xref: /openbmc/qemu/accel/tcg/cpu-exec.c (revision 59272469)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu/qemu-print.h"
22 #include "qapi/error.h"
23 #include "qapi/type-helpers.h"
24 #include "hw/core/tcg-cpu-ops.h"
25 #include "trace.h"
26 #include "disas/disas.h"
27 #include "exec/exec-all.h"
28 #include "tcg/tcg.h"
29 #include "qemu/atomic.h"
30 #include "qemu/rcu.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #include "sysemu/cpus.h"
34 #include "exec/cpu-all.h"
35 #include "sysemu/cpu-timers.h"
36 #include "exec/replay-core.h"
37 #include "sysemu/tcg.h"
38 #include "exec/helper-proto-common.h"
39 #include "tb-jmp-cache.h"
40 #include "tb-hash.h"
41 #include "tb-context.h"
42 #include "internal-common.h"
43 #include "internal-target.h"
44 #if defined(CONFIG_USER_ONLY)
45 #include "user-retaddr.h"
46 #endif
47 
48 /* -icount align implementation. */
49 
50 typedef struct SyncClocks {
51     int64_t diff_clk;
52     int64_t last_cpu_icount;
53     int64_t realtime_clock;
54 } SyncClocks;
55 
56 #if !defined(CONFIG_USER_ONLY)
57 /* Allow the guest to have a max 3ms advance.
58  * The difference between the 2 clocks could therefore
59  * oscillate around 0.
60  */
61 #define VM_CLOCK_ADVANCE 3000000
62 #define THRESHOLD_REDUCE 1.5
63 #define MAX_DELAY_PRINT_RATE 2000000000LL
64 #define MAX_NB_PRINTS 100
65 
66 int64_t max_delay;
67 int64_t max_advance;
68 
69 static void align_clocks(SyncClocks *sc, CPUState *cpu)
70 {
71     int64_t cpu_icount;
72 
73     if (!icount_align_option) {
74         return;
75     }
76 
77     cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
78     sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
79     sc->last_cpu_icount = cpu_icount;
80 
81     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
82 #ifndef _WIN32
83         struct timespec sleep_delay, rem_delay;
84         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
85         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
86         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
87             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
88         } else {
89             sc->diff_clk = 0;
90         }
91 #else
92         Sleep(sc->diff_clk / SCALE_MS);
93         sc->diff_clk = 0;
94 #endif
95     }
96 }
97 
98 static void print_delay(const SyncClocks *sc)
99 {
100     static float threshold_delay;
101     static int64_t last_realtime_clock;
102     static int nb_prints;
103 
104     if (icount_align_option &&
105         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
106         nb_prints < MAX_NB_PRINTS) {
107         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
108             (-sc->diff_clk / (float)1000000000LL <
109              (threshold_delay - THRESHOLD_REDUCE))) {
110             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
111             qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
112                         threshold_delay - 1,
113                         threshold_delay);
114             nb_prints++;
115             last_realtime_clock = sc->realtime_clock;
116         }
117     }
118 }
119 
120 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
121 {
122     if (!icount_align_option) {
123         return;
124     }
125     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
126     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
127     sc->last_cpu_icount
128         = cpu->icount_extra + cpu->neg.icount_decr.u16.low;
129     if (sc->diff_clk < max_delay) {
130         max_delay = sc->diff_clk;
131     }
132     if (sc->diff_clk > max_advance) {
133         max_advance = sc->diff_clk;
134     }
135 
136     /* Print every 2s max if the guest is late. We limit the number
137        of printed messages to NB_PRINT_MAX(currently 100) */
138     print_delay(sc);
139 }
140 #else
141 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
142 {
143 }
144 
145 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
146 {
147 }
148 #endif /* CONFIG USER ONLY */
149 
150 bool tcg_cflags_has(CPUState *cpu, uint32_t flags)
151 {
152     return cpu->tcg_cflags & flags;
153 }
154 
155 void tcg_cflags_set(CPUState *cpu, uint32_t flags)
156 {
157     cpu->tcg_cflags |= flags;
158 }
159 
160 uint32_t curr_cflags(CPUState *cpu)
161 {
162     uint32_t cflags = cpu->tcg_cflags;
163 
164     /*
165      * Record gdb single-step.  We should be exiting the TB by raising
166      * EXCP_DEBUG, but to simplify other tests, disable chaining too.
167      *
168      * For singlestep and -d nochain, suppress goto_tb so that
169      * we can log -d cpu,exec after every TB.
170      */
171     if (unlikely(cpu->singlestep_enabled)) {
172         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
173     } else if (qatomic_read(&one_insn_per_tb)) {
174         cflags |= CF_NO_GOTO_TB | 1;
175     } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
176         cflags |= CF_NO_GOTO_TB;
177     }
178 
179     return cflags;
180 }
181 
182 struct tb_desc {
183     vaddr pc;
184     uint64_t cs_base;
185     CPUArchState *env;
186     tb_page_addr_t page_addr0;
187     uint32_t flags;
188     uint32_t cflags;
189 };
190 
191 static bool tb_lookup_cmp(const void *p, const void *d)
192 {
193     const TranslationBlock *tb = p;
194     const struct tb_desc *desc = d;
195 
196     if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) &&
197         tb_page_addr0(tb) == desc->page_addr0 &&
198         tb->cs_base == desc->cs_base &&
199         tb->flags == desc->flags &&
200         tb_cflags(tb) == desc->cflags) {
201         /* check next page if needed */
202         tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb);
203         if (tb_phys_page1 == -1) {
204             return true;
205         } else {
206             tb_page_addr_t phys_page1;
207             vaddr virt_page1;
208 
209             /*
210              * We know that the first page matched, and an otherwise valid TB
211              * encountered an incomplete instruction at the end of that page,
212              * therefore we know that generating a new TB from the current PC
213              * must also require reading from the next page -- even if the
214              * second pages do not match, and therefore the resulting insn
215              * is different for the new TB.  Therefore any exception raised
216              * here by the faulting lookup is not premature.
217              */
218             virt_page1 = TARGET_PAGE_ALIGN(desc->pc);
219             phys_page1 = get_page_addr_code(desc->env, virt_page1);
220             if (tb_phys_page1 == phys_page1) {
221                 return true;
222             }
223         }
224     }
225     return false;
226 }
227 
228 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc,
229                                           uint64_t cs_base, uint32_t flags,
230                                           uint32_t cflags)
231 {
232     tb_page_addr_t phys_pc;
233     struct tb_desc desc;
234     uint32_t h;
235 
236     desc.env = cpu_env(cpu);
237     desc.cs_base = cs_base;
238     desc.flags = flags;
239     desc.cflags = cflags;
240     desc.pc = pc;
241     phys_pc = get_page_addr_code(desc.env, pc);
242     if (phys_pc == -1) {
243         return NULL;
244     }
245     desc.page_addr0 = phys_pc;
246     h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc),
247                      flags, cs_base, cflags);
248     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
249 }
250 
251 /* Might cause an exception, so have a longjmp destination ready */
252 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc,
253                                           uint64_t cs_base, uint32_t flags,
254                                           uint32_t cflags)
255 {
256     TranslationBlock *tb;
257     CPUJumpCache *jc;
258     uint32_t hash;
259 
260     /* we should never be trying to look up an INVALID tb */
261     tcg_debug_assert(!(cflags & CF_INVALID));
262 
263     hash = tb_jmp_cache_hash_func(pc);
264     jc = cpu->tb_jmp_cache;
265 
266     tb = qatomic_read(&jc->array[hash].tb);
267     if (likely(tb &&
268                jc->array[hash].pc == pc &&
269                tb->cs_base == cs_base &&
270                tb->flags == flags &&
271                tb_cflags(tb) == cflags)) {
272         goto hit;
273     }
274 
275     tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
276     if (tb == NULL) {
277         return NULL;
278     }
279 
280     jc->array[hash].pc = pc;
281     qatomic_set(&jc->array[hash].tb, tb);
282 
283 hit:
284     /*
285      * As long as tb is not NULL, the contents are consistent.  Therefore,
286      * the virtual PC has to match for non-CF_PCREL translations.
287      */
288     assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc);
289     return tb;
290 }
291 
292 static void log_cpu_exec(vaddr pc, CPUState *cpu,
293                          const TranslationBlock *tb)
294 {
295     if (qemu_log_in_addr_range(pc)) {
296         qemu_log_mask(CPU_LOG_EXEC,
297                       "Trace %d: %p [%08" PRIx64
298                       "/%016" VADDR_PRIx "/%08x/%08x] %s\n",
299                       cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
300                       tb->flags, tb->cflags, lookup_symbol(pc));
301 
302         if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
303             FILE *logfile = qemu_log_trylock();
304             if (logfile) {
305                 int flags = 0;
306 
307                 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
308                     flags |= CPU_DUMP_FPU;
309                 }
310 #if defined(TARGET_I386)
311                 flags |= CPU_DUMP_CCOP;
312 #endif
313                 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) {
314                     flags |= CPU_DUMP_VPU;
315                 }
316                 cpu_dump_state(cpu, logfile, flags);
317                 qemu_log_unlock(logfile);
318             }
319         }
320     }
321 }
322 
323 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc,
324                                        uint32_t *cflags)
325 {
326     CPUBreakpoint *bp;
327     bool match_page = false;
328 
329     /*
330      * Singlestep overrides breakpoints.
331      * This requirement is visible in the record-replay tests, where
332      * we would fail to make forward progress in reverse-continue.
333      *
334      * TODO: gdb singlestep should only override gdb breakpoints,
335      * so that one could (gdb) singlestep into the guest kernel's
336      * architectural breakpoint handler.
337      */
338     if (cpu->singlestep_enabled) {
339         return false;
340     }
341 
342     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
343         /*
344          * If we have an exact pc match, trigger the breakpoint.
345          * Otherwise, note matches within the page.
346          */
347         if (pc == bp->pc) {
348             bool match_bp = false;
349 
350             if (bp->flags & BP_GDB) {
351                 match_bp = true;
352             } else if (bp->flags & BP_CPU) {
353 #ifdef CONFIG_USER_ONLY
354                 g_assert_not_reached();
355 #else
356                 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
357                 assert(tcg_ops->debug_check_breakpoint);
358                 match_bp = tcg_ops->debug_check_breakpoint(cpu);
359 #endif
360             }
361 
362             if (match_bp) {
363                 cpu->exception_index = EXCP_DEBUG;
364                 return true;
365             }
366         } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
367             match_page = true;
368         }
369     }
370 
371     /*
372      * Within the same page as a breakpoint, single-step,
373      * returning to helper_lookup_tb_ptr after each insn looking
374      * for the actual breakpoint.
375      *
376      * TODO: Perhaps better to record all of the TBs associated
377      * with a given virtual page that contains a breakpoint, and
378      * then invalidate them when a new overlapping breakpoint is
379      * set on the page.  Non-overlapping TBs would not be
380      * invalidated, nor would any TB need to be invalidated as
381      * breakpoints are removed.
382      */
383     if (match_page) {
384         *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
385     }
386     return false;
387 }
388 
389 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc,
390                                          uint32_t *cflags)
391 {
392     return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) &&
393         check_for_breakpoints_slow(cpu, pc, cflags);
394 }
395 
396 /**
397  * helper_lookup_tb_ptr: quick check for next tb
398  * @env: current cpu state
399  *
400  * Look for an existing TB matching the current cpu state.
401  * If found, return the code pointer.  If not found, return
402  * the tcg epilogue so that we return into cpu_tb_exec.
403  */
404 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
405 {
406     CPUState *cpu = env_cpu(env);
407     TranslationBlock *tb;
408     vaddr pc;
409     uint64_t cs_base;
410     uint32_t flags, cflags;
411 
412     /*
413      * By definition we've just finished a TB, so I/O is OK.
414      * Avoid the possibility of calling cpu_io_recompile() if
415      * a page table walk triggered by tb_lookup() calling
416      * probe_access_internal() happens to touch an MMIO device.
417      * The next TB, if we chain to it, will clear the flag again.
418      */
419     cpu->neg.can_do_io = true;
420     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
421 
422     cflags = curr_cflags(cpu);
423     if (check_for_breakpoints(cpu, pc, &cflags)) {
424         cpu_loop_exit(cpu);
425     }
426 
427     tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
428     if (tb == NULL) {
429         return tcg_code_gen_epilogue;
430     }
431 
432     if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
433         log_cpu_exec(pc, cpu, tb);
434     }
435 
436     return tb->tc.ptr;
437 }
438 
439 /* Execute a TB, and fix up the CPU state afterwards if necessary */
440 /*
441  * Disable CFI checks.
442  * TCG creates binary blobs at runtime, with the transformed code.
443  * A TB is a blob of binary code, created at runtime and called with an
444  * indirect function call. Since such function did not exist at compile time,
445  * the CFI runtime has no way to verify its signature and would fail.
446  * TCG is not considered a security-sensitive part of QEMU so this does not
447  * affect the impact of CFI in environment with high security requirements
448  */
449 static inline TranslationBlock * QEMU_DISABLE_CFI
450 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
451 {
452     uintptr_t ret;
453     TranslationBlock *last_tb;
454     const void *tb_ptr = itb->tc.ptr;
455 
456     if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) {
457         log_cpu_exec(log_pc(cpu, itb), cpu, itb);
458     }
459 
460     qemu_thread_jit_execute();
461     ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr);
462     cpu->neg.can_do_io = true;
463     qemu_plugin_disable_mem_helpers(cpu);
464     /*
465      * TODO: Delay swapping back to the read-write region of the TB
466      * until we actually need to modify the TB.  The read-only copy,
467      * coming from the rx region, shares the same host TLB entry as
468      * the code that executed the exit_tb opcode that arrived here.
469      * If we insist on touching both the RX and the RW pages, we
470      * double the host TLB pressure.
471      */
472     last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
473     *tb_exit = ret & TB_EXIT_MASK;
474 
475     trace_exec_tb_exit(last_tb, *tb_exit);
476 
477     if (*tb_exit > TB_EXIT_IDX1) {
478         /* We didn't start executing this TB (eg because the instruction
479          * counter hit zero); we must restore the guest PC to the address
480          * of the start of the TB.
481          */
482         CPUClass *cc = cpu->cc;
483         const TCGCPUOps *tcg_ops = cc->tcg_ops;
484 
485         if (tcg_ops->synchronize_from_tb) {
486             tcg_ops->synchronize_from_tb(cpu, last_tb);
487         } else {
488             tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL));
489             assert(cc->set_pc);
490             cc->set_pc(cpu, last_tb->pc);
491         }
492         if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
493             vaddr pc = log_pc(cpu, last_tb);
494             if (qemu_log_in_addr_range(pc)) {
495                 qemu_log("Stopped execution of TB chain before %p [%016"
496                          VADDR_PRIx "] %s\n",
497                          last_tb->tc.ptr, pc, lookup_symbol(pc));
498             }
499         }
500     }
501 
502     /*
503      * If gdb single-step, and we haven't raised another exception,
504      * raise a debug exception.  Single-step with another exception
505      * is handled in cpu_handle_exception.
506      */
507     if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
508         cpu->exception_index = EXCP_DEBUG;
509         cpu_loop_exit(cpu);
510     }
511 
512     return last_tb;
513 }
514 
515 
516 static void cpu_exec_enter(CPUState *cpu)
517 {
518     const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
519 
520     if (tcg_ops->cpu_exec_enter) {
521         tcg_ops->cpu_exec_enter(cpu);
522     }
523 }
524 
525 static void cpu_exec_exit(CPUState *cpu)
526 {
527     const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
528 
529     if (tcg_ops->cpu_exec_exit) {
530         tcg_ops->cpu_exec_exit(cpu);
531     }
532 }
533 
534 static void cpu_exec_longjmp_cleanup(CPUState *cpu)
535 {
536     /* Non-buggy compilers preserve this; assert the correct value. */
537     g_assert(cpu == current_cpu);
538 
539 #ifdef CONFIG_USER_ONLY
540     clear_helper_retaddr();
541     if (have_mmap_lock()) {
542         mmap_unlock();
543     }
544 #else
545     /*
546      * For softmmu, a tlb_fill fault during translation will land here,
547      * and we need to release any page locks held.  In system mode we
548      * have one tcg_ctx per thread, so we know it was this cpu doing
549      * the translation.
550      *
551      * Alternative 1: Install a cleanup to be called via an exception
552      * handling safe longjmp.  It seems plausible that all our hosts
553      * support such a thing.  We'd have to properly register unwind info
554      * for the JIT for EH, rather that just for GDB.
555      *
556      * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to
557      * capture the cpu_loop_exit longjmp, perform the cleanup, and
558      * jump again to arrive here.
559      */
560     if (tcg_ctx->gen_tb) {
561         tb_unlock_pages(tcg_ctx->gen_tb);
562         tcg_ctx->gen_tb = NULL;
563     }
564 #endif
565     if (bql_locked()) {
566         bql_unlock();
567     }
568     assert_no_pages_locked();
569 }
570 
571 void cpu_exec_step_atomic(CPUState *cpu)
572 {
573     CPUArchState *env = cpu_env(cpu);
574     TranslationBlock *tb;
575     vaddr pc;
576     uint64_t cs_base;
577     uint32_t flags, cflags;
578     int tb_exit;
579 
580     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
581         start_exclusive();
582         g_assert(cpu == current_cpu);
583         g_assert(!cpu->running);
584         cpu->running = true;
585 
586         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
587 
588         cflags = curr_cflags(cpu);
589         /* Execute in a serial context. */
590         cflags &= ~CF_PARALLEL;
591         /* After 1 insn, return and release the exclusive lock. */
592         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
593         /*
594          * No need to check_for_breakpoints here.
595          * We only arrive in cpu_exec_step_atomic after beginning execution
596          * of an insn that includes an atomic operation we can't handle.
597          * Any breakpoint for this insn will have been recognized earlier.
598          */
599 
600         tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
601         if (tb == NULL) {
602             mmap_lock();
603             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
604             mmap_unlock();
605         }
606 
607         cpu_exec_enter(cpu);
608         /* execute the generated code */
609         trace_exec_tb(tb, pc);
610         cpu_tb_exec(cpu, tb, &tb_exit);
611         cpu_exec_exit(cpu);
612     } else {
613         cpu_exec_longjmp_cleanup(cpu);
614     }
615 
616     /*
617      * As we start the exclusive region before codegen we must still
618      * be in the region if we longjump out of either the codegen or
619      * the execution.
620      */
621     g_assert(cpu_in_exclusive_context(cpu));
622     cpu->running = false;
623     end_exclusive();
624 }
625 
626 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
627 {
628     /*
629      * Get the rx view of the structure, from which we find the
630      * executable code address, and tb_target_set_jmp_target can
631      * produce a pc-relative displacement to jmp_target_addr[n].
632      */
633     const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb);
634     uintptr_t offset = tb->jmp_insn_offset[n];
635     uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset;
636     uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
637 
638     tb->jmp_target_addr[n] = addr;
639     tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw);
640 }
641 
642 static inline void tb_add_jump(TranslationBlock *tb, int n,
643                                TranslationBlock *tb_next)
644 {
645     uintptr_t old;
646 
647     qemu_thread_jit_write();
648     assert(n < ARRAY_SIZE(tb->jmp_list_next));
649     qemu_spin_lock(&tb_next->jmp_lock);
650 
651     /* make sure the destination TB is valid */
652     if (tb_next->cflags & CF_INVALID) {
653         goto out_unlock_next;
654     }
655     /* Atomically claim the jump destination slot only if it was NULL */
656     old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
657                           (uintptr_t)tb_next);
658     if (old) {
659         goto out_unlock_next;
660     }
661 
662     /* patch the native jump address */
663     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
664 
665     /* add in TB jmp list */
666     tb->jmp_list_next[n] = tb_next->jmp_list_head;
667     tb_next->jmp_list_head = (uintptr_t)tb | n;
668 
669     qemu_spin_unlock(&tb_next->jmp_lock);
670 
671     qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n",
672                   tb->tc.ptr, n, tb_next->tc.ptr);
673     return;
674 
675  out_unlock_next:
676     qemu_spin_unlock(&tb_next->jmp_lock);
677     return;
678 }
679 
680 static inline bool cpu_handle_halt(CPUState *cpu)
681 {
682 #ifndef CONFIG_USER_ONLY
683     if (cpu->halted) {
684         const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
685 
686         if (tcg_ops->cpu_exec_halt) {
687             tcg_ops->cpu_exec_halt(cpu);
688         }
689         if (!cpu_has_work(cpu)) {
690             return true;
691         }
692 
693         cpu->halted = 0;
694     }
695 #endif /* !CONFIG_USER_ONLY */
696 
697     return false;
698 }
699 
700 static inline void cpu_handle_debug_exception(CPUState *cpu)
701 {
702     const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
703     CPUWatchpoint *wp;
704 
705     if (!cpu->watchpoint_hit) {
706         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
707             wp->flags &= ~BP_WATCHPOINT_HIT;
708         }
709     }
710 
711     if (tcg_ops->debug_excp_handler) {
712         tcg_ops->debug_excp_handler(cpu);
713     }
714 }
715 
716 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
717 {
718     if (cpu->exception_index < 0) {
719 #ifndef CONFIG_USER_ONLY
720         if (replay_has_exception()
721             && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) {
722             /* Execute just one insn to trigger exception pending in the log */
723             cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
724                 | CF_NOIRQ | 1;
725         }
726 #endif
727         return false;
728     }
729 
730     if (cpu->exception_index >= EXCP_INTERRUPT) {
731         /* exit request from the cpu execution loop */
732         *ret = cpu->exception_index;
733         if (*ret == EXCP_DEBUG) {
734             cpu_handle_debug_exception(cpu);
735         }
736         cpu->exception_index = -1;
737         return true;
738     }
739 
740 #if defined(CONFIG_USER_ONLY)
741     /*
742      * If user mode only, we simulate a fake exception which will be
743      * handled outside the cpu execution loop.
744      */
745 #if defined(TARGET_I386)
746     const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
747     tcg_ops->fake_user_interrupt(cpu);
748 #endif /* TARGET_I386 */
749     *ret = cpu->exception_index;
750     cpu->exception_index = -1;
751     return true;
752 #else
753     if (replay_exception()) {
754         const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
755 
756         bql_lock();
757         tcg_ops->do_interrupt(cpu);
758         bql_unlock();
759         cpu->exception_index = -1;
760 
761         if (unlikely(cpu->singlestep_enabled)) {
762             /*
763              * After processing the exception, ensure an EXCP_DEBUG is
764              * raised when single-stepping so that GDB doesn't miss the
765              * next instruction.
766              */
767             *ret = EXCP_DEBUG;
768             cpu_handle_debug_exception(cpu);
769             return true;
770         }
771     } else if (!replay_has_interrupt()) {
772         /* give a chance to iothread in replay mode */
773         *ret = EXCP_INTERRUPT;
774         return true;
775     }
776 #endif
777 
778     return false;
779 }
780 
781 static inline bool icount_exit_request(CPUState *cpu)
782 {
783     if (!icount_enabled()) {
784         return false;
785     }
786     if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) {
787         return false;
788     }
789     return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0;
790 }
791 
792 static inline bool cpu_handle_interrupt(CPUState *cpu,
793                                         TranslationBlock **last_tb)
794 {
795     /*
796      * If we have requested custom cflags with CF_NOIRQ we should
797      * skip checking here. Any pending interrupts will get picked up
798      * by the next TB we execute under normal cflags.
799      */
800     if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
801         return false;
802     }
803 
804     /* Clear the interrupt flag now since we're processing
805      * cpu->interrupt_request and cpu->exit_request.
806      * Ensure zeroing happens before reading cpu->exit_request or
807      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
808      */
809     qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0);
810 
811     if (unlikely(qatomic_read(&cpu->interrupt_request))) {
812         int interrupt_request;
813         bql_lock();
814         interrupt_request = cpu->interrupt_request;
815         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
816             /* Mask out external interrupts for this step. */
817             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
818         }
819         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
820             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
821             cpu->exception_index = EXCP_DEBUG;
822             bql_unlock();
823             return true;
824         }
825 #if !defined(CONFIG_USER_ONLY)
826         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
827             /* Do nothing */
828         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
829             replay_interrupt();
830             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
831             cpu->halted = 1;
832             cpu->exception_index = EXCP_HLT;
833             bql_unlock();
834             return true;
835         }
836 #if defined(TARGET_I386)
837         else if (interrupt_request & CPU_INTERRUPT_INIT) {
838             X86CPU *x86_cpu = X86_CPU(cpu);
839             CPUArchState *env = &x86_cpu->env;
840             replay_interrupt();
841             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
842             do_cpu_init(x86_cpu);
843             cpu->exception_index = EXCP_HALTED;
844             bql_unlock();
845             return true;
846         }
847 #else
848         else if (interrupt_request & CPU_INTERRUPT_RESET) {
849             replay_interrupt();
850             cpu_reset(cpu);
851             bql_unlock();
852             return true;
853         }
854 #endif /* !TARGET_I386 */
855         /* The target hook has 3 exit conditions:
856            False when the interrupt isn't processed,
857            True when it is, and we should restart on a new TB,
858            and via longjmp via cpu_loop_exit.  */
859         else {
860             const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops;
861 
862             if (tcg_ops->cpu_exec_interrupt &&
863                 tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
864                 if (!tcg_ops->need_replay_interrupt ||
865                     tcg_ops->need_replay_interrupt(interrupt_request)) {
866                     replay_interrupt();
867                 }
868                 /*
869                  * After processing the interrupt, ensure an EXCP_DEBUG is
870                  * raised when single-stepping so that GDB doesn't miss the
871                  * next instruction.
872                  */
873                 if (unlikely(cpu->singlestep_enabled)) {
874                     cpu->exception_index = EXCP_DEBUG;
875                     bql_unlock();
876                     return true;
877                 }
878                 cpu->exception_index = -1;
879                 *last_tb = NULL;
880             }
881             /* The target hook may have updated the 'cpu->interrupt_request';
882              * reload the 'interrupt_request' value */
883             interrupt_request = cpu->interrupt_request;
884         }
885 #endif /* !CONFIG_USER_ONLY */
886         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
887             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
888             /* ensure that no TB jump will be modified as
889                the program flow was changed */
890             *last_tb = NULL;
891         }
892 
893         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
894         bql_unlock();
895     }
896 
897     /* Finally, check if we need to exit to the main loop.  */
898     if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) {
899         qatomic_set(&cpu->exit_request, 0);
900         if (cpu->exception_index == -1) {
901             cpu->exception_index = EXCP_INTERRUPT;
902         }
903         return true;
904     }
905 
906     return false;
907 }
908 
909 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
910                                     vaddr pc, TranslationBlock **last_tb,
911                                     int *tb_exit)
912 {
913     trace_exec_tb(tb, pc);
914     tb = cpu_tb_exec(cpu, tb, tb_exit);
915     if (*tb_exit != TB_EXIT_REQUESTED) {
916         *last_tb = tb;
917         return;
918     }
919 
920     *last_tb = NULL;
921     if (cpu_loop_exit_requested(cpu)) {
922         /* Something asked us to stop executing chained TBs; just
923          * continue round the main loop. Whatever requested the exit
924          * will also have set something else (eg exit_request or
925          * interrupt_request) which will be handled by
926          * cpu_handle_interrupt.  cpu_handle_interrupt will also
927          * clear cpu->icount_decr.u16.high.
928          */
929         return;
930     }
931 
932     /* Instruction counter expired.  */
933     assert(icount_enabled());
934 #ifndef CONFIG_USER_ONLY
935     /* Ensure global icount has gone forward */
936     icount_update(cpu);
937     /* Refill decrementer and continue execution.  */
938     int32_t insns_left = MIN(0xffff, cpu->icount_budget);
939     cpu->neg.icount_decr.u16.low = insns_left;
940     cpu->icount_extra = cpu->icount_budget - insns_left;
941 
942     /*
943      * If the next tb has more instructions than we have left to
944      * execute we need to ensure we find/generate a TB with exactly
945      * insns_left instructions in it.
946      */
947     if (insns_left > 0 && insns_left < tb->icount)  {
948         assert(insns_left <= CF_COUNT_MASK);
949         assert(cpu->icount_extra == 0);
950         cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
951     }
952 #endif
953 }
954 
955 /* main execution loop */
956 
957 static int __attribute__((noinline))
958 cpu_exec_loop(CPUState *cpu, SyncClocks *sc)
959 {
960     int ret;
961 
962     /* if an exception is pending, we execute it here */
963     while (!cpu_handle_exception(cpu, &ret)) {
964         TranslationBlock *last_tb = NULL;
965         int tb_exit = 0;
966 
967         while (!cpu_handle_interrupt(cpu, &last_tb)) {
968             TranslationBlock *tb;
969             vaddr pc;
970             uint64_t cs_base;
971             uint32_t flags, cflags;
972 
973             cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags);
974 
975             /*
976              * When requested, use an exact setting for cflags for the next
977              * execution.  This is used for icount, precise smc, and stop-
978              * after-access watchpoints.  Since this request should never
979              * have CF_INVALID set, -1 is a convenient invalid value that
980              * does not require tcg headers for cpu_common_reset.
981              */
982             cflags = cpu->cflags_next_tb;
983             if (cflags == -1) {
984                 cflags = curr_cflags(cpu);
985             } else {
986                 cpu->cflags_next_tb = -1;
987             }
988 
989             if (check_for_breakpoints(cpu, pc, &cflags)) {
990                 break;
991             }
992 
993             tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
994             if (tb == NULL) {
995                 CPUJumpCache *jc;
996                 uint32_t h;
997 
998                 mmap_lock();
999                 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
1000                 mmap_unlock();
1001 
1002                 /*
1003                  * We add the TB in the virtual pc hash table
1004                  * for the fast lookup
1005                  */
1006                 h = tb_jmp_cache_hash_func(pc);
1007                 jc = cpu->tb_jmp_cache;
1008                 jc->array[h].pc = pc;
1009                 qatomic_set(&jc->array[h].tb, tb);
1010             }
1011 
1012 #ifndef CONFIG_USER_ONLY
1013             /*
1014              * We don't take care of direct jumps when address mapping
1015              * changes in system emulation.  So it's not safe to make a
1016              * direct jump to a TB spanning two pages because the mapping
1017              * for the second page can change.
1018              */
1019             if (tb_page_addr1(tb) != -1) {
1020                 last_tb = NULL;
1021             }
1022 #endif
1023             /* See if we can patch the calling TB. */
1024             if (last_tb) {
1025                 tb_add_jump(last_tb, tb_exit, tb);
1026             }
1027 
1028             cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit);
1029 
1030             /* Try to align the host and virtual clocks
1031                if the guest is in advance */
1032             align_clocks(sc, cpu);
1033         }
1034     }
1035     return ret;
1036 }
1037 
1038 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc)
1039 {
1040     /* Prepare setjmp context for exception handling. */
1041     if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) {
1042         cpu_exec_longjmp_cleanup(cpu);
1043     }
1044 
1045     return cpu_exec_loop(cpu, sc);
1046 }
1047 
1048 int cpu_exec(CPUState *cpu)
1049 {
1050     int ret;
1051     SyncClocks sc = { 0 };
1052 
1053     /* replay_interrupt may need current_cpu */
1054     current_cpu = cpu;
1055 
1056     if (cpu_handle_halt(cpu)) {
1057         return EXCP_HALTED;
1058     }
1059 
1060     RCU_READ_LOCK_GUARD();
1061     cpu_exec_enter(cpu);
1062 
1063     /*
1064      * Calculate difference between guest clock and host clock.
1065      * This delay includes the delay of the last cycle, so
1066      * what we have to do is sleep until it is 0. As for the
1067      * advance/delay we gain here, we try to fix it next time.
1068      */
1069     init_delay_params(&sc, cpu);
1070 
1071     ret = cpu_exec_setjmp(cpu, &sc);
1072 
1073     cpu_exec_exit(cpu);
1074     return ret;
1075 }
1076 
1077 bool tcg_exec_realizefn(CPUState *cpu, Error **errp)
1078 {
1079     static bool tcg_target_initialized;
1080 
1081     if (!tcg_target_initialized) {
1082         cpu->cc->tcg_ops->initialize();
1083         tcg_target_initialized = true;
1084     }
1085 
1086     cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1);
1087     tlb_init(cpu);
1088 #ifndef CONFIG_USER_ONLY
1089     tcg_iommu_init_notifier_list(cpu);
1090 #endif /* !CONFIG_USER_ONLY */
1091     /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */
1092 
1093     return true;
1094 }
1095 
1096 /* undo the initializations in reverse order */
1097 void tcg_exec_unrealizefn(CPUState *cpu)
1098 {
1099 #ifndef CONFIG_USER_ONLY
1100     tcg_iommu_free_notifier_list(cpu);
1101 #endif /* !CONFIG_USER_ONLY */
1102 
1103     tlb_destroy(cpu);
1104     g_free_rcu(cpu->tb_jmp_cache, rcu);
1105 }
1106