1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu-common.h" 22 #include "cpu.h" 23 #include "trace.h" 24 #include "disas/disas.h" 25 #include "exec/exec-all.h" 26 #include "tcg.h" 27 #include "qemu/atomic.h" 28 #include "sysemu/qtest.h" 29 #include "qemu/timer.h" 30 #include "qemu/rcu.h" 31 #include "exec/tb-hash.h" 32 #include "exec/tb-lookup.h" 33 #include "exec/log.h" 34 #include "qemu/main-loop.h" 35 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 36 #include "hw/i386/apic.h" 37 #endif 38 #include "sysemu/cpus.h" 39 #include "sysemu/replay.h" 40 41 /* -icount align implementation. */ 42 43 typedef struct SyncClocks { 44 int64_t diff_clk; 45 int64_t last_cpu_icount; 46 int64_t realtime_clock; 47 } SyncClocks; 48 49 #if !defined(CONFIG_USER_ONLY) 50 /* Allow the guest to have a max 3ms advance. 51 * The difference between the 2 clocks could therefore 52 * oscillate around 0. 53 */ 54 #define VM_CLOCK_ADVANCE 3000000 55 #define THRESHOLD_REDUCE 1.5 56 #define MAX_DELAY_PRINT_RATE 2000000000LL 57 #define MAX_NB_PRINTS 100 58 59 static void align_clocks(SyncClocks *sc, CPUState *cpu) 60 { 61 int64_t cpu_icount; 62 63 if (!icount_align_option) { 64 return; 65 } 66 67 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 68 sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount); 69 sc->last_cpu_icount = cpu_icount; 70 71 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 72 #ifndef _WIN32 73 struct timespec sleep_delay, rem_delay; 74 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 75 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 76 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 77 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 78 } else { 79 sc->diff_clk = 0; 80 } 81 #else 82 Sleep(sc->diff_clk / SCALE_MS); 83 sc->diff_clk = 0; 84 #endif 85 } 86 } 87 88 static void print_delay(const SyncClocks *sc) 89 { 90 static float threshold_delay; 91 static int64_t last_realtime_clock; 92 static int nb_prints; 93 94 if (icount_align_option && 95 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 96 nb_prints < MAX_NB_PRINTS) { 97 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 98 (-sc->diff_clk / (float)1000000000LL < 99 (threshold_delay - THRESHOLD_REDUCE))) { 100 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 101 printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 102 threshold_delay - 1, 103 threshold_delay); 104 nb_prints++; 105 last_realtime_clock = sc->realtime_clock; 106 } 107 } 108 } 109 110 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 111 { 112 if (!icount_align_option) { 113 return; 114 } 115 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 116 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 117 sc->last_cpu_icount 118 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 119 if (sc->diff_clk < max_delay) { 120 max_delay = sc->diff_clk; 121 } 122 if (sc->diff_clk > max_advance) { 123 max_advance = sc->diff_clk; 124 } 125 126 /* Print every 2s max if the guest is late. We limit the number 127 of printed messages to NB_PRINT_MAX(currently 100) */ 128 print_delay(sc); 129 } 130 #else 131 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 132 { 133 } 134 135 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 136 { 137 } 138 #endif /* CONFIG USER ONLY */ 139 140 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 141 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb) 142 { 143 CPUArchState *env = cpu->env_ptr; 144 uintptr_t ret; 145 TranslationBlock *last_tb; 146 int tb_exit; 147 uint8_t *tb_ptr = itb->tc.ptr; 148 149 qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc, 150 "Trace %d: %p [" 151 TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n", 152 cpu->cpu_index, itb->tc.ptr, 153 itb->cs_base, itb->pc, itb->flags, 154 lookup_symbol(itb->pc)); 155 156 #if defined(DEBUG_DISAS) 157 if (qemu_loglevel_mask(CPU_LOG_TB_CPU) 158 && qemu_log_in_addr_range(itb->pc)) { 159 qemu_log_lock(); 160 int flags = 0; 161 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 162 flags |= CPU_DUMP_FPU; 163 } 164 #if defined(TARGET_I386) 165 flags |= CPU_DUMP_CCOP; 166 #endif 167 log_cpu_state(cpu, flags); 168 qemu_log_unlock(); 169 } 170 #endif /* DEBUG_DISAS */ 171 172 cpu->can_do_io = !use_icount; 173 ret = tcg_qemu_tb_exec(env, tb_ptr); 174 cpu->can_do_io = 1; 175 last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 176 tb_exit = ret & TB_EXIT_MASK; 177 trace_exec_tb_exit(last_tb, tb_exit); 178 179 if (tb_exit > TB_EXIT_IDX1) { 180 /* We didn't start executing this TB (eg because the instruction 181 * counter hit zero); we must restore the guest PC to the address 182 * of the start of the TB. 183 */ 184 CPUClass *cc = CPU_GET_CLASS(cpu); 185 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, 186 "Stopped execution of TB chain before %p [" 187 TARGET_FMT_lx "] %s\n", 188 last_tb->tc.ptr, last_tb->pc, 189 lookup_symbol(last_tb->pc)); 190 if (cc->synchronize_from_tb) { 191 cc->synchronize_from_tb(cpu, last_tb); 192 } else { 193 assert(cc->set_pc); 194 cc->set_pc(cpu, last_tb->pc); 195 } 196 } 197 return ret; 198 } 199 200 #ifndef CONFIG_USER_ONLY 201 /* Execute the code without caching the generated code. An interpreter 202 could be used if available. */ 203 static void cpu_exec_nocache(CPUState *cpu, int max_cycles, 204 TranslationBlock *orig_tb, bool ignore_icount) 205 { 206 TranslationBlock *tb; 207 uint32_t cflags = curr_cflags() | CF_NOCACHE; 208 209 if (ignore_icount) { 210 cflags &= ~CF_USE_ICOUNT; 211 } 212 213 /* Should never happen. 214 We only end up here when an existing TB is too long. */ 215 cflags |= MIN(max_cycles, CF_COUNT_MASK); 216 217 mmap_lock(); 218 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, 219 orig_tb->flags, cflags); 220 tb->orig_tb = orig_tb; 221 mmap_unlock(); 222 223 /* execute the generated code */ 224 trace_exec_tb_nocache(tb, tb->pc); 225 cpu_tb_exec(cpu, tb); 226 227 mmap_lock(); 228 tb_phys_invalidate(tb, -1); 229 mmap_unlock(); 230 tcg_tb_remove(tb); 231 } 232 #endif 233 234 void cpu_exec_step_atomic(CPUState *cpu) 235 { 236 CPUClass *cc = CPU_GET_CLASS(cpu); 237 TranslationBlock *tb; 238 target_ulong cs_base, pc; 239 uint32_t flags; 240 uint32_t cflags = 1; 241 uint32_t cf_mask = cflags & CF_HASH_MASK; 242 /* volatile because we modify it between setjmp and longjmp */ 243 volatile bool in_exclusive_region = false; 244 245 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 246 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 247 if (tb == NULL) { 248 mmap_lock(); 249 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 250 mmap_unlock(); 251 } 252 253 start_exclusive(); 254 255 /* Since we got here, we know that parallel_cpus must be true. */ 256 parallel_cpus = false; 257 in_exclusive_region = true; 258 cc->cpu_exec_enter(cpu); 259 /* execute the generated code */ 260 trace_exec_tb(tb, pc); 261 cpu_tb_exec(cpu, tb); 262 cc->cpu_exec_exit(cpu); 263 } else { 264 /* 265 * The mmap_lock is dropped by tb_gen_code if it runs out of 266 * memory. 267 */ 268 #ifndef CONFIG_SOFTMMU 269 tcg_debug_assert(!have_mmap_lock()); 270 #endif 271 if (qemu_mutex_iothread_locked()) { 272 qemu_mutex_unlock_iothread(); 273 } 274 assert_no_pages_locked(); 275 } 276 277 if (in_exclusive_region) { 278 /* We might longjump out of either the codegen or the 279 * execution, so must make sure we only end the exclusive 280 * region if we started it. 281 */ 282 parallel_cpus = true; 283 end_exclusive(); 284 } 285 } 286 287 struct tb_desc { 288 target_ulong pc; 289 target_ulong cs_base; 290 CPUArchState *env; 291 tb_page_addr_t phys_page1; 292 uint32_t flags; 293 uint32_t cf_mask; 294 uint32_t trace_vcpu_dstate; 295 }; 296 297 static bool tb_lookup_cmp(const void *p, const void *d) 298 { 299 const TranslationBlock *tb = p; 300 const struct tb_desc *desc = d; 301 302 if (tb->pc == desc->pc && 303 tb->page_addr[0] == desc->phys_page1 && 304 tb->cs_base == desc->cs_base && 305 tb->flags == desc->flags && 306 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 307 (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) { 308 /* check next page if needed */ 309 if (tb->page_addr[1] == -1) { 310 return true; 311 } else { 312 tb_page_addr_t phys_page2; 313 target_ulong virt_page2; 314 315 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 316 phys_page2 = get_page_addr_code(desc->env, virt_page2); 317 if (tb->page_addr[1] == phys_page2) { 318 return true; 319 } 320 } 321 } 322 return false; 323 } 324 325 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 326 target_ulong cs_base, uint32_t flags, 327 uint32_t cf_mask) 328 { 329 tb_page_addr_t phys_pc; 330 struct tb_desc desc; 331 uint32_t h; 332 333 desc.env = (CPUArchState *)cpu->env_ptr; 334 desc.cs_base = cs_base; 335 desc.flags = flags; 336 desc.cf_mask = cf_mask; 337 desc.trace_vcpu_dstate = *cpu->trace_dstate; 338 desc.pc = pc; 339 phys_pc = get_page_addr_code(desc.env, pc); 340 if (phys_pc == -1) { 341 return NULL; 342 } 343 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; 344 h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate); 345 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 346 } 347 348 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 349 { 350 if (TCG_TARGET_HAS_direct_jump) { 351 uintptr_t offset = tb->jmp_target_arg[n]; 352 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; 353 tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr); 354 } else { 355 tb->jmp_target_arg[n] = addr; 356 } 357 } 358 359 static inline void tb_add_jump(TranslationBlock *tb, int n, 360 TranslationBlock *tb_next) 361 { 362 uintptr_t old; 363 364 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 365 qemu_spin_lock(&tb_next->jmp_lock); 366 367 /* make sure the destination TB is valid */ 368 if (tb_next->cflags & CF_INVALID) { 369 goto out_unlock_next; 370 } 371 /* Atomically claim the jump destination slot only if it was NULL */ 372 old = atomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, (uintptr_t)tb_next); 373 if (old) { 374 goto out_unlock_next; 375 } 376 377 /* patch the native jump address */ 378 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 379 380 /* add in TB jmp list */ 381 tb->jmp_list_next[n] = tb_next->jmp_list_head; 382 tb_next->jmp_list_head = (uintptr_t)tb | n; 383 384 qemu_spin_unlock(&tb_next->jmp_lock); 385 386 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 387 "Linking TBs %p [" TARGET_FMT_lx 388 "] index %d -> %p [" TARGET_FMT_lx "]\n", 389 tb->tc.ptr, tb->pc, n, 390 tb_next->tc.ptr, tb_next->pc); 391 return; 392 393 out_unlock_next: 394 qemu_spin_unlock(&tb_next->jmp_lock); 395 return; 396 } 397 398 static inline TranslationBlock *tb_find(CPUState *cpu, 399 TranslationBlock *last_tb, 400 int tb_exit, uint32_t cf_mask) 401 { 402 TranslationBlock *tb; 403 target_ulong cs_base, pc; 404 uint32_t flags; 405 406 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 407 if (tb == NULL) { 408 mmap_lock(); 409 tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask); 410 mmap_unlock(); 411 /* We add the TB in the virtual pc hash table for the fast lookup */ 412 atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); 413 } 414 #ifndef CONFIG_USER_ONLY 415 /* We don't take care of direct jumps when address mapping changes in 416 * system emulation. So it's not safe to make a direct jump to a TB 417 * spanning two pages because the mapping for the second page can change. 418 */ 419 if (tb->page_addr[1] != -1) { 420 last_tb = NULL; 421 } 422 #endif 423 /* See if we can patch the calling TB. */ 424 if (last_tb) { 425 tb_add_jump(last_tb, tb_exit, tb); 426 } 427 return tb; 428 } 429 430 static inline bool cpu_handle_halt(CPUState *cpu) 431 { 432 if (cpu->halted) { 433 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 434 if ((cpu->interrupt_request & CPU_INTERRUPT_POLL) 435 && replay_interrupt()) { 436 X86CPU *x86_cpu = X86_CPU(cpu); 437 qemu_mutex_lock_iothread(); 438 apic_poll_irq(x86_cpu->apic_state); 439 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 440 qemu_mutex_unlock_iothread(); 441 } 442 #endif 443 if (!cpu_has_work(cpu)) { 444 return true; 445 } 446 447 cpu->halted = 0; 448 } 449 450 return false; 451 } 452 453 static inline void cpu_handle_debug_exception(CPUState *cpu) 454 { 455 CPUClass *cc = CPU_GET_CLASS(cpu); 456 CPUWatchpoint *wp; 457 458 if (!cpu->watchpoint_hit) { 459 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 460 wp->flags &= ~BP_WATCHPOINT_HIT; 461 } 462 } 463 464 cc->debug_excp_handler(cpu); 465 } 466 467 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 468 { 469 if (cpu->exception_index < 0) { 470 #ifndef CONFIG_USER_ONLY 471 if (replay_has_exception() 472 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) { 473 /* try to cause an exception pending in the log */ 474 cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true); 475 } 476 #endif 477 if (cpu->exception_index < 0) { 478 return false; 479 } 480 } 481 482 if (cpu->exception_index >= EXCP_INTERRUPT) { 483 /* exit request from the cpu execution loop */ 484 *ret = cpu->exception_index; 485 if (*ret == EXCP_DEBUG) { 486 cpu_handle_debug_exception(cpu); 487 } 488 cpu->exception_index = -1; 489 return true; 490 } else { 491 #if defined(CONFIG_USER_ONLY) 492 /* if user mode only, we simulate a fake exception 493 which will be handled outside the cpu execution 494 loop */ 495 #if defined(TARGET_I386) 496 CPUClass *cc = CPU_GET_CLASS(cpu); 497 cc->do_interrupt(cpu); 498 #endif 499 *ret = cpu->exception_index; 500 cpu->exception_index = -1; 501 return true; 502 #else 503 if (replay_exception()) { 504 CPUClass *cc = CPU_GET_CLASS(cpu); 505 qemu_mutex_lock_iothread(); 506 cc->do_interrupt(cpu); 507 qemu_mutex_unlock_iothread(); 508 cpu->exception_index = -1; 509 } else if (!replay_has_interrupt()) { 510 /* give a chance to iothread in replay mode */ 511 *ret = EXCP_INTERRUPT; 512 return true; 513 } 514 #endif 515 } 516 517 return false; 518 } 519 520 static inline bool cpu_handle_interrupt(CPUState *cpu, 521 TranslationBlock **last_tb) 522 { 523 CPUClass *cc = CPU_GET_CLASS(cpu); 524 525 /* Clear the interrupt flag now since we're processing 526 * cpu->interrupt_request and cpu->exit_request. 527 * Ensure zeroing happens before reading cpu->exit_request or 528 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 529 */ 530 atomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0); 531 532 if (unlikely(atomic_read(&cpu->interrupt_request))) { 533 int interrupt_request; 534 qemu_mutex_lock_iothread(); 535 interrupt_request = cpu->interrupt_request; 536 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 537 /* Mask out external interrupts for this step. */ 538 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 539 } 540 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 541 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 542 cpu->exception_index = EXCP_DEBUG; 543 qemu_mutex_unlock_iothread(); 544 return true; 545 } 546 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 547 /* Do nothing */ 548 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 549 replay_interrupt(); 550 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 551 cpu->halted = 1; 552 cpu->exception_index = EXCP_HLT; 553 qemu_mutex_unlock_iothread(); 554 return true; 555 } 556 #if defined(TARGET_I386) 557 else if (interrupt_request & CPU_INTERRUPT_INIT) { 558 X86CPU *x86_cpu = X86_CPU(cpu); 559 CPUArchState *env = &x86_cpu->env; 560 replay_interrupt(); 561 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 562 do_cpu_init(x86_cpu); 563 cpu->exception_index = EXCP_HALTED; 564 qemu_mutex_unlock_iothread(); 565 return true; 566 } 567 #else 568 else if (interrupt_request & CPU_INTERRUPT_RESET) { 569 replay_interrupt(); 570 cpu_reset(cpu); 571 qemu_mutex_unlock_iothread(); 572 return true; 573 } 574 #endif 575 /* The target hook has 3 exit conditions: 576 False when the interrupt isn't processed, 577 True when it is, and we should restart on a new TB, 578 and via longjmp via cpu_loop_exit. */ 579 else { 580 if (cc->cpu_exec_interrupt(cpu, interrupt_request)) { 581 replay_interrupt(); 582 cpu->exception_index = -1; 583 *last_tb = NULL; 584 } 585 /* The target hook may have updated the 'cpu->interrupt_request'; 586 * reload the 'interrupt_request' value */ 587 interrupt_request = cpu->interrupt_request; 588 } 589 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 590 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 591 /* ensure that no TB jump will be modified as 592 the program flow was changed */ 593 *last_tb = NULL; 594 } 595 596 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 597 qemu_mutex_unlock_iothread(); 598 } 599 600 /* Finally, check if we need to exit to the main loop. */ 601 if (unlikely(atomic_read(&cpu->exit_request)) 602 || (use_icount 603 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) { 604 atomic_set(&cpu->exit_request, 0); 605 if (cpu->exception_index == -1) { 606 cpu->exception_index = EXCP_INTERRUPT; 607 } 608 return true; 609 } 610 611 return false; 612 } 613 614 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 615 TranslationBlock **last_tb, int *tb_exit) 616 { 617 uintptr_t ret; 618 int32_t insns_left; 619 620 trace_exec_tb(tb, tb->pc); 621 ret = cpu_tb_exec(cpu, tb); 622 tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 623 *tb_exit = ret & TB_EXIT_MASK; 624 if (*tb_exit != TB_EXIT_REQUESTED) { 625 *last_tb = tb; 626 return; 627 } 628 629 *last_tb = NULL; 630 insns_left = atomic_read(&cpu_neg(cpu)->icount_decr.u32); 631 if (insns_left < 0) { 632 /* Something asked us to stop executing chained TBs; just 633 * continue round the main loop. Whatever requested the exit 634 * will also have set something else (eg exit_request or 635 * interrupt_request) which will be handled by 636 * cpu_handle_interrupt. cpu_handle_interrupt will also 637 * clear cpu->icount_decr.u16.high. 638 */ 639 return; 640 } 641 642 /* Instruction counter expired. */ 643 assert(use_icount); 644 #ifndef CONFIG_USER_ONLY 645 /* Ensure global icount has gone forward */ 646 cpu_update_icount(cpu); 647 /* Refill decrementer and continue execution. */ 648 insns_left = MIN(0xffff, cpu->icount_budget); 649 cpu_neg(cpu)->icount_decr.u16.low = insns_left; 650 cpu->icount_extra = cpu->icount_budget - insns_left; 651 if (!cpu->icount_extra) { 652 /* Execute any remaining instructions, then let the main loop 653 * handle the next event. 654 */ 655 if (insns_left > 0) { 656 cpu_exec_nocache(cpu, insns_left, tb, false); 657 } 658 } 659 #endif 660 } 661 662 /* main execution loop */ 663 664 int cpu_exec(CPUState *cpu) 665 { 666 CPUClass *cc = CPU_GET_CLASS(cpu); 667 int ret; 668 SyncClocks sc = { 0 }; 669 670 /* replay_interrupt may need current_cpu */ 671 current_cpu = cpu; 672 673 if (cpu_handle_halt(cpu)) { 674 return EXCP_HALTED; 675 } 676 677 rcu_read_lock(); 678 679 cc->cpu_exec_enter(cpu); 680 681 /* Calculate difference between guest clock and host clock. 682 * This delay includes the delay of the last cycle, so 683 * what we have to do is sleep until it is 0. As for the 684 * advance/delay we gain here, we try to fix it next time. 685 */ 686 init_delay_params(&sc, cpu); 687 688 /* prepare setjmp context for exception handling */ 689 if (sigsetjmp(cpu->jmp_env, 0) != 0) { 690 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6) 691 /* Some compilers wrongly smash all local variables after 692 * siglongjmp. There were bug reports for gcc 4.5.0 and clang. 693 * Reload essential local variables here for those compilers. 694 * Newer versions of gcc would complain about this code (-Wclobbered). */ 695 cpu = current_cpu; 696 cc = CPU_GET_CLASS(cpu); 697 #else /* buggy compiler */ 698 /* Assert that the compiler does not smash local variables. */ 699 g_assert(cpu == current_cpu); 700 g_assert(cc == CPU_GET_CLASS(cpu)); 701 #endif /* buggy compiler */ 702 #ifndef CONFIG_SOFTMMU 703 tcg_debug_assert(!have_mmap_lock()); 704 #endif 705 if (qemu_mutex_iothread_locked()) { 706 qemu_mutex_unlock_iothread(); 707 } 708 assert_no_pages_locked(); 709 } 710 711 /* if an exception is pending, we execute it here */ 712 while (!cpu_handle_exception(cpu, &ret)) { 713 TranslationBlock *last_tb = NULL; 714 int tb_exit = 0; 715 716 while (!cpu_handle_interrupt(cpu, &last_tb)) { 717 uint32_t cflags = cpu->cflags_next_tb; 718 TranslationBlock *tb; 719 720 /* When requested, use an exact setting for cflags for the next 721 execution. This is used for icount, precise smc, and stop- 722 after-access watchpoints. Since this request should never 723 have CF_INVALID set, -1 is a convenient invalid value that 724 does not require tcg headers for cpu_common_reset. */ 725 if (cflags == -1) { 726 cflags = curr_cflags(); 727 } else { 728 cpu->cflags_next_tb = -1; 729 } 730 731 tb = tb_find(cpu, last_tb, tb_exit, cflags); 732 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); 733 /* Try to align the host and virtual clocks 734 if the guest is in advance */ 735 align_clocks(&sc, cpu); 736 } 737 } 738 739 cc->cpu_exec_exit(cpu); 740 rcu_read_unlock(); 741 742 return ret; 743 } 744