xref: /openbmc/qemu/accel/tcg/cpu-exec.c (revision 4b9fa0b4)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "cpu.h"
23 #include "trace.h"
24 #include "disas/disas.h"
25 #include "exec/exec-all.h"
26 #include "tcg.h"
27 #include "qemu/atomic.h"
28 #include "sysemu/qtest.h"
29 #include "qemu/timer.h"
30 #include "qemu/rcu.h"
31 #include "exec/tb-hash.h"
32 #include "exec/tb-lookup.h"
33 #include "exec/log.h"
34 #include "qemu/main-loop.h"
35 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
36 #include "hw/i386/apic.h"
37 #endif
38 #include "sysemu/cpus.h"
39 #include "sysemu/replay.h"
40 
41 /* -icount align implementation. */
42 
43 typedef struct SyncClocks {
44     int64_t diff_clk;
45     int64_t last_cpu_icount;
46     int64_t realtime_clock;
47 } SyncClocks;
48 
49 #if !defined(CONFIG_USER_ONLY)
50 /* Allow the guest to have a max 3ms advance.
51  * The difference between the 2 clocks could therefore
52  * oscillate around 0.
53  */
54 #define VM_CLOCK_ADVANCE 3000000
55 #define THRESHOLD_REDUCE 1.5
56 #define MAX_DELAY_PRINT_RATE 2000000000LL
57 #define MAX_NB_PRINTS 100
58 
59 static void align_clocks(SyncClocks *sc, CPUState *cpu)
60 {
61     int64_t cpu_icount;
62 
63     if (!icount_align_option) {
64         return;
65     }
66 
67     cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
68     sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
69     sc->last_cpu_icount = cpu_icount;
70 
71     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
72 #ifndef _WIN32
73         struct timespec sleep_delay, rem_delay;
74         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
75         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
76         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
77             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
78         } else {
79             sc->diff_clk = 0;
80         }
81 #else
82         Sleep(sc->diff_clk / SCALE_MS);
83         sc->diff_clk = 0;
84 #endif
85     }
86 }
87 
88 static void print_delay(const SyncClocks *sc)
89 {
90     static float threshold_delay;
91     static int64_t last_realtime_clock;
92     static int nb_prints;
93 
94     if (icount_align_option &&
95         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
96         nb_prints < MAX_NB_PRINTS) {
97         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
98             (-sc->diff_clk / (float)1000000000LL <
99              (threshold_delay - THRESHOLD_REDUCE))) {
100             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
101             printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
102                    threshold_delay - 1,
103                    threshold_delay);
104             nb_prints++;
105             last_realtime_clock = sc->realtime_clock;
106         }
107     }
108 }
109 
110 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
111 {
112     if (!icount_align_option) {
113         return;
114     }
115     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
116     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
117     sc->last_cpu_icount
118         = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
119     if (sc->diff_clk < max_delay) {
120         max_delay = sc->diff_clk;
121     }
122     if (sc->diff_clk > max_advance) {
123         max_advance = sc->diff_clk;
124     }
125 
126     /* Print every 2s max if the guest is late. We limit the number
127        of printed messages to NB_PRINT_MAX(currently 100) */
128     print_delay(sc);
129 }
130 #else
131 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
132 {
133 }
134 
135 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
136 {
137 }
138 #endif /* CONFIG USER ONLY */
139 
140 /* Execute a TB, and fix up the CPU state afterwards if necessary */
141 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
142 {
143     CPUArchState *env = cpu->env_ptr;
144     uintptr_t ret;
145     TranslationBlock *last_tb;
146     int tb_exit;
147     uint8_t *tb_ptr = itb->tc.ptr;
148 
149     qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
150                            "Trace %d: %p ["
151                            TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n",
152                            cpu->cpu_index, itb->tc.ptr,
153                            itb->cs_base, itb->pc, itb->flags,
154                            lookup_symbol(itb->pc));
155 
156 #if defined(DEBUG_DISAS)
157     if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
158         && qemu_log_in_addr_range(itb->pc)) {
159         qemu_log_lock();
160         int flags = 0;
161         if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
162             flags |= CPU_DUMP_FPU;
163         }
164 #if defined(TARGET_I386)
165         flags |= CPU_DUMP_CCOP;
166 #endif
167         log_cpu_state(cpu, flags);
168         qemu_log_unlock();
169     }
170 #endif /* DEBUG_DISAS */
171 
172     ret = tcg_qemu_tb_exec(env, tb_ptr);
173     cpu->can_do_io = 1;
174     last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
175     tb_exit = ret & TB_EXIT_MASK;
176     trace_exec_tb_exit(last_tb, tb_exit);
177 
178     if (tb_exit > TB_EXIT_IDX1) {
179         /* We didn't start executing this TB (eg because the instruction
180          * counter hit zero); we must restore the guest PC to the address
181          * of the start of the TB.
182          */
183         CPUClass *cc = CPU_GET_CLASS(cpu);
184         qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
185                                "Stopped execution of TB chain before %p ["
186                                TARGET_FMT_lx "] %s\n",
187                                last_tb->tc.ptr, last_tb->pc,
188                                lookup_symbol(last_tb->pc));
189         if (cc->synchronize_from_tb) {
190             cc->synchronize_from_tb(cpu, last_tb);
191         } else {
192             assert(cc->set_pc);
193             cc->set_pc(cpu, last_tb->pc);
194         }
195     }
196     return ret;
197 }
198 
199 #ifndef CONFIG_USER_ONLY
200 /* Execute the code without caching the generated code. An interpreter
201    could be used if available. */
202 static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
203                              TranslationBlock *orig_tb, bool ignore_icount)
204 {
205     TranslationBlock *tb;
206     uint32_t cflags = curr_cflags() | CF_NOCACHE;
207 
208     if (ignore_icount) {
209         cflags &= ~CF_USE_ICOUNT;
210     }
211 
212     /* Should never happen.
213        We only end up here when an existing TB is too long.  */
214     cflags |= MIN(max_cycles, CF_COUNT_MASK);
215 
216     mmap_lock();
217     tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base,
218                      orig_tb->flags, cflags);
219     tb->orig_tb = orig_tb;
220     mmap_unlock();
221 
222     /* execute the generated code */
223     trace_exec_tb_nocache(tb, tb->pc);
224     cpu_tb_exec(cpu, tb);
225 
226     mmap_lock();
227     tb_phys_invalidate(tb, -1);
228     mmap_unlock();
229     tcg_tb_remove(tb);
230 }
231 #endif
232 
233 void cpu_exec_step_atomic(CPUState *cpu)
234 {
235     CPUClass *cc = CPU_GET_CLASS(cpu);
236     TranslationBlock *tb;
237     target_ulong cs_base, pc;
238     uint32_t flags;
239     uint32_t cflags = 1;
240     uint32_t cf_mask = cflags & CF_HASH_MASK;
241 
242     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
243         tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
244         if (tb == NULL) {
245             mmap_lock();
246             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
247             mmap_unlock();
248         }
249 
250         start_exclusive();
251 
252         /* Since we got here, we know that parallel_cpus must be true.  */
253         parallel_cpus = false;
254         cc->cpu_exec_enter(cpu);
255         /* execute the generated code */
256         trace_exec_tb(tb, pc);
257         cpu_tb_exec(cpu, tb);
258         cc->cpu_exec_exit(cpu);
259     } else {
260         /*
261          * The mmap_lock is dropped by tb_gen_code if it runs out of
262          * memory.
263          */
264 #ifndef CONFIG_SOFTMMU
265         tcg_debug_assert(!have_mmap_lock());
266 #endif
267         if (qemu_mutex_iothread_locked()) {
268             qemu_mutex_unlock_iothread();
269         }
270         assert_no_pages_locked();
271         qemu_plugin_disable_mem_helpers(cpu);
272     }
273 
274     if (cpu_in_exclusive_context(cpu)) {
275         /* We might longjump out of either the codegen or the
276          * execution, so must make sure we only end the exclusive
277          * region if we started it.
278          */
279         parallel_cpus = true;
280         end_exclusive();
281     }
282 }
283 
284 struct tb_desc {
285     target_ulong pc;
286     target_ulong cs_base;
287     CPUArchState *env;
288     tb_page_addr_t phys_page1;
289     uint32_t flags;
290     uint32_t cf_mask;
291     uint32_t trace_vcpu_dstate;
292 };
293 
294 static bool tb_lookup_cmp(const void *p, const void *d)
295 {
296     const TranslationBlock *tb = p;
297     const struct tb_desc *desc = d;
298 
299     if (tb->pc == desc->pc &&
300         tb->page_addr[0] == desc->phys_page1 &&
301         tb->cs_base == desc->cs_base &&
302         tb->flags == desc->flags &&
303         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
304         (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) {
305         /* check next page if needed */
306         if (tb->page_addr[1] == -1) {
307             return true;
308         } else {
309             tb_page_addr_t phys_page2;
310             target_ulong virt_page2;
311 
312             virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
313             phys_page2 = get_page_addr_code(desc->env, virt_page2);
314             if (tb->page_addr[1] == phys_page2) {
315                 return true;
316             }
317         }
318     }
319     return false;
320 }
321 
322 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
323                                    target_ulong cs_base, uint32_t flags,
324                                    uint32_t cf_mask)
325 {
326     tb_page_addr_t phys_pc;
327     struct tb_desc desc;
328     uint32_t h;
329 
330     desc.env = (CPUArchState *)cpu->env_ptr;
331     desc.cs_base = cs_base;
332     desc.flags = flags;
333     desc.cf_mask = cf_mask;
334     desc.trace_vcpu_dstate = *cpu->trace_dstate;
335     desc.pc = pc;
336     phys_pc = get_page_addr_code(desc.env, pc);
337     if (phys_pc == -1) {
338         return NULL;
339     }
340     desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
341     h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate);
342     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
343 }
344 
345 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
346 {
347     if (TCG_TARGET_HAS_direct_jump) {
348         uintptr_t offset = tb->jmp_target_arg[n];
349         uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
350         tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr);
351     } else {
352         tb->jmp_target_arg[n] = addr;
353     }
354 }
355 
356 static inline void tb_add_jump(TranslationBlock *tb, int n,
357                                TranslationBlock *tb_next)
358 {
359     uintptr_t old;
360 
361     assert(n < ARRAY_SIZE(tb->jmp_list_next));
362     qemu_spin_lock(&tb_next->jmp_lock);
363 
364     /* make sure the destination TB is valid */
365     if (tb_next->cflags & CF_INVALID) {
366         goto out_unlock_next;
367     }
368     /* Atomically claim the jump destination slot only if it was NULL */
369     old = atomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, (uintptr_t)tb_next);
370     if (old) {
371         goto out_unlock_next;
372     }
373 
374     /* patch the native jump address */
375     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
376 
377     /* add in TB jmp list */
378     tb->jmp_list_next[n] = tb_next->jmp_list_head;
379     tb_next->jmp_list_head = (uintptr_t)tb | n;
380 
381     qemu_spin_unlock(&tb_next->jmp_lock);
382 
383     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
384                            "Linking TBs %p [" TARGET_FMT_lx
385                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
386                            tb->tc.ptr, tb->pc, n,
387                            tb_next->tc.ptr, tb_next->pc);
388     return;
389 
390  out_unlock_next:
391     qemu_spin_unlock(&tb_next->jmp_lock);
392     return;
393 }
394 
395 static inline TranslationBlock *tb_find(CPUState *cpu,
396                                         TranslationBlock *last_tb,
397                                         int tb_exit, uint32_t cf_mask)
398 {
399     TranslationBlock *tb;
400     target_ulong cs_base, pc;
401     uint32_t flags;
402 
403     tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
404     if (tb == NULL) {
405         mmap_lock();
406         tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask);
407         mmap_unlock();
408         /* We add the TB in the virtual pc hash table for the fast lookup */
409         atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
410     }
411 #ifndef CONFIG_USER_ONLY
412     /* We don't take care of direct jumps when address mapping changes in
413      * system emulation. So it's not safe to make a direct jump to a TB
414      * spanning two pages because the mapping for the second page can change.
415      */
416     if (tb->page_addr[1] != -1) {
417         last_tb = NULL;
418     }
419 #endif
420     /* See if we can patch the calling TB. */
421     if (last_tb) {
422         tb_add_jump(last_tb, tb_exit, tb);
423     }
424     return tb;
425 }
426 
427 static inline bool cpu_handle_halt(CPUState *cpu)
428 {
429     if (cpu->halted) {
430 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
431         if ((cpu->interrupt_request & CPU_INTERRUPT_POLL)
432             && replay_interrupt()) {
433             X86CPU *x86_cpu = X86_CPU(cpu);
434             qemu_mutex_lock_iothread();
435             apic_poll_irq(x86_cpu->apic_state);
436             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
437             qemu_mutex_unlock_iothread();
438         }
439 #endif
440         if (!cpu_has_work(cpu)) {
441             return true;
442         }
443 
444         cpu->halted = 0;
445     }
446 
447     return false;
448 }
449 
450 static inline void cpu_handle_debug_exception(CPUState *cpu)
451 {
452     CPUClass *cc = CPU_GET_CLASS(cpu);
453     CPUWatchpoint *wp;
454 
455     if (!cpu->watchpoint_hit) {
456         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
457             wp->flags &= ~BP_WATCHPOINT_HIT;
458         }
459     }
460 
461     cc->debug_excp_handler(cpu);
462 }
463 
464 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
465 {
466     if (cpu->exception_index < 0) {
467 #ifndef CONFIG_USER_ONLY
468         if (replay_has_exception()
469             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
470             /* try to cause an exception pending in the log */
471             cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true);
472         }
473 #endif
474         if (cpu->exception_index < 0) {
475             return false;
476         }
477     }
478 
479     if (cpu->exception_index >= EXCP_INTERRUPT) {
480         /* exit request from the cpu execution loop */
481         *ret = cpu->exception_index;
482         if (*ret == EXCP_DEBUG) {
483             cpu_handle_debug_exception(cpu);
484         }
485         cpu->exception_index = -1;
486         return true;
487     } else {
488 #if defined(CONFIG_USER_ONLY)
489         /* if user mode only, we simulate a fake exception
490            which will be handled outside the cpu execution
491            loop */
492 #if defined(TARGET_I386)
493         CPUClass *cc = CPU_GET_CLASS(cpu);
494         cc->do_interrupt(cpu);
495 #endif
496         *ret = cpu->exception_index;
497         cpu->exception_index = -1;
498         return true;
499 #else
500         if (replay_exception()) {
501             CPUClass *cc = CPU_GET_CLASS(cpu);
502             qemu_mutex_lock_iothread();
503             cc->do_interrupt(cpu);
504             qemu_mutex_unlock_iothread();
505             cpu->exception_index = -1;
506         } else if (!replay_has_interrupt()) {
507             /* give a chance to iothread in replay mode */
508             *ret = EXCP_INTERRUPT;
509             return true;
510         }
511 #endif
512     }
513 
514     return false;
515 }
516 
517 static inline bool cpu_handle_interrupt(CPUState *cpu,
518                                         TranslationBlock **last_tb)
519 {
520     CPUClass *cc = CPU_GET_CLASS(cpu);
521 
522     /* Clear the interrupt flag now since we're processing
523      * cpu->interrupt_request and cpu->exit_request.
524      * Ensure zeroing happens before reading cpu->exit_request or
525      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
526      */
527     atomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
528 
529     if (unlikely(atomic_read(&cpu->interrupt_request))) {
530         int interrupt_request;
531         qemu_mutex_lock_iothread();
532         interrupt_request = cpu->interrupt_request;
533         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
534             /* Mask out external interrupts for this step. */
535             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
536         }
537         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
538             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
539             cpu->exception_index = EXCP_DEBUG;
540             qemu_mutex_unlock_iothread();
541             return true;
542         }
543         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
544             /* Do nothing */
545         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
546             replay_interrupt();
547             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
548             cpu->halted = 1;
549             cpu->exception_index = EXCP_HLT;
550             qemu_mutex_unlock_iothread();
551             return true;
552         }
553 #if defined(TARGET_I386)
554         else if (interrupt_request & CPU_INTERRUPT_INIT) {
555             X86CPU *x86_cpu = X86_CPU(cpu);
556             CPUArchState *env = &x86_cpu->env;
557             replay_interrupt();
558             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
559             do_cpu_init(x86_cpu);
560             cpu->exception_index = EXCP_HALTED;
561             qemu_mutex_unlock_iothread();
562             return true;
563         }
564 #else
565         else if (interrupt_request & CPU_INTERRUPT_RESET) {
566             replay_interrupt();
567             cpu_reset(cpu);
568             qemu_mutex_unlock_iothread();
569             return true;
570         }
571 #endif
572         /* The target hook has 3 exit conditions:
573            False when the interrupt isn't processed,
574            True when it is, and we should restart on a new TB,
575            and via longjmp via cpu_loop_exit.  */
576         else {
577             if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
578                 replay_interrupt();
579                 cpu->exception_index = -1;
580                 *last_tb = NULL;
581             }
582             /* The target hook may have updated the 'cpu->interrupt_request';
583              * reload the 'interrupt_request' value */
584             interrupt_request = cpu->interrupt_request;
585         }
586         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
587             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
588             /* ensure that no TB jump will be modified as
589                the program flow was changed */
590             *last_tb = NULL;
591         }
592 
593         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
594         qemu_mutex_unlock_iothread();
595     }
596 
597     /* Finally, check if we need to exit to the main loop.  */
598     if (unlikely(atomic_read(&cpu->exit_request))
599         || (use_icount
600             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
601         atomic_set(&cpu->exit_request, 0);
602         if (cpu->exception_index == -1) {
603             cpu->exception_index = EXCP_INTERRUPT;
604         }
605         return true;
606     }
607 
608     return false;
609 }
610 
611 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
612                                     TranslationBlock **last_tb, int *tb_exit)
613 {
614     uintptr_t ret;
615     int32_t insns_left;
616 
617     trace_exec_tb(tb, tb->pc);
618     ret = cpu_tb_exec(cpu, tb);
619     tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
620     *tb_exit = ret & TB_EXIT_MASK;
621     if (*tb_exit != TB_EXIT_REQUESTED) {
622         *last_tb = tb;
623         return;
624     }
625 
626     *last_tb = NULL;
627     insns_left = atomic_read(&cpu_neg(cpu)->icount_decr.u32);
628     if (insns_left < 0) {
629         /* Something asked us to stop executing chained TBs; just
630          * continue round the main loop. Whatever requested the exit
631          * will also have set something else (eg exit_request or
632          * interrupt_request) which will be handled by
633          * cpu_handle_interrupt.  cpu_handle_interrupt will also
634          * clear cpu->icount_decr.u16.high.
635          */
636         return;
637     }
638 
639     /* Instruction counter expired.  */
640     assert(use_icount);
641 #ifndef CONFIG_USER_ONLY
642     /* Ensure global icount has gone forward */
643     cpu_update_icount(cpu);
644     /* Refill decrementer and continue execution.  */
645     insns_left = MIN(0xffff, cpu->icount_budget);
646     cpu_neg(cpu)->icount_decr.u16.low = insns_left;
647     cpu->icount_extra = cpu->icount_budget - insns_left;
648     if (!cpu->icount_extra) {
649         /* Execute any remaining instructions, then let the main loop
650          * handle the next event.
651          */
652         if (insns_left > 0) {
653             cpu_exec_nocache(cpu, insns_left, tb, false);
654         }
655     }
656 #endif
657 }
658 
659 /* main execution loop */
660 
661 int cpu_exec(CPUState *cpu)
662 {
663     CPUClass *cc = CPU_GET_CLASS(cpu);
664     int ret;
665     SyncClocks sc = { 0 };
666 
667     /* replay_interrupt may need current_cpu */
668     current_cpu = cpu;
669 
670     if (cpu_handle_halt(cpu)) {
671         return EXCP_HALTED;
672     }
673 
674     rcu_read_lock();
675 
676     cc->cpu_exec_enter(cpu);
677 
678     /* Calculate difference between guest clock and host clock.
679      * This delay includes the delay of the last cycle, so
680      * what we have to do is sleep until it is 0. As for the
681      * advance/delay we gain here, we try to fix it next time.
682      */
683     init_delay_params(&sc, cpu);
684 
685     /* prepare setjmp context for exception handling */
686     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
687 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6)
688         /* Some compilers wrongly smash all local variables after
689          * siglongjmp. There were bug reports for gcc 4.5.0 and clang.
690          * Reload essential local variables here for those compilers.
691          * Newer versions of gcc would complain about this code (-Wclobbered). */
692         cpu = current_cpu;
693         cc = CPU_GET_CLASS(cpu);
694 #else /* buggy compiler */
695         /* Assert that the compiler does not smash local variables. */
696         g_assert(cpu == current_cpu);
697         g_assert(cc == CPU_GET_CLASS(cpu));
698 #endif /* buggy compiler */
699 #ifndef CONFIG_SOFTMMU
700         tcg_debug_assert(!have_mmap_lock());
701 #endif
702         if (qemu_mutex_iothread_locked()) {
703             qemu_mutex_unlock_iothread();
704         }
705         qemu_plugin_disable_mem_helpers(cpu);
706 
707         assert_no_pages_locked();
708     }
709 
710     /* if an exception is pending, we execute it here */
711     while (!cpu_handle_exception(cpu, &ret)) {
712         TranslationBlock *last_tb = NULL;
713         int tb_exit = 0;
714 
715         while (!cpu_handle_interrupt(cpu, &last_tb)) {
716             uint32_t cflags = cpu->cflags_next_tb;
717             TranslationBlock *tb;
718 
719             /* When requested, use an exact setting for cflags for the next
720                execution.  This is used for icount, precise smc, and stop-
721                after-access watchpoints.  Since this request should never
722                have CF_INVALID set, -1 is a convenient invalid value that
723                does not require tcg headers for cpu_common_reset.  */
724             if (cflags == -1) {
725                 cflags = curr_cflags();
726             } else {
727                 cpu->cflags_next_tb = -1;
728             }
729 
730             tb = tb_find(cpu, last_tb, tb_exit, cflags);
731             cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
732             /* Try to align the host and virtual clocks
733                if the guest is in advance */
734             align_clocks(&sc, cpu);
735         }
736     }
737 
738     cc->cpu_exec_exit(cpu);
739     rcu_read_unlock();
740 
741     return ret;
742 }
743