1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/tcg-cpu-ops.h" 25 #include "trace.h" 26 #include "disas/disas.h" 27 #include "exec/exec-all.h" 28 #include "tcg/tcg.h" 29 #include "qemu/atomic.h" 30 #include "qemu/rcu.h" 31 #include "exec/log.h" 32 #include "qemu/main-loop.h" 33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 34 #include "hw/i386/apic.h" 35 #endif 36 #include "sysemu/cpus.h" 37 #include "exec/cpu-all.h" 38 #include "sysemu/cpu-timers.h" 39 #include "exec/replay-core.h" 40 #include "sysemu/tcg.h" 41 #include "exec/helper-proto-common.h" 42 #include "tb-jmp-cache.h" 43 #include "tb-hash.h" 44 #include "tb-context.h" 45 #include "internal.h" 46 47 /* -icount align implementation. */ 48 49 typedef struct SyncClocks { 50 int64_t diff_clk; 51 int64_t last_cpu_icount; 52 int64_t realtime_clock; 53 } SyncClocks; 54 55 #if !defined(CONFIG_USER_ONLY) 56 /* Allow the guest to have a max 3ms advance. 57 * The difference between the 2 clocks could therefore 58 * oscillate around 0. 59 */ 60 #define VM_CLOCK_ADVANCE 3000000 61 #define THRESHOLD_REDUCE 1.5 62 #define MAX_DELAY_PRINT_RATE 2000000000LL 63 #define MAX_NB_PRINTS 100 64 65 int64_t max_delay; 66 int64_t max_advance; 67 68 static void align_clocks(SyncClocks *sc, CPUState *cpu) 69 { 70 int64_t cpu_icount; 71 72 if (!icount_align_option) { 73 return; 74 } 75 76 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 77 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 78 sc->last_cpu_icount = cpu_icount; 79 80 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 81 #ifndef _WIN32 82 struct timespec sleep_delay, rem_delay; 83 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 84 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 85 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 86 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 87 } else { 88 sc->diff_clk = 0; 89 } 90 #else 91 Sleep(sc->diff_clk / SCALE_MS); 92 sc->diff_clk = 0; 93 #endif 94 } 95 } 96 97 static void print_delay(const SyncClocks *sc) 98 { 99 static float threshold_delay; 100 static int64_t last_realtime_clock; 101 static int nb_prints; 102 103 if (icount_align_option && 104 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 105 nb_prints < MAX_NB_PRINTS) { 106 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 107 (-sc->diff_clk / (float)1000000000LL < 108 (threshold_delay - THRESHOLD_REDUCE))) { 109 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 110 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 111 threshold_delay - 1, 112 threshold_delay); 113 nb_prints++; 114 last_realtime_clock = sc->realtime_clock; 115 } 116 } 117 } 118 119 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 120 { 121 if (!icount_align_option) { 122 return; 123 } 124 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 125 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 126 sc->last_cpu_icount 127 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 128 if (sc->diff_clk < max_delay) { 129 max_delay = sc->diff_clk; 130 } 131 if (sc->diff_clk > max_advance) { 132 max_advance = sc->diff_clk; 133 } 134 135 /* Print every 2s max if the guest is late. We limit the number 136 of printed messages to NB_PRINT_MAX(currently 100) */ 137 print_delay(sc); 138 } 139 #else 140 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 141 { 142 } 143 144 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 145 { 146 } 147 #endif /* CONFIG USER ONLY */ 148 149 uint32_t curr_cflags(CPUState *cpu) 150 { 151 uint32_t cflags = cpu->tcg_cflags; 152 153 /* 154 * Record gdb single-step. We should be exiting the TB by raising 155 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 156 * 157 * For singlestep and -d nochain, suppress goto_tb so that 158 * we can log -d cpu,exec after every TB. 159 */ 160 if (unlikely(cpu->singlestep_enabled)) { 161 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 162 } else if (qatomic_read(&one_insn_per_tb)) { 163 cflags |= CF_NO_GOTO_TB | 1; 164 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 165 cflags |= CF_NO_GOTO_TB; 166 } 167 168 return cflags; 169 } 170 171 struct tb_desc { 172 vaddr pc; 173 uint64_t cs_base; 174 CPUArchState *env; 175 tb_page_addr_t page_addr0; 176 uint32_t flags; 177 uint32_t cflags; 178 }; 179 180 static bool tb_lookup_cmp(const void *p, const void *d) 181 { 182 const TranslationBlock *tb = p; 183 const struct tb_desc *desc = d; 184 185 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && 186 tb_page_addr0(tb) == desc->page_addr0 && 187 tb->cs_base == desc->cs_base && 188 tb->flags == desc->flags && 189 tb_cflags(tb) == desc->cflags) { 190 /* check next page if needed */ 191 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 192 if (tb_phys_page1 == -1) { 193 return true; 194 } else { 195 tb_page_addr_t phys_page1; 196 vaddr virt_page1; 197 198 /* 199 * We know that the first page matched, and an otherwise valid TB 200 * encountered an incomplete instruction at the end of that page, 201 * therefore we know that generating a new TB from the current PC 202 * must also require reading from the next page -- even if the 203 * second pages do not match, and therefore the resulting insn 204 * is different for the new TB. Therefore any exception raised 205 * here by the faulting lookup is not premature. 206 */ 207 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 208 phys_page1 = get_page_addr_code(desc->env, virt_page1); 209 if (tb_phys_page1 == phys_page1) { 210 return true; 211 } 212 } 213 } 214 return false; 215 } 216 217 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc, 218 uint64_t cs_base, uint32_t flags, 219 uint32_t cflags) 220 { 221 tb_page_addr_t phys_pc; 222 struct tb_desc desc; 223 uint32_t h; 224 225 desc.env = cpu->env_ptr; 226 desc.cs_base = cs_base; 227 desc.flags = flags; 228 desc.cflags = cflags; 229 desc.pc = pc; 230 phys_pc = get_page_addr_code(desc.env, pc); 231 if (phys_pc == -1) { 232 return NULL; 233 } 234 desc.page_addr0 = phys_pc; 235 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), 236 flags, cs_base, cflags); 237 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 238 } 239 240 /* Might cause an exception, so have a longjmp destination ready */ 241 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc, 242 uint64_t cs_base, uint32_t flags, 243 uint32_t cflags) 244 { 245 TranslationBlock *tb; 246 CPUJumpCache *jc; 247 uint32_t hash; 248 249 /* we should never be trying to look up an INVALID tb */ 250 tcg_debug_assert(!(cflags & CF_INVALID)); 251 252 hash = tb_jmp_cache_hash_func(pc); 253 jc = cpu->tb_jmp_cache; 254 255 if (cflags & CF_PCREL) { 256 /* Use acquire to ensure current load of pc from jc. */ 257 tb = qatomic_load_acquire(&jc->array[hash].tb); 258 259 if (likely(tb && 260 jc->array[hash].pc == pc && 261 tb->cs_base == cs_base && 262 tb->flags == flags && 263 tb_cflags(tb) == cflags)) { 264 return tb; 265 } 266 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 267 if (tb == NULL) { 268 return NULL; 269 } 270 jc->array[hash].pc = pc; 271 /* Ensure pc is written first. */ 272 qatomic_store_release(&jc->array[hash].tb, tb); 273 } else { 274 /* Use rcu_read to ensure current load of pc from *tb. */ 275 tb = qatomic_rcu_read(&jc->array[hash].tb); 276 277 if (likely(tb && 278 tb->pc == pc && 279 tb->cs_base == cs_base && 280 tb->flags == flags && 281 tb_cflags(tb) == cflags)) { 282 return tb; 283 } 284 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 285 if (tb == NULL) { 286 return NULL; 287 } 288 /* Use the pc value already stored in tb->pc. */ 289 qatomic_set(&jc->array[hash].tb, tb); 290 } 291 292 return tb; 293 } 294 295 static void log_cpu_exec(vaddr pc, CPUState *cpu, 296 const TranslationBlock *tb) 297 { 298 if (qemu_log_in_addr_range(pc)) { 299 qemu_log_mask(CPU_LOG_EXEC, 300 "Trace %d: %p [%08" PRIx64 301 "/%" VADDR_PRIx "/%08x/%08x] %s\n", 302 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 303 tb->flags, tb->cflags, lookup_symbol(pc)); 304 305 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 306 FILE *logfile = qemu_log_trylock(); 307 if (logfile) { 308 int flags = 0; 309 310 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 311 flags |= CPU_DUMP_FPU; 312 } 313 #if defined(TARGET_I386) 314 flags |= CPU_DUMP_CCOP; 315 #endif 316 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { 317 flags |= CPU_DUMP_VPU; 318 } 319 cpu_dump_state(cpu, logfile, flags); 320 qemu_log_unlock(logfile); 321 } 322 } 323 } 324 } 325 326 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, 327 uint32_t *cflags) 328 { 329 CPUBreakpoint *bp; 330 bool match_page = false; 331 332 /* 333 * Singlestep overrides breakpoints. 334 * This requirement is visible in the record-replay tests, where 335 * we would fail to make forward progress in reverse-continue. 336 * 337 * TODO: gdb singlestep should only override gdb breakpoints, 338 * so that one could (gdb) singlestep into the guest kernel's 339 * architectural breakpoint handler. 340 */ 341 if (cpu->singlestep_enabled) { 342 return false; 343 } 344 345 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 346 /* 347 * If we have an exact pc match, trigger the breakpoint. 348 * Otherwise, note matches within the page. 349 */ 350 if (pc == bp->pc) { 351 bool match_bp = false; 352 353 if (bp->flags & BP_GDB) { 354 match_bp = true; 355 } else if (bp->flags & BP_CPU) { 356 #ifdef CONFIG_USER_ONLY 357 g_assert_not_reached(); 358 #else 359 CPUClass *cc = CPU_GET_CLASS(cpu); 360 assert(cc->tcg_ops->debug_check_breakpoint); 361 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu); 362 #endif 363 } 364 365 if (match_bp) { 366 cpu->exception_index = EXCP_DEBUG; 367 return true; 368 } 369 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 370 match_page = true; 371 } 372 } 373 374 /* 375 * Within the same page as a breakpoint, single-step, 376 * returning to helper_lookup_tb_ptr after each insn looking 377 * for the actual breakpoint. 378 * 379 * TODO: Perhaps better to record all of the TBs associated 380 * with a given virtual page that contains a breakpoint, and 381 * then invalidate them when a new overlapping breakpoint is 382 * set on the page. Non-overlapping TBs would not be 383 * invalidated, nor would any TB need to be invalidated as 384 * breakpoints are removed. 385 */ 386 if (match_page) { 387 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1; 388 } 389 return false; 390 } 391 392 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, 393 uint32_t *cflags) 394 { 395 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 396 check_for_breakpoints_slow(cpu, pc, cflags); 397 } 398 399 /** 400 * helper_lookup_tb_ptr: quick check for next tb 401 * @env: current cpu state 402 * 403 * Look for an existing TB matching the current cpu state. 404 * If found, return the code pointer. If not found, return 405 * the tcg epilogue so that we return into cpu_tb_exec. 406 */ 407 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 408 { 409 CPUState *cpu = env_cpu(env); 410 TranslationBlock *tb; 411 vaddr pc; 412 uint64_t cs_base; 413 uint32_t flags, cflags; 414 415 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 416 417 cflags = curr_cflags(cpu); 418 if (check_for_breakpoints(cpu, pc, &cflags)) { 419 cpu_loop_exit(cpu); 420 } 421 422 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 423 if (tb == NULL) { 424 return tcg_code_gen_epilogue; 425 } 426 427 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 428 log_cpu_exec(pc, cpu, tb); 429 } 430 431 return tb->tc.ptr; 432 } 433 434 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 435 /* 436 * Disable CFI checks. 437 * TCG creates binary blobs at runtime, with the transformed code. 438 * A TB is a blob of binary code, created at runtime and called with an 439 * indirect function call. Since such function did not exist at compile time, 440 * the CFI runtime has no way to verify its signature and would fail. 441 * TCG is not considered a security-sensitive part of QEMU so this does not 442 * affect the impact of CFI in environment with high security requirements 443 */ 444 static inline TranslationBlock * QEMU_DISABLE_CFI 445 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 446 { 447 CPUArchState *env = cpu->env_ptr; 448 uintptr_t ret; 449 TranslationBlock *last_tb; 450 const void *tb_ptr = itb->tc.ptr; 451 452 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 453 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 454 } 455 456 qemu_thread_jit_execute(); 457 ret = tcg_qemu_tb_exec(env, tb_ptr); 458 cpu->can_do_io = 1; 459 qemu_plugin_disable_mem_helpers(cpu); 460 /* 461 * TODO: Delay swapping back to the read-write region of the TB 462 * until we actually need to modify the TB. The read-only copy, 463 * coming from the rx region, shares the same host TLB entry as 464 * the code that executed the exit_tb opcode that arrived here. 465 * If we insist on touching both the RX and the RW pages, we 466 * double the host TLB pressure. 467 */ 468 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 469 *tb_exit = ret & TB_EXIT_MASK; 470 471 trace_exec_tb_exit(last_tb, *tb_exit); 472 473 if (*tb_exit > TB_EXIT_IDX1) { 474 /* We didn't start executing this TB (eg because the instruction 475 * counter hit zero); we must restore the guest PC to the address 476 * of the start of the TB. 477 */ 478 CPUClass *cc = CPU_GET_CLASS(cpu); 479 480 if (cc->tcg_ops->synchronize_from_tb) { 481 cc->tcg_ops->synchronize_from_tb(cpu, last_tb); 482 } else { 483 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 484 assert(cc->set_pc); 485 cc->set_pc(cpu, last_tb->pc); 486 } 487 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 488 vaddr pc = log_pc(cpu, last_tb); 489 if (qemu_log_in_addr_range(pc)) { 490 qemu_log("Stopped execution of TB chain before %p [%" 491 VADDR_PRIx "] %s\n", 492 last_tb->tc.ptr, pc, lookup_symbol(pc)); 493 } 494 } 495 } 496 497 /* 498 * If gdb single-step, and we haven't raised another exception, 499 * raise a debug exception. Single-step with another exception 500 * is handled in cpu_handle_exception. 501 */ 502 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 503 cpu->exception_index = EXCP_DEBUG; 504 cpu_loop_exit(cpu); 505 } 506 507 return last_tb; 508 } 509 510 511 static void cpu_exec_enter(CPUState *cpu) 512 { 513 CPUClass *cc = CPU_GET_CLASS(cpu); 514 515 if (cc->tcg_ops->cpu_exec_enter) { 516 cc->tcg_ops->cpu_exec_enter(cpu); 517 } 518 } 519 520 static void cpu_exec_exit(CPUState *cpu) 521 { 522 CPUClass *cc = CPU_GET_CLASS(cpu); 523 524 if (cc->tcg_ops->cpu_exec_exit) { 525 cc->tcg_ops->cpu_exec_exit(cpu); 526 } 527 } 528 529 static void cpu_exec_longjmp_cleanup(CPUState *cpu) 530 { 531 /* Non-buggy compilers preserve this; assert the correct value. */ 532 g_assert(cpu == current_cpu); 533 534 #ifdef CONFIG_USER_ONLY 535 clear_helper_retaddr(); 536 if (have_mmap_lock()) { 537 mmap_unlock(); 538 } 539 #endif 540 if (qemu_mutex_iothread_locked()) { 541 qemu_mutex_unlock_iothread(); 542 } 543 assert_no_pages_locked(); 544 } 545 546 void cpu_exec_step_atomic(CPUState *cpu) 547 { 548 CPUArchState *env = cpu->env_ptr; 549 TranslationBlock *tb; 550 vaddr pc; 551 uint64_t cs_base; 552 uint32_t flags, cflags; 553 int tb_exit; 554 555 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 556 start_exclusive(); 557 g_assert(cpu == current_cpu); 558 g_assert(!cpu->running); 559 cpu->running = true; 560 561 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 562 563 cflags = curr_cflags(cpu); 564 /* Execute in a serial context. */ 565 cflags &= ~CF_PARALLEL; 566 /* After 1 insn, return and release the exclusive lock. */ 567 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 568 /* 569 * No need to check_for_breakpoints here. 570 * We only arrive in cpu_exec_step_atomic after beginning execution 571 * of an insn that includes an atomic operation we can't handle. 572 * Any breakpoint for this insn will have been recognized earlier. 573 */ 574 575 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 576 if (tb == NULL) { 577 mmap_lock(); 578 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 579 mmap_unlock(); 580 } 581 582 cpu_exec_enter(cpu); 583 /* execute the generated code */ 584 trace_exec_tb(tb, pc); 585 cpu_tb_exec(cpu, tb, &tb_exit); 586 cpu_exec_exit(cpu); 587 } else { 588 cpu_exec_longjmp_cleanup(cpu); 589 } 590 591 /* 592 * As we start the exclusive region before codegen we must still 593 * be in the region if we longjump out of either the codegen or 594 * the execution. 595 */ 596 g_assert(cpu_in_exclusive_context(cpu)); 597 cpu->running = false; 598 end_exclusive(); 599 } 600 601 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 602 { 603 /* 604 * Get the rx view of the structure, from which we find the 605 * executable code address, and tb_target_set_jmp_target can 606 * produce a pc-relative displacement to jmp_target_addr[n]. 607 */ 608 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 609 uintptr_t offset = tb->jmp_insn_offset[n]; 610 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 611 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 612 613 tb->jmp_target_addr[n] = addr; 614 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 615 } 616 617 static inline void tb_add_jump(TranslationBlock *tb, int n, 618 TranslationBlock *tb_next) 619 { 620 uintptr_t old; 621 622 qemu_thread_jit_write(); 623 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 624 qemu_spin_lock(&tb_next->jmp_lock); 625 626 /* make sure the destination TB is valid */ 627 if (tb_next->cflags & CF_INVALID) { 628 goto out_unlock_next; 629 } 630 /* Atomically claim the jump destination slot only if it was NULL */ 631 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 632 (uintptr_t)tb_next); 633 if (old) { 634 goto out_unlock_next; 635 } 636 637 /* patch the native jump address */ 638 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 639 640 /* add in TB jmp list */ 641 tb->jmp_list_next[n] = tb_next->jmp_list_head; 642 tb_next->jmp_list_head = (uintptr_t)tb | n; 643 644 qemu_spin_unlock(&tb_next->jmp_lock); 645 646 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 647 tb->tc.ptr, n, tb_next->tc.ptr); 648 return; 649 650 out_unlock_next: 651 qemu_spin_unlock(&tb_next->jmp_lock); 652 return; 653 } 654 655 static inline bool cpu_handle_halt(CPUState *cpu) 656 { 657 #ifndef CONFIG_USER_ONLY 658 if (cpu->halted) { 659 #if defined(TARGET_I386) 660 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) { 661 X86CPU *x86_cpu = X86_CPU(cpu); 662 qemu_mutex_lock_iothread(); 663 apic_poll_irq(x86_cpu->apic_state); 664 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 665 qemu_mutex_unlock_iothread(); 666 } 667 #endif /* TARGET_I386 */ 668 if (!cpu_has_work(cpu)) { 669 return true; 670 } 671 672 cpu->halted = 0; 673 } 674 #endif /* !CONFIG_USER_ONLY */ 675 676 return false; 677 } 678 679 static inline void cpu_handle_debug_exception(CPUState *cpu) 680 { 681 CPUClass *cc = CPU_GET_CLASS(cpu); 682 CPUWatchpoint *wp; 683 684 if (!cpu->watchpoint_hit) { 685 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 686 wp->flags &= ~BP_WATCHPOINT_HIT; 687 } 688 } 689 690 if (cc->tcg_ops->debug_excp_handler) { 691 cc->tcg_ops->debug_excp_handler(cpu); 692 } 693 } 694 695 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 696 { 697 if (cpu->exception_index < 0) { 698 #ifndef CONFIG_USER_ONLY 699 if (replay_has_exception() 700 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) { 701 /* Execute just one insn to trigger exception pending in the log */ 702 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 703 | CF_NOIRQ | 1; 704 } 705 #endif 706 return false; 707 } 708 if (cpu->exception_index >= EXCP_INTERRUPT) { 709 /* exit request from the cpu execution loop */ 710 *ret = cpu->exception_index; 711 if (*ret == EXCP_DEBUG) { 712 cpu_handle_debug_exception(cpu); 713 } 714 cpu->exception_index = -1; 715 return true; 716 } else { 717 #if defined(CONFIG_USER_ONLY) 718 /* if user mode only, we simulate a fake exception 719 which will be handled outside the cpu execution 720 loop */ 721 #if defined(TARGET_I386) 722 CPUClass *cc = CPU_GET_CLASS(cpu); 723 cc->tcg_ops->fake_user_interrupt(cpu); 724 #endif /* TARGET_I386 */ 725 *ret = cpu->exception_index; 726 cpu->exception_index = -1; 727 return true; 728 #else 729 if (replay_exception()) { 730 CPUClass *cc = CPU_GET_CLASS(cpu); 731 qemu_mutex_lock_iothread(); 732 cc->tcg_ops->do_interrupt(cpu); 733 qemu_mutex_unlock_iothread(); 734 cpu->exception_index = -1; 735 736 if (unlikely(cpu->singlestep_enabled)) { 737 /* 738 * After processing the exception, ensure an EXCP_DEBUG is 739 * raised when single-stepping so that GDB doesn't miss the 740 * next instruction. 741 */ 742 *ret = EXCP_DEBUG; 743 cpu_handle_debug_exception(cpu); 744 return true; 745 } 746 } else if (!replay_has_interrupt()) { 747 /* give a chance to iothread in replay mode */ 748 *ret = EXCP_INTERRUPT; 749 return true; 750 } 751 #endif 752 } 753 754 return false; 755 } 756 757 #ifndef CONFIG_USER_ONLY 758 /* 759 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a 760 * "real" interrupt event later. It does not need to be recorded for 761 * replay purposes. 762 */ 763 static inline bool need_replay_interrupt(int interrupt_request) 764 { 765 #if defined(TARGET_I386) 766 return !(interrupt_request & CPU_INTERRUPT_POLL); 767 #else 768 return true; 769 #endif 770 } 771 #endif /* !CONFIG_USER_ONLY */ 772 773 static inline bool cpu_handle_interrupt(CPUState *cpu, 774 TranslationBlock **last_tb) 775 { 776 /* 777 * If we have requested custom cflags with CF_NOIRQ we should 778 * skip checking here. Any pending interrupts will get picked up 779 * by the next TB we execute under normal cflags. 780 */ 781 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 782 return false; 783 } 784 785 /* Clear the interrupt flag now since we're processing 786 * cpu->interrupt_request and cpu->exit_request. 787 * Ensure zeroing happens before reading cpu->exit_request or 788 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 789 */ 790 qatomic_set_mb(&cpu_neg(cpu)->icount_decr.u16.high, 0); 791 792 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 793 int interrupt_request; 794 qemu_mutex_lock_iothread(); 795 interrupt_request = cpu->interrupt_request; 796 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 797 /* Mask out external interrupts for this step. */ 798 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 799 } 800 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 801 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 802 cpu->exception_index = EXCP_DEBUG; 803 qemu_mutex_unlock_iothread(); 804 return true; 805 } 806 #if !defined(CONFIG_USER_ONLY) 807 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 808 /* Do nothing */ 809 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 810 replay_interrupt(); 811 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 812 cpu->halted = 1; 813 cpu->exception_index = EXCP_HLT; 814 qemu_mutex_unlock_iothread(); 815 return true; 816 } 817 #if defined(TARGET_I386) 818 else if (interrupt_request & CPU_INTERRUPT_INIT) { 819 X86CPU *x86_cpu = X86_CPU(cpu); 820 CPUArchState *env = &x86_cpu->env; 821 replay_interrupt(); 822 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 823 do_cpu_init(x86_cpu); 824 cpu->exception_index = EXCP_HALTED; 825 qemu_mutex_unlock_iothread(); 826 return true; 827 } 828 #else 829 else if (interrupt_request & CPU_INTERRUPT_RESET) { 830 replay_interrupt(); 831 cpu_reset(cpu); 832 qemu_mutex_unlock_iothread(); 833 return true; 834 } 835 #endif /* !TARGET_I386 */ 836 /* The target hook has 3 exit conditions: 837 False when the interrupt isn't processed, 838 True when it is, and we should restart on a new TB, 839 and via longjmp via cpu_loop_exit. */ 840 else { 841 CPUClass *cc = CPU_GET_CLASS(cpu); 842 843 if (cc->tcg_ops->cpu_exec_interrupt && 844 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 845 if (need_replay_interrupt(interrupt_request)) { 846 replay_interrupt(); 847 } 848 /* 849 * After processing the interrupt, ensure an EXCP_DEBUG is 850 * raised when single-stepping so that GDB doesn't miss the 851 * next instruction. 852 */ 853 if (unlikely(cpu->singlestep_enabled)) { 854 cpu->exception_index = EXCP_DEBUG; 855 qemu_mutex_unlock_iothread(); 856 return true; 857 } 858 cpu->exception_index = -1; 859 *last_tb = NULL; 860 } 861 /* The target hook may have updated the 'cpu->interrupt_request'; 862 * reload the 'interrupt_request' value */ 863 interrupt_request = cpu->interrupt_request; 864 } 865 #endif /* !CONFIG_USER_ONLY */ 866 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 867 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 868 /* ensure that no TB jump will be modified as 869 the program flow was changed */ 870 *last_tb = NULL; 871 } 872 873 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 874 qemu_mutex_unlock_iothread(); 875 } 876 877 /* Finally, check if we need to exit to the main loop. */ 878 if (unlikely(qatomic_read(&cpu->exit_request)) 879 || (icount_enabled() 880 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT) 881 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) { 882 qatomic_set(&cpu->exit_request, 0); 883 if (cpu->exception_index == -1) { 884 cpu->exception_index = EXCP_INTERRUPT; 885 } 886 return true; 887 } 888 889 return false; 890 } 891 892 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 893 vaddr pc, TranslationBlock **last_tb, 894 int *tb_exit) 895 { 896 int32_t insns_left; 897 898 trace_exec_tb(tb, pc); 899 tb = cpu_tb_exec(cpu, tb, tb_exit); 900 if (*tb_exit != TB_EXIT_REQUESTED) { 901 *last_tb = tb; 902 return; 903 } 904 905 *last_tb = NULL; 906 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32); 907 if (insns_left < 0) { 908 /* Something asked us to stop executing chained TBs; just 909 * continue round the main loop. Whatever requested the exit 910 * will also have set something else (eg exit_request or 911 * interrupt_request) which will be handled by 912 * cpu_handle_interrupt. cpu_handle_interrupt will also 913 * clear cpu->icount_decr.u16.high. 914 */ 915 return; 916 } 917 918 /* Instruction counter expired. */ 919 assert(icount_enabled()); 920 #ifndef CONFIG_USER_ONLY 921 /* Ensure global icount has gone forward */ 922 icount_update(cpu); 923 /* Refill decrementer and continue execution. */ 924 insns_left = MIN(0xffff, cpu->icount_budget); 925 cpu_neg(cpu)->icount_decr.u16.low = insns_left; 926 cpu->icount_extra = cpu->icount_budget - insns_left; 927 928 /* 929 * If the next tb has more instructions than we have left to 930 * execute we need to ensure we find/generate a TB with exactly 931 * insns_left instructions in it. 932 */ 933 if (insns_left > 0 && insns_left < tb->icount) { 934 assert(insns_left <= CF_COUNT_MASK); 935 assert(cpu->icount_extra == 0); 936 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 937 } 938 #endif 939 } 940 941 /* main execution loop */ 942 943 static int __attribute__((noinline)) 944 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 945 { 946 int ret; 947 948 /* if an exception is pending, we execute it here */ 949 while (!cpu_handle_exception(cpu, &ret)) { 950 TranslationBlock *last_tb = NULL; 951 int tb_exit = 0; 952 953 while (!cpu_handle_interrupt(cpu, &last_tb)) { 954 TranslationBlock *tb; 955 vaddr pc; 956 uint64_t cs_base; 957 uint32_t flags, cflags; 958 959 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags); 960 961 /* 962 * When requested, use an exact setting for cflags for the next 963 * execution. This is used for icount, precise smc, and stop- 964 * after-access watchpoints. Since this request should never 965 * have CF_INVALID set, -1 is a convenient invalid value that 966 * does not require tcg headers for cpu_common_reset. 967 */ 968 cflags = cpu->cflags_next_tb; 969 if (cflags == -1) { 970 cflags = curr_cflags(cpu); 971 } else { 972 cpu->cflags_next_tb = -1; 973 } 974 975 if (check_for_breakpoints(cpu, pc, &cflags)) { 976 break; 977 } 978 979 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 980 if (tb == NULL) { 981 CPUJumpCache *jc; 982 uint32_t h; 983 984 mmap_lock(); 985 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 986 mmap_unlock(); 987 988 /* 989 * We add the TB in the virtual pc hash table 990 * for the fast lookup 991 */ 992 h = tb_jmp_cache_hash_func(pc); 993 jc = cpu->tb_jmp_cache; 994 if (cflags & CF_PCREL) { 995 jc->array[h].pc = pc; 996 /* Ensure pc is written first. */ 997 qatomic_store_release(&jc->array[h].tb, tb); 998 } else { 999 /* Use the pc value already stored in tb->pc. */ 1000 qatomic_set(&jc->array[h].tb, tb); 1001 } 1002 } 1003 1004 #ifndef CONFIG_USER_ONLY 1005 /* 1006 * We don't take care of direct jumps when address mapping 1007 * changes in system emulation. So it's not safe to make a 1008 * direct jump to a TB spanning two pages because the mapping 1009 * for the second page can change. 1010 */ 1011 if (tb_page_addr1(tb) != -1) { 1012 last_tb = NULL; 1013 } 1014 #endif 1015 /* See if we can patch the calling TB. */ 1016 if (last_tb) { 1017 tb_add_jump(last_tb, tb_exit, tb); 1018 } 1019 1020 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1021 1022 /* Try to align the host and virtual clocks 1023 if the guest is in advance */ 1024 align_clocks(sc, cpu); 1025 } 1026 } 1027 return ret; 1028 } 1029 1030 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 1031 { 1032 /* Prepare setjmp context for exception handling. */ 1033 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 1034 cpu_exec_longjmp_cleanup(cpu); 1035 } 1036 1037 return cpu_exec_loop(cpu, sc); 1038 } 1039 1040 int cpu_exec(CPUState *cpu) 1041 { 1042 int ret; 1043 SyncClocks sc = { 0 }; 1044 1045 /* replay_interrupt may need current_cpu */ 1046 current_cpu = cpu; 1047 1048 if (cpu_handle_halt(cpu)) { 1049 return EXCP_HALTED; 1050 } 1051 1052 rcu_read_lock(); 1053 cpu_exec_enter(cpu); 1054 1055 /* 1056 * Calculate difference between guest clock and host clock. 1057 * This delay includes the delay of the last cycle, so 1058 * what we have to do is sleep until it is 0. As for the 1059 * advance/delay we gain here, we try to fix it next time. 1060 */ 1061 init_delay_params(&sc, cpu); 1062 1063 ret = cpu_exec_setjmp(cpu, &sc); 1064 1065 cpu_exec_exit(cpu); 1066 rcu_read_unlock(); 1067 1068 return ret; 1069 } 1070 1071 void tcg_exec_realizefn(CPUState *cpu, Error **errp) 1072 { 1073 static bool tcg_target_initialized; 1074 CPUClass *cc = CPU_GET_CLASS(cpu); 1075 1076 if (!tcg_target_initialized) { 1077 cc->tcg_ops->initialize(); 1078 tcg_target_initialized = true; 1079 } 1080 1081 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1082 tlb_init(cpu); 1083 #ifndef CONFIG_USER_ONLY 1084 tcg_iommu_init_notifier_list(cpu); 1085 #endif /* !CONFIG_USER_ONLY */ 1086 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1087 } 1088 1089 /* undo the initializations in reverse order */ 1090 void tcg_exec_unrealizefn(CPUState *cpu) 1091 { 1092 #ifndef CONFIG_USER_ONLY 1093 tcg_iommu_free_notifier_list(cpu); 1094 #endif /* !CONFIG_USER_ONLY */ 1095 1096 tlb_destroy(cpu); 1097 g_free_rcu(cpu->tb_jmp_cache, rcu); 1098 } 1099