen or
482      * the execution.
483      */
484     g_assert(cpu_in_exclusive_context(cpu));
485     cpu->running = false;
486     end_exclusive();
487 }
488 
489 struct tb_desc {
490     target_ulong pc;
491     target_ulong cs_base;
492     CPUArchState *env;
493     tb_page_addr_t phys_page1;
494     uint32_t flags;
495     uint32_t cflags;
496     uint32_t trace_vcpu_dstate;
497 };
498 
499 static bool tb_lookup_cmp(const void *p, const void *d)
500 {
501     const TranslationBlock *tb = p;
502     const struct tb_desc *desc = d;
503 
504     if (tb->pc == desc->pc &&
505         tb->page_addr[0] == desc->phys_page1 &&
506         tb->cs_base == desc->cs_base &&
507         tb->flags == desc->flags &&
508         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
509         tb_cflags(tb) == desc->cflags) {
510         /* check next page if needed */
511         if (tb->page_addr[1] == -1) {
512             return true;
513         } else {
514             tb_page_addr_t phys_page2;
515             target_ulong virt_page2;
516 
517             virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
518             phys_page2 = get_page_addr_code(desc->env, virt_page2);
519             if (tb->page_addr[1] == phys_page2) {
520                 return true;
521             }
522         }
523     }
524     return false;
525 }
526 
527 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
528                                    target_ulong cs_base, uint32_t flags,
529                                    uint32_t cflags)
530 {
531     tb_page_addr_t phys_pc;
532     struct tb_desc desc;
533     uint32_t h;
534 
535     desc.env = (CPUArchState *)cpu->env_ptr;
536     desc.cs_base = cs_base;
537     desc.flags = flags;
538     desc.cflags = cflags;
539     desc.trace_vcpu_dstate = *cpu->trace_dstate;
540     desc.pc = pc;
541     phys_pc = get_page_addr_code(desc.env, pc);
542     if (phys_pc == -1) {
543         return NULL;
544     }
545     desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
546     h = tb_hash_func(phys_pc, pc, flags, cflags, *cpu->trace_dstate);
547     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
548 }
549 
550 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
551 {
552     if (TCG_TARGET_HAS_direct_jump) {
553         uintptr_t offset = tb->jmp_target_arg[n];
554         uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
555         uintptr_t jmp_rx = tc_ptr + offset;
556         uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
557         tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr);
558     } else {
559         tb->jmp_target_arg[n] = addr;
560     }
561 }
562 
563 static inline void tb_add_jump(TranslationBlock *tb, int n,
564                                TranslationBlock *tb_next)
565 {
566     uintptr_t old;
567 
568     qemu_thread_jit_write();
569     assert(n < ARRAY_SIZE(tb->jmp_list_next));
570     qemu_spin_lock(&tb_next->jmp_lock);
571 
572     /* make sure the destination TB is valid */
573     if (tb_next->cflags & CF_INVALID) {
574         goto out_unlock_next;
575     }
576     /* Atomically claim the jump destination slot only if it was NULL */
577     old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
578                           (uintptr_t)tb_next);
579     if (old) {
580         goto out_unlock_next;
581     }
582 
583     /* patch the native jump address */
584     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
585 
586     /* add in TB jmp list */
587     tb->jmp_list_next[n] = tb_next->jmp_list_head;
588     tb_next->jmp_list_head = (uintptr_t)tb | n;
589 
590     qemu_spin_unlock(&tb_next->jmp_lock);
591 
592     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
593                            "Linking TBs %p [" TARGET_FMT_lx
594                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
595                            tb->tc.ptr, tb->pc, n,
596                            tb_next->tc.ptr, tb_next->pc);
597     return;
598 
599  out_unlock_next:
600     qemu_spin_unlock(&tb_next->jmp_lock);
601     return;
602 }
603 
604 static inline bool cpu_handle_halt(CPUState *cpu)
605 {
606 #ifndef CONFIG_USER_ONLY
607     if (cpu->halted) {
608 #if defined(TARGET_I386)
609         if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
610             X86CPU *x86_cpu = X86_CPU(cpu);
611             qemu_mutex_lock_iothread();
612             apic_poll_irq(x86_cpu->apic_state);
613             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
614             qemu_mutex_unlock_iothread();
615         }
616 #endif /* TARGET_I386 */
617         if (!cpu_has_work(cpu)) {
618             return true;
619         }
620 
621         cpu->halted = 0;
622     }
623 #endif /* !CONFIG_USER_ONLY */
624 
625     return false;
626 }
627 
628 static inline void cpu_handle_debug_exception(CPUState *cpu)
629 {
630     CPUClass *cc = CPU_GET_CLASS(cpu);
631     CPUWatchpoint *wp;
632 
633     if (!cpu->watchpoint_hit) {
634         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
635             wp->flags &= ~BP_WATCHPOINT_HIT;
636         }
637     }
638 
639     if (cc->tcg_ops->debug_excp_handler) {
640         cc->tcg_ops->debug_excp_handler(cpu);
641     }
642 }
643 
644 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
645 {
646     if (cpu->exception_index < 0) {
647 #ifndef CONFIG_USER_ONLY
648         if (replay_has_exception()
649             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
650             /* Execute just one insn to trigger exception pending in the log */
651             cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) | 1;
652         }
653 #endif
654         return false;
655     }
656     if (cpu->exception_index >= EXCP_INTERRUPT) {
657         /* exit request from the cpu execution loop */
658         *ret = cpu->exception_index;
659         if (*ret == EXCP_DEBUG) {
660             cpu_handle_debug_exception(cpu);
661         }
662         cpu->exception_index = -1;
663         return true;
664     } else {
665 #if defined(CONFIG_USER_ONLY)
666         /* if user mode only, we simulate a fake exception
667            which will be handled outside the cpu execution
668            loop */
669 #if defined(TARGET_I386)
670         CPUClass *cc = CPU_GET_CLASS(cpu);
671         cc->tcg_ops->fake_user_interrupt(cpu);
672 #endif /* TARGET_I386 */
673         *ret = cpu->exception_index;
674         cpu->exception_index = -1;
675         return true;
676 #else
677         if (replay_exception()) {
678             CPUClass *cc = CPU_GET_CLASS(cpu);
679             qemu_mutex_lock_iothread();
680             cc->tcg_ops->do_interrupt(cpu);
681             qemu_mutex_unlock_iothread();
682             cpu->exception_index = -1;
683 
684             if (unlikely(cpu->singlestep_enabled)) {
685                 /*
686                  * After processing the exception, ensure an EXCP_DEBUG is
687                  * raised when single-stepping so that GDB doesn't miss the
688                  * next instruction.
689                  */
690                 *ret = EXCP_DEBUG;
691                 cpu_handle_debug_exception(cpu);
692                 return true;
693             }
694         } else if (!replay_has_interrupt()) {
695             /* give a chance to iothread in replay mode */
696             *ret = EXCP_INTERRUPT;
697             return true;
698         }
699 #endif
700     }
701 
702     return false;
703 }
704 
705 #ifndef CONFIG_USER_ONLY
706 /*
707  * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
708  * "real" interrupt event later. It does not need to be recorded for
709  * replay purposes.
710  */
711 static inline bool need_replay_interrupt(int interrupt_request)
712 {
713 #if defined(TARGET_I386)
714     return !(interrupt_request & CPU_INTERRUPT_POLL);
715 #else
716     return true;
717 #endif
718 }
719 #endif /* !CONFIG_USER_ONLY */
720 
721 static inline bool cpu_handle_interrupt(CPUState *cpu,
722                                         TranslationBlock **last_tb)
723 {
724     /* Clear the interrupt flag now since we're processing
725      * cpu->interrupt_request and cpu->exit_request.
726      * Ensure zeroing happens before reading cpu->exit_request or
727      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
728      */
729     qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
730 
731     if (unlikely(qatomic_read(&cpu->interrupt_request))) {
732         int interrupt_request;
733         qemu_mutex_lock_iothread();
734         interrupt_request = cpu->interrupt_request;
735         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
736             /* Mask out external interrupts for this step. */
737             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
738         }
739         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
740             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
741             cpu->exception_index = EXCP_DEBUG;
742             qemu_mutex_unlock_iothread();
743             return true;
744         }
745 #if !defined(CONFIG_USER_ONLY)
746         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
747             /* Do nothing */
748         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
749             replay_interrupt();
750             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
751             cpu->halted = 1;
752             cpu->exception_index = EXCP_HLT;
753             qemu_mutex_unlock_iothread();
754             return true;
755         }
756 #if defined(TARGET_I386)
757         else if (interrupt_request & CPU_INTERRUPT_INIT) {
758             X86CPU *x86_cpu = X86_CPU(cpu);
759             CPUArchState *env = &x86_cpu->env;
760             replay_interrupt();
761             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
762             do_cpu_init(x86_cpu);
763             cpu->exception_index = EXCP_HALTED;
764             qemu_mutex_unlock_iothread();
765             return true;
766         }
767 #else
768         else if (interrupt_request & CPU_INTERRUPT_RESET) {
769             replay_interrupt();
770             cpu_reset(cpu);
771             qemu_mutex_unlock_iothread();
772             return true;
773         }
774 #endif /* !TARGET_I386 */
775         /* The target hook has 3 exit conditions:
776            False when the interrupt isn't processed,
777            True when it is, and we should restart on a new TB,
778            and via longjmp via cpu_loop_exit.  */
779         else {
780             CPUClass *cc = CPU_GET_CLASS(cpu);
781 
782             if (cc->tcg_ops->cpu_exec_interrupt &&
783                 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
784                 if (need_replay_interrupt(interrupt_request)) {
785                     replay_interrupt();
786                 }
787                 /*
788                  * After processing the interrupt, ensure an EXCP_DEBUG is
789                  * raised when single-stepping so that GDB doesn't miss the
790                  * next instruction.
791                  */
792                 cpu->exception_index =
793                     (cpu->singlestep_enabled ? EXCP_DEBUG : -1);
794                 *last_tb = NULL;
795             }
796             /* The target hook may have updated the 'cpu->interrupt_request';
797              * reload the 'interrupt_request' value */
798             interrupt_request = cpu->interrupt_request;
799         }
800 #endif /* !CONFIG_USER_ONLY */
801         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
802             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
803             /* ensure that no TB jump will be modified as
804                the program flow was changed */
805             *last_tb = NULL;
806         }
807 
808         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
809         qemu_mutex_unlock_iothread();
810     }
811 
812     /* Finally, check if we need to exit to the main loop.  */
813     if (unlikely(qatomic_read(&cpu->exit_request))
814         || (icount_enabled()
815             && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
816             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
817         qatomic_set(&cpu->exit_request, 0);
818         if (cpu->exception_index == -1) {
819             cpu->exception_index = EXCP_INTERRUPT;
820         }
821         return true;
822     }
823 
824     return false;
825 }
826 
827 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
828                                     TranslationBlock **last_tb, int *tb_exit)
829 {
830     int32_t insns_left;
831 
832     trace_exec_tb(tb, tb->pc);
833     tb = cpu_tb_exec(cpu, tb, tb_exit);
834     if (*tb_exit != TB_EXIT_REQUESTED) {
835         *last_tb = tb;
836         return;
837     }
838 
839     *last_tb = NULL;
840     insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
841     if (insns_left < 0) {
842         /* Something asked us to stop executing chained TBs; just
843          * continue round the main loop. Whatever requested the exit
844          * will also have set something else (eg exit_request or
845          * interrupt_request) which will be handled by
846          * cpu_handle_interrupt.  cpu_handle_interrupt will also
847          * clear cpu->icount_decr.u16.high.
848          */
849         return;
850     }
851 
852     /* Instruction counter expired.  */
853     assert(icount_enabled());
854 #ifndef CONFIG_USER_ONLY
855     /* Ensure global icount has gone forward */
856     icount_update(cpu);
857     /* Refill decrementer and continue execution.  */
858     insns_left = MIN(0xffff, cpu->icount_budget);
859     cpu_neg(cpu)->icount_decr.u16.low = insns_left;
860     cpu->icount_extra = cpu->icount_budget - insns_left;
861 
862     /*
863      * If the next tb has more instructions than we have left to
864      * execute we need to ensure we find/generate a TB with exactly
865      * insns_left instructions in it.
866      */
867     if (insns_left > 0 && insns_left < tb->icount)  {
868         assert(insns_left <= CF_COUNT_MASK);
869         assert(cpu->icount_extra == 0);
870         cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
871     }
872 #endif
873 }
874 
875 /* main execution loop */
876 
877 int cpu_exec(CPUState *cpu)
878 {
879     int ret;
880     SyncClocks sc = { 0 };
881 
882     /* replay_interrupt may need current_cpu */
883     current_cpu = cpu;
884 
885     if (cpu_handle_halt(cpu)) {
886         return EXCP_HALTED;
887     }
888 
889     rcu_read_lock();
890 
891     cpu_exec_enter(cpu);
892 
893     /* Calculate difference between guest clock and host clock.
894      * This delay includes the delay of the last cycle, so
895      * what we have to do is sleep until it is 0. As for the
896      * advance/delay we gain here, we try to fix it next time.
897      */
898     init_delay_params(&sc, cpu);
899 
900     /* prepare setjmp context for exception handling */
901     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
902 #if defined(__clang__)
903         /*
904          * Some compilers wrongly smash all local variables after
905          * siglongjmp (the spec requires that only non-volatile locals
906          * which are changed between the sigsetjmp and siglongjmp are
907          * permitted to be trashed). There were bug reports for gcc
908          * 4.5.0 and clang.  The bug is fixed in all versions of gcc
909          * that we support, but is still unfixed in clang:
910          *   https://bugs.llvm.org/show_bug.cgi?id=21183
911          *
912          * Reload an essential local variable here for those compilers.
913          * Newer versions of gcc would complain about this code (-Wclobbered),
914          * so we only perform the workaround for clang.
915          */
916         cpu = current_cpu;
917 #else
918         /* Non-buggy compilers preserve this; assert the correct value. */
919         g_assert(cpu == current_cpu);
920 #endif
921 
922 #ifndef CONFIG_SOFTMMU
923         clear_helper_retaddr();
924         tcg_debug_assert(!have_mmap_lock());
925 #endif
926         if (qemu_mutex_iothread_locked()) {
927             qemu_mutex_unlock_iothread();
928         }
929         qemu_plugin_disable_mem_helpers(cpu);
930 
931         assert_no_pages_locked();
932     }
933 
934     /* if an exception is pending, we execute it here */
935     while (!cpu_handle_exception(cpu, &ret)) {
936         TranslationBlock *last_tb = NULL;
937         int tb_exit = 0;
938 
939         while (!cpu_handle_interrupt(cpu, &last_tb)) {
940             TranslationBlock *tb;
941             target_ulong cs_base, pc;
942             uint32_t flags, cflags;
943 
944             cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags);
945 
946             /*
947              * When requested, use an exact setting for cflags for the next
948              * execution.  This is used for icount, precise smc, and stop-
949              * after-access watchpoints.  Since this request should never
950              * have CF_INVALID set, -1 is a convenient invalid value that
951              * does not require tcg headers for cpu_common_reset.
952              */
953             cflags = cpu->cflags_next_tb;
954             if (cflags == -1) {
955                 cflags = curr_cflags(cpu);
956             } else {
957                 cpu->cflags_next_tb = -1;
958             }
959 
960             if (check_for_breakpoints(cpu, pc, &cflags)) {
961                 break;
962             }
963 
964             tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
965             if (tb == NULL) {
966                 mmap_lock();
967                 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
968                 mmap_unlock();
969                 /*
970                  * We add the TB in the virtual pc hash table
971                  * for the fast lookup
972                  */
973                 qatomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
974             }
975 
976 #ifndef CONFIG_USER_ONLY
977             /*
978              * We don't take care of direct jumps when address mapping
979              * changes in system emulation.  So it's not safe to make a
980              * direct jump to a TB spanning two pages because the mapping
981              * for the second page can change.
982              */
983             if (tb->page_addr[1] != -1) {
984                 last_tb = NULL;
985             }
986 #endif
987             /* See if we can patch the calling TB. */
988             if (last_tb) {
989                 tb_add_jump(last_tb, tb_exit, tb);
990             }
991 
992             cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
993 
994             /* Try to align the host and virtual clocks
995                if the guest is in advance */
996             align_clocks(&sc, cpu);
997         }
998     }
999 
1000     cpu_exec_exit(cpu);
1001     rcu_read_unlock();
1002 
1003     return ret;
1004 }
1005 
1006 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
1007 {
1008     static bool tcg_target_initialized;
1009     CPUClass *cc = CPU_GET_CLASS(cpu);
1010 
1011     if (!tcg_target_initialized) {
1012         cc->tcg_ops->initialize();
1013         tcg_target_initialized = true;
1014     }
1015     tlb_init(cpu);
1016     qemu_plugin_vcpu_init_hook(cpu);
1017 
1018 #ifndef CONFIG_USER_ONLY
1019     tcg_iommu_init_notifier_list(cpu);
1020 #endif /* !CONFIG_USER_ONLY */
1021 }
1022 
1023 /* undo the initializations in reverse order */
1024 void tcg_exec_unrealizefn(CPUState *cpu)
1025 {
1026 #ifndef CONFIG_USER_ONLY
1027     tcg_iommu_free_notifier_list(cpu);
1028 #endif /* !CONFIG_USER_ONLY */
1029 
1030     qemu_plugin_vcpu_exit_hook(cpu);
1031     tlb_destroy(cpu);
1032 }
1033 
1034 #ifndef CONFIG_USER_ONLY
1035 
1036 void dump_drift_info(GString *buf)
1037 {
1038     if (!icount_enabled()) {
1039         return;
1040     }
1041 
1042     g_string_append_printf(buf, "Host - Guest clock  %"PRIi64" ms\n",
1043                            (cpu_get_clock() - icount_get()) / SCALE_MS);
1044     if (icount_align_option) {
1045         g_string_append_printf(buf, "Max guest delay     %"PRIi64" ms\n",
1046                                -max_delay / SCALE_MS);
1047         g_string_append_printf(buf, "Max guest advance   %"PRIi64" ms\n",
1048                                max_advance / SCALE_MS);
1049     } else {
1050         g_string_append_printf(buf, "Max guest delay     NA\n");
1051         g_string_append_printf(buf, "Max guest advance   NA\n");
1052     }
1053 }
1054 
1055 HumanReadableText *qmp_x_query_jit(Error **errp)
1056 {
1057     g_autoptr(GString) buf = g_string_new("");
1058 
1059     if (!tcg_enabled()) {
1060         error_setg(errp, "JIT information is only available with accel=tcg");
1061         return NULL;
1062     }
1063 
1064     dump_exec_info(buf);
1065     dump_drift_info(buf);
1066 
1067     return human_readable_text_from_str(buf);
1068 }
1069 
1070 HumanReadableText *qmp_x_query_opcount(Error **errp)
1071 {
1072     g_autoptr(GString) buf = g_string_new("");
1073 
1074     if (!tcg_enabled()) {
1075         error_setg(errp, "Opcode count information is only available with accel=tcg");
1076         return NULL;
1077     }
1078 
1079     dump_opcount_info(buf);
1080 
1081     return human_readable_text_from_str(buf);
1082 }
1083 
1084 #endif /* !CONFIG_USER_ONLY */
1085