1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/tcg-cpu-ops.h" 25 #include "trace.h" 26 #include "disas/disas.h" 27 #include "exec/exec-all.h" 28 #include "tcg/tcg.h" 29 #include "qemu/atomic.h" 30 #include "qemu/rcu.h" 31 #include "exec/log.h" 32 #include "qemu/main-loop.h" 33 #include "sysemu/cpus.h" 34 #include "exec/cpu-all.h" 35 #include "sysemu/cpu-timers.h" 36 #include "exec/replay-core.h" 37 #include "sysemu/tcg.h" 38 #include "exec/helper-proto-common.h" 39 #include "tb-jmp-cache.h" 40 #include "tb-hash.h" 41 #include "tb-context.h" 42 #include "internal-common.h" 43 #include "internal-target.h" 44 #if defined(CONFIG_USER_ONLY) 45 #include "user-retaddr.h" 46 #endif 47 48 /* -icount align implementation. */ 49 50 typedef struct SyncClocks { 51 int64_t diff_clk; 52 int64_t last_cpu_icount; 53 int64_t realtime_clock; 54 } SyncClocks; 55 56 #if !defined(CONFIG_USER_ONLY) 57 /* Allow the guest to have a max 3ms advance. 58 * The difference between the 2 clocks could therefore 59 * oscillate around 0. 60 */ 61 #define VM_CLOCK_ADVANCE 3000000 62 #define THRESHOLD_REDUCE 1.5 63 #define MAX_DELAY_PRINT_RATE 2000000000LL 64 #define MAX_NB_PRINTS 100 65 66 int64_t max_delay; 67 int64_t max_advance; 68 69 static void align_clocks(SyncClocks *sc, CPUState *cpu) 70 { 71 int64_t cpu_icount; 72 73 if (!icount_align_option) { 74 return; 75 } 76 77 cpu_icount = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 78 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 79 sc->last_cpu_icount = cpu_icount; 80 81 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 82 #ifndef _WIN32 83 struct timespec sleep_delay, rem_delay; 84 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 85 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 86 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 87 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 88 } else { 89 sc->diff_clk = 0; 90 } 91 #else 92 Sleep(sc->diff_clk / SCALE_MS); 93 sc->diff_clk = 0; 94 #endif 95 } 96 } 97 98 static void print_delay(const SyncClocks *sc) 99 { 100 static float threshold_delay; 101 static int64_t last_realtime_clock; 102 static int nb_prints; 103 104 if (icount_align_option && 105 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 106 nb_prints < MAX_NB_PRINTS) { 107 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 108 (-sc->diff_clk / (float)1000000000LL < 109 (threshold_delay - THRESHOLD_REDUCE))) { 110 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 111 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 112 threshold_delay - 1, 113 threshold_delay); 114 nb_prints++; 115 last_realtime_clock = sc->realtime_clock; 116 } 117 } 118 } 119 120 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 121 { 122 if (!icount_align_option) { 123 return; 124 } 125 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 126 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 127 sc->last_cpu_icount 128 = cpu->icount_extra + cpu->neg.icount_decr.u16.low; 129 if (sc->diff_clk < max_delay) { 130 max_delay = sc->diff_clk; 131 } 132 if (sc->diff_clk > max_advance) { 133 max_advance = sc->diff_clk; 134 } 135 136 /* Print every 2s max if the guest is late. We limit the number 137 of printed messages to NB_PRINT_MAX(currently 100) */ 138 print_delay(sc); 139 } 140 #else 141 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 142 { 143 } 144 145 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 146 { 147 } 148 #endif /* CONFIG USER ONLY */ 149 150 uint32_t curr_cflags(CPUState *cpu) 151 { 152 uint32_t cflags = cpu->tcg_cflags; 153 154 /* 155 * Record gdb single-step. We should be exiting the TB by raising 156 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 157 * 158 * For singlestep and -d nochain, suppress goto_tb so that 159 * we can log -d cpu,exec after every TB. 160 */ 161 if (unlikely(cpu->singlestep_enabled)) { 162 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 163 } else if (qatomic_read(&one_insn_per_tb)) { 164 cflags |= CF_NO_GOTO_TB | 1; 165 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 166 cflags |= CF_NO_GOTO_TB; 167 } 168 169 return cflags; 170 } 171 172 struct tb_desc { 173 vaddr pc; 174 uint64_t cs_base; 175 CPUArchState *env; 176 tb_page_addr_t page_addr0; 177 uint32_t flags; 178 uint32_t cflags; 179 }; 180 181 static bool tb_lookup_cmp(const void *p, const void *d) 182 { 183 const TranslationBlock *tb = p; 184 const struct tb_desc *desc = d; 185 186 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && 187 tb_page_addr0(tb) == desc->page_addr0 && 188 tb->cs_base == desc->cs_base && 189 tb->flags == desc->flags && 190 tb_cflags(tb) == desc->cflags) { 191 /* check next page if needed */ 192 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 193 if (tb_phys_page1 == -1) { 194 return true; 195 } else { 196 tb_page_addr_t phys_page1; 197 vaddr virt_page1; 198 199 /* 200 * We know that the first page matched, and an otherwise valid TB 201 * encountered an incomplete instruction at the end of that page, 202 * therefore we know that generating a new TB from the current PC 203 * must also require reading from the next page -- even if the 204 * second pages do not match, and therefore the resulting insn 205 * is different for the new TB. Therefore any exception raised 206 * here by the faulting lookup is not premature. 207 */ 208 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 209 phys_page1 = get_page_addr_code(desc->env, virt_page1); 210 if (tb_phys_page1 == phys_page1) { 211 return true; 212 } 213 } 214 } 215 return false; 216 } 217 218 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc, 219 uint64_t cs_base, uint32_t flags, 220 uint32_t cflags) 221 { 222 tb_page_addr_t phys_pc; 223 struct tb_desc desc; 224 uint32_t h; 225 226 desc.env = cpu_env(cpu); 227 desc.cs_base = cs_base; 228 desc.flags = flags; 229 desc.cflags = cflags; 230 desc.pc = pc; 231 phys_pc = get_page_addr_code(desc.env, pc); 232 if (phys_pc == -1) { 233 return NULL; 234 } 235 desc.page_addr0 = phys_pc; 236 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), 237 flags, cs_base, cflags); 238 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 239 } 240 241 /* Might cause an exception, so have a longjmp destination ready */ 242 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc, 243 uint64_t cs_base, uint32_t flags, 244 uint32_t cflags) 245 { 246 TranslationBlock *tb; 247 CPUJumpCache *jc; 248 uint32_t hash; 249 250 /* we should never be trying to look up an INVALID tb */ 251 tcg_debug_assert(!(cflags & CF_INVALID)); 252 253 hash = tb_jmp_cache_hash_func(pc); 254 jc = cpu->tb_jmp_cache; 255 256 tb = qatomic_read(&jc->array[hash].tb); 257 if (likely(tb && 258 jc->array[hash].pc == pc && 259 tb->cs_base == cs_base && 260 tb->flags == flags && 261 tb_cflags(tb) == cflags)) { 262 goto hit; 263 } 264 265 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 266 if (tb == NULL) { 267 return NULL; 268 } 269 270 jc->array[hash].pc = pc; 271 qatomic_set(&jc->array[hash].tb, tb); 272 273 hit: 274 /* 275 * As long as tb is not NULL, the contents are consistent. Therefore, 276 * the virtual PC has to match for non-CF_PCREL translations. 277 */ 278 assert((tb_cflags(tb) & CF_PCREL) || tb->pc == pc); 279 return tb; 280 } 281 282 static void log_cpu_exec(vaddr pc, CPUState *cpu, 283 const TranslationBlock *tb) 284 { 285 if (qemu_log_in_addr_range(pc)) { 286 qemu_log_mask(CPU_LOG_EXEC, 287 "Trace %d: %p [%08" PRIx64 288 "/%016" VADDR_PRIx "/%08x/%08x] %s\n", 289 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 290 tb->flags, tb->cflags, lookup_symbol(pc)); 291 292 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 293 FILE *logfile = qemu_log_trylock(); 294 if (logfile) { 295 int flags = 0; 296 297 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 298 flags |= CPU_DUMP_FPU; 299 } 300 #if defined(TARGET_I386) 301 flags |= CPU_DUMP_CCOP; 302 #endif 303 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { 304 flags |= CPU_DUMP_VPU; 305 } 306 cpu_dump_state(cpu, logfile, flags); 307 qemu_log_unlock(logfile); 308 } 309 } 310 } 311 } 312 313 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, 314 uint32_t *cflags) 315 { 316 CPUBreakpoint *bp; 317 bool match_page = false; 318 319 /* 320 * Singlestep overrides breakpoints. 321 * This requirement is visible in the record-replay tests, where 322 * we would fail to make forward progress in reverse-continue. 323 * 324 * TODO: gdb singlestep should only override gdb breakpoints, 325 * so that one could (gdb) singlestep into the guest kernel's 326 * architectural breakpoint handler. 327 */ 328 if (cpu->singlestep_enabled) { 329 return false; 330 } 331 332 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 333 /* 334 * If we have an exact pc match, trigger the breakpoint. 335 * Otherwise, note matches within the page. 336 */ 337 if (pc == bp->pc) { 338 bool match_bp = false; 339 340 if (bp->flags & BP_GDB) { 341 match_bp = true; 342 } else if (bp->flags & BP_CPU) { 343 #ifdef CONFIG_USER_ONLY 344 g_assert_not_reached(); 345 #else 346 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 347 assert(tcg_ops->debug_check_breakpoint); 348 match_bp = tcg_ops->debug_check_breakpoint(cpu); 349 #endif 350 } 351 352 if (match_bp) { 353 cpu->exception_index = EXCP_DEBUG; 354 return true; 355 } 356 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 357 match_page = true; 358 } 359 } 360 361 /* 362 * Within the same page as a breakpoint, single-step, 363 * returning to helper_lookup_tb_ptr after each insn looking 364 * for the actual breakpoint. 365 * 366 * TODO: Perhaps better to record all of the TBs associated 367 * with a given virtual page that contains a breakpoint, and 368 * then invalidate them when a new overlapping breakpoint is 369 * set on the page. Non-overlapping TBs would not be 370 * invalidated, nor would any TB need to be invalidated as 371 * breakpoints are removed. 372 */ 373 if (match_page) { 374 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1; 375 } 376 return false; 377 } 378 379 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, 380 uint32_t *cflags) 381 { 382 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 383 check_for_breakpoints_slow(cpu, pc, cflags); 384 } 385 386 /** 387 * helper_lookup_tb_ptr: quick check for next tb 388 * @env: current cpu state 389 * 390 * Look for an existing TB matching the current cpu state. 391 * If found, return the code pointer. If not found, return 392 * the tcg epilogue so that we return into cpu_tb_exec. 393 */ 394 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 395 { 396 CPUState *cpu = env_cpu(env); 397 TranslationBlock *tb; 398 vaddr pc; 399 uint64_t cs_base; 400 uint32_t flags, cflags; 401 402 /* 403 * By definition we've just finished a TB, so I/O is OK. 404 * Avoid the possibility of calling cpu_io_recompile() if 405 * a page table walk triggered by tb_lookup() calling 406 * probe_access_internal() happens to touch an MMIO device. 407 * The next TB, if we chain to it, will clear the flag again. 408 */ 409 cpu->neg.can_do_io = true; 410 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 411 412 cflags = curr_cflags(cpu); 413 if (check_for_breakpoints(cpu, pc, &cflags)) { 414 cpu_loop_exit(cpu); 415 } 416 417 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 418 if (tb == NULL) { 419 return tcg_code_gen_epilogue; 420 } 421 422 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 423 log_cpu_exec(pc, cpu, tb); 424 } 425 426 return tb->tc.ptr; 427 } 428 429 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 430 /* 431 * Disable CFI checks. 432 * TCG creates binary blobs at runtime, with the transformed code. 433 * A TB is a blob of binary code, created at runtime and called with an 434 * indirect function call. Since such function did not exist at compile time, 435 * the CFI runtime has no way to verify its signature and would fail. 436 * TCG is not considered a security-sensitive part of QEMU so this does not 437 * affect the impact of CFI in environment with high security requirements 438 */ 439 static inline TranslationBlock * QEMU_DISABLE_CFI 440 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 441 { 442 uintptr_t ret; 443 TranslationBlock *last_tb; 444 const void *tb_ptr = itb->tc.ptr; 445 446 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 447 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 448 } 449 450 qemu_thread_jit_execute(); 451 ret = tcg_qemu_tb_exec(cpu_env(cpu), tb_ptr); 452 cpu->neg.can_do_io = true; 453 qemu_plugin_disable_mem_helpers(cpu); 454 /* 455 * TODO: Delay swapping back to the read-write region of the TB 456 * until we actually need to modify the TB. The read-only copy, 457 * coming from the rx region, shares the same host TLB entry as 458 * the code that executed the exit_tb opcode that arrived here. 459 * If we insist on touching both the RX and the RW pages, we 460 * double the host TLB pressure. 461 */ 462 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 463 *tb_exit = ret & TB_EXIT_MASK; 464 465 trace_exec_tb_exit(last_tb, *tb_exit); 466 467 if (*tb_exit > TB_EXIT_IDX1) { 468 /* We didn't start executing this TB (eg because the instruction 469 * counter hit zero); we must restore the guest PC to the address 470 * of the start of the TB. 471 */ 472 CPUClass *cc = cpu->cc; 473 const TCGCPUOps *tcg_ops = cc->tcg_ops; 474 475 if (tcg_ops->synchronize_from_tb) { 476 tcg_ops->synchronize_from_tb(cpu, last_tb); 477 } else { 478 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 479 assert(cc->set_pc); 480 cc->set_pc(cpu, last_tb->pc); 481 } 482 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 483 vaddr pc = log_pc(cpu, last_tb); 484 if (qemu_log_in_addr_range(pc)) { 485 qemu_log("Stopped execution of TB chain before %p [%016" 486 VADDR_PRIx "] %s\n", 487 last_tb->tc.ptr, pc, lookup_symbol(pc)); 488 } 489 } 490 } 491 492 /* 493 * If gdb single-step, and we haven't raised another exception, 494 * raise a debug exception. Single-step with another exception 495 * is handled in cpu_handle_exception. 496 */ 497 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 498 cpu->exception_index = EXCP_DEBUG; 499 cpu_loop_exit(cpu); 500 } 501 502 return last_tb; 503 } 504 505 506 static void cpu_exec_enter(CPUState *cpu) 507 { 508 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 509 510 if (tcg_ops->cpu_exec_enter) { 511 tcg_ops->cpu_exec_enter(cpu); 512 } 513 } 514 515 static void cpu_exec_exit(CPUState *cpu) 516 { 517 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 518 519 if (tcg_ops->cpu_exec_exit) { 520 tcg_ops->cpu_exec_exit(cpu); 521 } 522 } 523 524 static void cpu_exec_longjmp_cleanup(CPUState *cpu) 525 { 526 /* Non-buggy compilers preserve this; assert the correct value. */ 527 g_assert(cpu == current_cpu); 528 529 #ifdef CONFIG_USER_ONLY 530 clear_helper_retaddr(); 531 if (have_mmap_lock()) { 532 mmap_unlock(); 533 } 534 #else 535 /* 536 * For softmmu, a tlb_fill fault during translation will land here, 537 * and we need to release any page locks held. In system mode we 538 * have one tcg_ctx per thread, so we know it was this cpu doing 539 * the translation. 540 * 541 * Alternative 1: Install a cleanup to be called via an exception 542 * handling safe longjmp. It seems plausible that all our hosts 543 * support such a thing. We'd have to properly register unwind info 544 * for the JIT for EH, rather that just for GDB. 545 * 546 * Alternative 2: Set and restore cpu->jmp_env in tb_gen_code to 547 * capture the cpu_loop_exit longjmp, perform the cleanup, and 548 * jump again to arrive here. 549 */ 550 if (tcg_ctx->gen_tb) { 551 tb_unlock_pages(tcg_ctx->gen_tb); 552 tcg_ctx->gen_tb = NULL; 553 } 554 #endif 555 if (bql_locked()) { 556 bql_unlock(); 557 } 558 assert_no_pages_locked(); 559 } 560 561 void cpu_exec_step_atomic(CPUState *cpu) 562 { 563 CPUArchState *env = cpu_env(cpu); 564 TranslationBlock *tb; 565 vaddr pc; 566 uint64_t cs_base; 567 uint32_t flags, cflags; 568 int tb_exit; 569 570 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 571 start_exclusive(); 572 g_assert(cpu == current_cpu); 573 g_assert(!cpu->running); 574 cpu->running = true; 575 576 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 577 578 cflags = curr_cflags(cpu); 579 /* Execute in a serial context. */ 580 cflags &= ~CF_PARALLEL; 581 /* After 1 insn, return and release the exclusive lock. */ 582 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 583 /* 584 * No need to check_for_breakpoints here. 585 * We only arrive in cpu_exec_step_atomic after beginning execution 586 * of an insn that includes an atomic operation we can't handle. 587 * Any breakpoint for this insn will have been recognized earlier. 588 */ 589 590 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 591 if (tb == NULL) { 592 mmap_lock(); 593 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 594 mmap_unlock(); 595 } 596 597 cpu_exec_enter(cpu); 598 /* execute the generated code */ 599 trace_exec_tb(tb, pc); 600 cpu_tb_exec(cpu, tb, &tb_exit); 601 cpu_exec_exit(cpu); 602 } else { 603 cpu_exec_longjmp_cleanup(cpu); 604 } 605 606 /* 607 * As we start the exclusive region before codegen we must still 608 * be in the region if we longjump out of either the codegen or 609 * the execution. 610 */ 611 g_assert(cpu_in_exclusive_context(cpu)); 612 cpu->running = false; 613 end_exclusive(); 614 } 615 616 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 617 { 618 /* 619 * Get the rx view of the structure, from which we find the 620 * executable code address, and tb_target_set_jmp_target can 621 * produce a pc-relative displacement to jmp_target_addr[n]. 622 */ 623 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 624 uintptr_t offset = tb->jmp_insn_offset[n]; 625 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 626 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 627 628 tb->jmp_target_addr[n] = addr; 629 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 630 } 631 632 static inline void tb_add_jump(TranslationBlock *tb, int n, 633 TranslationBlock *tb_next) 634 { 635 uintptr_t old; 636 637 qemu_thread_jit_write(); 638 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 639 qemu_spin_lock(&tb_next->jmp_lock); 640 641 /* make sure the destination TB is valid */ 642 if (tb_next->cflags & CF_INVALID) { 643 goto out_unlock_next; 644 } 645 /* Atomically claim the jump destination slot only if it was NULL */ 646 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 647 (uintptr_t)tb_next); 648 if (old) { 649 goto out_unlock_next; 650 } 651 652 /* patch the native jump address */ 653 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 654 655 /* add in TB jmp list */ 656 tb->jmp_list_next[n] = tb_next->jmp_list_head; 657 tb_next->jmp_list_head = (uintptr_t)tb | n; 658 659 qemu_spin_unlock(&tb_next->jmp_lock); 660 661 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 662 tb->tc.ptr, n, tb_next->tc.ptr); 663 return; 664 665 out_unlock_next: 666 qemu_spin_unlock(&tb_next->jmp_lock); 667 return; 668 } 669 670 static inline bool cpu_handle_halt(CPUState *cpu) 671 { 672 #ifndef CONFIG_USER_ONLY 673 if (cpu->halted) { 674 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 675 676 if (tcg_ops->cpu_exec_halt) { 677 tcg_ops->cpu_exec_halt(cpu); 678 } 679 if (!cpu_has_work(cpu)) { 680 return true; 681 } 682 683 cpu->halted = 0; 684 } 685 #endif /* !CONFIG_USER_ONLY */ 686 687 return false; 688 } 689 690 static inline void cpu_handle_debug_exception(CPUState *cpu) 691 { 692 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 693 CPUWatchpoint *wp; 694 695 if (!cpu->watchpoint_hit) { 696 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 697 wp->flags &= ~BP_WATCHPOINT_HIT; 698 } 699 } 700 701 if (tcg_ops->debug_excp_handler) { 702 tcg_ops->debug_excp_handler(cpu); 703 } 704 } 705 706 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 707 { 708 if (cpu->exception_index < 0) { 709 #ifndef CONFIG_USER_ONLY 710 if (replay_has_exception() 711 && cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0) { 712 /* Execute just one insn to trigger exception pending in the log */ 713 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 714 | CF_NOIRQ | 1; 715 } 716 #endif 717 return false; 718 } 719 720 if (cpu->exception_index >= EXCP_INTERRUPT) { 721 /* exit request from the cpu execution loop */ 722 *ret = cpu->exception_index; 723 if (*ret == EXCP_DEBUG) { 724 cpu_handle_debug_exception(cpu); 725 } 726 cpu->exception_index = -1; 727 return true; 728 } 729 730 #if defined(CONFIG_USER_ONLY) 731 /* 732 * If user mode only, we simulate a fake exception which will be 733 * handled outside the cpu execution loop. 734 */ 735 #if defined(TARGET_I386) 736 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 737 tcg_ops->fake_user_interrupt(cpu); 738 #endif /* TARGET_I386 */ 739 *ret = cpu->exception_index; 740 cpu->exception_index = -1; 741 return true; 742 #else 743 if (replay_exception()) { 744 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 745 746 bql_lock(); 747 tcg_ops->do_interrupt(cpu); 748 bql_unlock(); 749 cpu->exception_index = -1; 750 751 if (unlikely(cpu->singlestep_enabled)) { 752 /* 753 * After processing the exception, ensure an EXCP_DEBUG is 754 * raised when single-stepping so that GDB doesn't miss the 755 * next instruction. 756 */ 757 *ret = EXCP_DEBUG; 758 cpu_handle_debug_exception(cpu); 759 return true; 760 } 761 } else if (!replay_has_interrupt()) { 762 /* give a chance to iothread in replay mode */ 763 *ret = EXCP_INTERRUPT; 764 return true; 765 } 766 #endif 767 768 return false; 769 } 770 771 static inline bool icount_exit_request(CPUState *cpu) 772 { 773 if (!icount_enabled()) { 774 return false; 775 } 776 if (cpu->cflags_next_tb != -1 && !(cpu->cflags_next_tb & CF_USE_ICOUNT)) { 777 return false; 778 } 779 return cpu->neg.icount_decr.u16.low + cpu->icount_extra == 0; 780 } 781 782 static inline bool cpu_handle_interrupt(CPUState *cpu, 783 TranslationBlock **last_tb) 784 { 785 /* 786 * If we have requested custom cflags with CF_NOIRQ we should 787 * skip checking here. Any pending interrupts will get picked up 788 * by the next TB we execute under normal cflags. 789 */ 790 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 791 return false; 792 } 793 794 /* Clear the interrupt flag now since we're processing 795 * cpu->interrupt_request and cpu->exit_request. 796 * Ensure zeroing happens before reading cpu->exit_request or 797 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 798 */ 799 qatomic_set_mb(&cpu->neg.icount_decr.u16.high, 0); 800 801 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 802 int interrupt_request; 803 bql_lock(); 804 interrupt_request = cpu->interrupt_request; 805 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 806 /* Mask out external interrupts for this step. */ 807 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 808 } 809 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 810 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 811 cpu->exception_index = EXCP_DEBUG; 812 bql_unlock(); 813 return true; 814 } 815 #if !defined(CONFIG_USER_ONLY) 816 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 817 /* Do nothing */ 818 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 819 replay_interrupt(); 820 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 821 cpu->halted = 1; 822 cpu->exception_index = EXCP_HLT; 823 bql_unlock(); 824 return true; 825 } 826 #if defined(TARGET_I386) 827 else if (interrupt_request & CPU_INTERRUPT_INIT) { 828 X86CPU *x86_cpu = X86_CPU(cpu); 829 CPUArchState *env = &x86_cpu->env; 830 replay_interrupt(); 831 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 832 do_cpu_init(x86_cpu); 833 cpu->exception_index = EXCP_HALTED; 834 bql_unlock(); 835 return true; 836 } 837 #else 838 else if (interrupt_request & CPU_INTERRUPT_RESET) { 839 replay_interrupt(); 840 cpu_reset(cpu); 841 bql_unlock(); 842 return true; 843 } 844 #endif /* !TARGET_I386 */ 845 /* The target hook has 3 exit conditions: 846 False when the interrupt isn't processed, 847 True when it is, and we should restart on a new TB, 848 and via longjmp via cpu_loop_exit. */ 849 else { 850 const TCGCPUOps *tcg_ops = cpu->cc->tcg_ops; 851 852 if (tcg_ops->cpu_exec_interrupt && 853 tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 854 if (!tcg_ops->need_replay_interrupt || 855 tcg_ops->need_replay_interrupt(interrupt_request)) { 856 replay_interrupt(); 857 } 858 /* 859 * After processing the interrupt, ensure an EXCP_DEBUG is 860 * raised when single-stepping so that GDB doesn't miss the 861 * next instruction. 862 */ 863 if (unlikely(cpu->singlestep_enabled)) { 864 cpu->exception_index = EXCP_DEBUG; 865 bql_unlock(); 866 return true; 867 } 868 cpu->exception_index = -1; 869 *last_tb = NULL; 870 } 871 /* The target hook may have updated the 'cpu->interrupt_request'; 872 * reload the 'interrupt_request' value */ 873 interrupt_request = cpu->interrupt_request; 874 } 875 #endif /* !CONFIG_USER_ONLY */ 876 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 877 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 878 /* ensure that no TB jump will be modified as 879 the program flow was changed */ 880 *last_tb = NULL; 881 } 882 883 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 884 bql_unlock(); 885 } 886 887 /* Finally, check if we need to exit to the main loop. */ 888 if (unlikely(qatomic_read(&cpu->exit_request)) || icount_exit_request(cpu)) { 889 qatomic_set(&cpu->exit_request, 0); 890 if (cpu->exception_index == -1) { 891 cpu->exception_index = EXCP_INTERRUPT; 892 } 893 return true; 894 } 895 896 return false; 897 } 898 899 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 900 vaddr pc, TranslationBlock **last_tb, 901 int *tb_exit) 902 { 903 int32_t insns_left; 904 905 trace_exec_tb(tb, pc); 906 tb = cpu_tb_exec(cpu, tb, tb_exit); 907 if (*tb_exit != TB_EXIT_REQUESTED) { 908 *last_tb = tb; 909 return; 910 } 911 912 *last_tb = NULL; 913 insns_left = qatomic_read(&cpu->neg.icount_decr.u32); 914 if (insns_left < 0) { 915 /* Something asked us to stop executing chained TBs; just 916 * continue round the main loop. Whatever requested the exit 917 * will also have set something else (eg exit_request or 918 * interrupt_request) which will be handled by 919 * cpu_handle_interrupt. cpu_handle_interrupt will also 920 * clear cpu->icount_decr.u16.high. 921 */ 922 return; 923 } 924 925 /* Instruction counter expired. */ 926 assert(icount_enabled()); 927 #ifndef CONFIG_USER_ONLY 928 /* Ensure global icount has gone forward */ 929 icount_update(cpu); 930 /* Refill decrementer and continue execution. */ 931 insns_left = MIN(0xffff, cpu->icount_budget); 932 cpu->neg.icount_decr.u16.low = insns_left; 933 cpu->icount_extra = cpu->icount_budget - insns_left; 934 935 /* 936 * If the next tb has more instructions than we have left to 937 * execute we need to ensure we find/generate a TB with exactly 938 * insns_left instructions in it. 939 */ 940 if (insns_left > 0 && insns_left < tb->icount) { 941 assert(insns_left <= CF_COUNT_MASK); 942 assert(cpu->icount_extra == 0); 943 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 944 } 945 #endif 946 } 947 948 /* main execution loop */ 949 950 static int __attribute__((noinline)) 951 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 952 { 953 int ret; 954 955 /* if an exception is pending, we execute it here */ 956 while (!cpu_handle_exception(cpu, &ret)) { 957 TranslationBlock *last_tb = NULL; 958 int tb_exit = 0; 959 960 while (!cpu_handle_interrupt(cpu, &last_tb)) { 961 TranslationBlock *tb; 962 vaddr pc; 963 uint64_t cs_base; 964 uint32_t flags, cflags; 965 966 cpu_get_tb_cpu_state(cpu_env(cpu), &pc, &cs_base, &flags); 967 968 /* 969 * When requested, use an exact setting for cflags for the next 970 * execution. This is used for icount, precise smc, and stop- 971 * after-access watchpoints. Since this request should never 972 * have CF_INVALID set, -1 is a convenient invalid value that 973 * does not require tcg headers for cpu_common_reset. 974 */ 975 cflags = cpu->cflags_next_tb; 976 if (cflags == -1) { 977 cflags = curr_cflags(cpu); 978 } else { 979 cpu->cflags_next_tb = -1; 980 } 981 982 if (check_for_breakpoints(cpu, pc, &cflags)) { 983 break; 984 } 985 986 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 987 if (tb == NULL) { 988 CPUJumpCache *jc; 989 uint32_t h; 990 991 mmap_lock(); 992 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 993 mmap_unlock(); 994 995 /* 996 * We add the TB in the virtual pc hash table 997 * for the fast lookup 998 */ 999 h = tb_jmp_cache_hash_func(pc); 1000 jc = cpu->tb_jmp_cache; 1001 jc->array[h].pc = pc; 1002 qatomic_set(&jc->array[h].tb, tb); 1003 } 1004 1005 #ifndef CONFIG_USER_ONLY 1006 /* 1007 * We don't take care of direct jumps when address mapping 1008 * changes in system emulation. So it's not safe to make a 1009 * direct jump to a TB spanning two pages because the mapping 1010 * for the second page can change. 1011 */ 1012 if (tb_page_addr1(tb) != -1) { 1013 last_tb = NULL; 1014 } 1015 #endif 1016 /* See if we can patch the calling TB. */ 1017 if (last_tb) { 1018 tb_add_jump(last_tb, tb_exit, tb); 1019 } 1020 1021 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1022 1023 /* Try to align the host and virtual clocks 1024 if the guest is in advance */ 1025 align_clocks(sc, cpu); 1026 } 1027 } 1028 return ret; 1029 } 1030 1031 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 1032 { 1033 /* Prepare setjmp context for exception handling. */ 1034 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 1035 cpu_exec_longjmp_cleanup(cpu); 1036 } 1037 1038 return cpu_exec_loop(cpu, sc); 1039 } 1040 1041 int cpu_exec(CPUState *cpu) 1042 { 1043 int ret; 1044 SyncClocks sc = { 0 }; 1045 1046 /* replay_interrupt may need current_cpu */ 1047 current_cpu = cpu; 1048 1049 if (cpu_handle_halt(cpu)) { 1050 return EXCP_HALTED; 1051 } 1052 1053 RCU_READ_LOCK_GUARD(); 1054 cpu_exec_enter(cpu); 1055 1056 /* 1057 * Calculate difference between guest clock and host clock. 1058 * This delay includes the delay of the last cycle, so 1059 * what we have to do is sleep until it is 0. As for the 1060 * advance/delay we gain here, we try to fix it next time. 1061 */ 1062 init_delay_params(&sc, cpu); 1063 1064 ret = cpu_exec_setjmp(cpu, &sc); 1065 1066 cpu_exec_exit(cpu); 1067 return ret; 1068 } 1069 1070 bool tcg_exec_realizefn(CPUState *cpu, Error **errp) 1071 { 1072 static bool tcg_target_initialized; 1073 1074 if (!tcg_target_initialized) { 1075 cpu->cc->tcg_ops->initialize(); 1076 tcg_target_initialized = true; 1077 } 1078 1079 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1080 tlb_init(cpu); 1081 #ifndef CONFIG_USER_ONLY 1082 tcg_iommu_init_notifier_list(cpu); 1083 #endif /* !CONFIG_USER_ONLY */ 1084 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1085 1086 return true; 1087 } 1088 1089 /* undo the initializations in reverse order */ 1090 void tcg_exec_unrealizefn(CPUState *cpu) 1091 { 1092 #ifndef CONFIG_USER_ONLY 1093 tcg_iommu_free_notifier_list(cpu); 1094 #endif /* !CONFIG_USER_ONLY */ 1095 1096 tlb_destroy(cpu); 1097 g_free_rcu(cpu->tb_jmp_cache, rcu); 1098 } 1099