1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 #include "qemu/osdep.h" 20 #include "cpu.h" 21 #include "trace.h" 22 #include "disas/disas.h" 23 #include "exec/exec-all.h" 24 #include "tcg.h" 25 #include "qemu/atomic.h" 26 #include "sysemu/qtest.h" 27 #include "qemu/timer.h" 28 #include "qemu/rcu.h" 29 #include "exec/tb-hash.h" 30 #include "exec/tb-lookup.h" 31 #include "exec/log.h" 32 #include "qemu/main-loop.h" 33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 34 #include "hw/i386/apic.h" 35 #endif 36 #include "sysemu/cpus.h" 37 #include "sysemu/replay.h" 38 39 /* -icount align implementation. */ 40 41 typedef struct SyncClocks { 42 int64_t diff_clk; 43 int64_t last_cpu_icount; 44 int64_t realtime_clock; 45 } SyncClocks; 46 47 #if !defined(CONFIG_USER_ONLY) 48 /* Allow the guest to have a max 3ms advance. 49 * The difference between the 2 clocks could therefore 50 * oscillate around 0. 51 */ 52 #define VM_CLOCK_ADVANCE 3000000 53 #define THRESHOLD_REDUCE 1.5 54 #define MAX_DELAY_PRINT_RATE 2000000000LL 55 #define MAX_NB_PRINTS 100 56 57 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 58 { 59 int64_t cpu_icount; 60 61 if (!icount_align_option) { 62 return; 63 } 64 65 cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; 66 sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount); 67 sc->last_cpu_icount = cpu_icount; 68 69 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 70 #ifndef _WIN32 71 struct timespec sleep_delay, rem_delay; 72 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 73 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 74 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 75 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 76 } else { 77 sc->diff_clk = 0; 78 } 79 #else 80 Sleep(sc->diff_clk / SCALE_MS); 81 sc->diff_clk = 0; 82 #endif 83 } 84 } 85 86 static void print_delay(const SyncClocks *sc) 87 { 88 static float threshold_delay; 89 static int64_t last_realtime_clock; 90 static int nb_prints; 91 92 if (icount_align_option && 93 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 94 nb_prints < MAX_NB_PRINTS) { 95 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 96 (-sc->diff_clk / (float)1000000000LL < 97 (threshold_delay - THRESHOLD_REDUCE))) { 98 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 99 printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 100 threshold_delay - 1, 101 threshold_delay); 102 nb_prints++; 103 last_realtime_clock = sc->realtime_clock; 104 } 105 } 106 } 107 108 static void init_delay_params(SyncClocks *sc, 109 const CPUState *cpu) 110 { 111 if (!icount_align_option) { 112 return; 113 } 114 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 115 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 116 sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low; 117 if (sc->diff_clk < max_delay) { 118 max_delay = sc->diff_clk; 119 } 120 if (sc->diff_clk > max_advance) { 121 max_advance = sc->diff_clk; 122 } 123 124 /* Print every 2s max if the guest is late. We limit the number 125 of printed messages to NB_PRINT_MAX(currently 100) */ 126 print_delay(sc); 127 } 128 #else 129 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 130 { 131 } 132 133 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 134 { 135 } 136 #endif /* CONFIG USER ONLY */ 137 138 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 139 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb) 140 { 141 CPUArchState *env = cpu->env_ptr; 142 uintptr_t ret; 143 TranslationBlock *last_tb; 144 int tb_exit; 145 uint8_t *tb_ptr = itb->tc.ptr; 146 147 qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc, 148 "Trace %d: %p [" 149 TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n", 150 cpu->cpu_index, itb->tc.ptr, 151 itb->cs_base, itb->pc, itb->flags, 152 lookup_symbol(itb->pc)); 153 154 #if defined(DEBUG_DISAS) 155 if (qemu_loglevel_mask(CPU_LOG_TB_CPU) 156 && qemu_log_in_addr_range(itb->pc)) { 157 qemu_log_lock(); 158 int flags = 0; 159 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 160 flags |= CPU_DUMP_FPU; 161 } 162 #if defined(TARGET_I386) 163 flags |= CPU_DUMP_CCOP; 164 #endif 165 log_cpu_state(cpu, flags); 166 qemu_log_unlock(); 167 } 168 #endif /* DEBUG_DISAS */ 169 170 cpu->can_do_io = !use_icount; 171 ret = tcg_qemu_tb_exec(env, tb_ptr); 172 cpu->can_do_io = 1; 173 last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 174 tb_exit = ret & TB_EXIT_MASK; 175 trace_exec_tb_exit(last_tb, tb_exit); 176 177 if (tb_exit > TB_EXIT_IDX1) { 178 /* We didn't start executing this TB (eg because the instruction 179 * counter hit zero); we must restore the guest PC to the address 180 * of the start of the TB. 181 */ 182 CPUClass *cc = CPU_GET_CLASS(cpu); 183 qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc, 184 "Stopped execution of TB chain before %p [" 185 TARGET_FMT_lx "] %s\n", 186 last_tb->tc.ptr, last_tb->pc, 187 lookup_symbol(last_tb->pc)); 188 if (cc->synchronize_from_tb) { 189 cc->synchronize_from_tb(cpu, last_tb); 190 } else { 191 assert(cc->set_pc); 192 cc->set_pc(cpu, last_tb->pc); 193 } 194 } 195 return ret; 196 } 197 198 #ifndef CONFIG_USER_ONLY 199 /* Execute the code without caching the generated code. An interpreter 200 could be used if available. */ 201 static void cpu_exec_nocache(CPUState *cpu, int max_cycles, 202 TranslationBlock *orig_tb, bool ignore_icount) 203 { 204 TranslationBlock *tb; 205 uint32_t cflags = curr_cflags() | CF_NOCACHE; 206 207 if (ignore_icount) { 208 cflags &= ~CF_USE_ICOUNT; 209 } 210 211 /* Should never happen. 212 We only end up here when an existing TB is too long. */ 213 cflags |= MIN(max_cycles, CF_COUNT_MASK); 214 215 mmap_lock(); 216 tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base, 217 orig_tb->flags, cflags); 218 tb->orig_tb = orig_tb; 219 mmap_unlock(); 220 221 /* execute the generated code */ 222 trace_exec_tb_nocache(tb, tb->pc); 223 cpu_tb_exec(cpu, tb); 224 225 mmap_lock(); 226 tb_phys_invalidate(tb, -1); 227 mmap_unlock(); 228 tcg_tb_remove(tb); 229 } 230 #endif 231 232 void cpu_exec_step_atomic(CPUState *cpu) 233 { 234 CPUClass *cc = CPU_GET_CLASS(cpu); 235 TranslationBlock *tb; 236 target_ulong cs_base, pc; 237 uint32_t flags; 238 uint32_t cflags = 1; 239 uint32_t cf_mask = cflags & CF_HASH_MASK; 240 /* volatile because we modify it between setjmp and longjmp */ 241 volatile bool in_exclusive_region = false; 242 243 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 244 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 245 if (tb == NULL) { 246 mmap_lock(); 247 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 248 mmap_unlock(); 249 } 250 251 start_exclusive(); 252 253 /* Since we got here, we know that parallel_cpus must be true. */ 254 parallel_cpus = false; 255 in_exclusive_region = true; 256 cc->cpu_exec_enter(cpu); 257 /* execute the generated code */ 258 trace_exec_tb(tb, pc); 259 cpu_tb_exec(cpu, tb); 260 cc->cpu_exec_exit(cpu); 261 } else { 262 /* 263 * The mmap_lock is dropped by tb_gen_code if it runs out of 264 * memory. 265 */ 266 #ifndef CONFIG_SOFTMMU 267 tcg_debug_assert(!have_mmap_lock()); 268 #endif 269 assert_no_pages_locked(); 270 } 271 272 if (in_exclusive_region) { 273 /* We might longjump out of either the codegen or the 274 * execution, so must make sure we only end the exclusive 275 * region if we started it. 276 */ 277 parallel_cpus = true; 278 end_exclusive(); 279 } 280 } 281 282 struct tb_desc { 283 target_ulong pc; 284 target_ulong cs_base; 285 CPUArchState *env; 286 tb_page_addr_t phys_page1; 287 uint32_t flags; 288 uint32_t cf_mask; 289 uint32_t trace_vcpu_dstate; 290 }; 291 292 static bool tb_lookup_cmp(const void *p, const void *d) 293 { 294 const TranslationBlock *tb = p; 295 const struct tb_desc *desc = d; 296 297 if (tb->pc == desc->pc && 298 tb->page_addr[0] == desc->phys_page1 && 299 tb->cs_base == desc->cs_base && 300 tb->flags == desc->flags && 301 tb->trace_vcpu_dstate == desc->trace_vcpu_dstate && 302 (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) { 303 /* check next page if needed */ 304 if (tb->page_addr[1] == -1) { 305 return true; 306 } else { 307 tb_page_addr_t phys_page2; 308 target_ulong virt_page2; 309 310 virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE; 311 phys_page2 = get_page_addr_code(desc->env, virt_page2); 312 if (tb->page_addr[1] == phys_page2) { 313 return true; 314 } 315 } 316 } 317 return false; 318 } 319 320 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 321 target_ulong cs_base, uint32_t flags, 322 uint32_t cf_mask) 323 { 324 tb_page_addr_t phys_pc; 325 struct tb_desc desc; 326 uint32_t h; 327 328 desc.env = (CPUArchState *)cpu->env_ptr; 329 desc.cs_base = cs_base; 330 desc.flags = flags; 331 desc.cf_mask = cf_mask; 332 desc.trace_vcpu_dstate = *cpu->trace_dstate; 333 desc.pc = pc; 334 phys_pc = get_page_addr_code(desc.env, pc); 335 if (phys_pc == -1) { 336 return NULL; 337 } 338 desc.phys_page1 = phys_pc & TARGET_PAGE_MASK; 339 h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate); 340 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 341 } 342 343 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 344 { 345 if (TCG_TARGET_HAS_direct_jump) { 346 uintptr_t offset = tb->jmp_target_arg[n]; 347 uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr; 348 tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr); 349 } else { 350 tb->jmp_target_arg[n] = addr; 351 } 352 } 353 354 static inline void tb_add_jump(TranslationBlock *tb, int n, 355 TranslationBlock *tb_next) 356 { 357 uintptr_t old; 358 359 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 360 qemu_spin_lock(&tb_next->jmp_lock); 361 362 /* make sure the destination TB is valid */ 363 if (tb_next->cflags & CF_INVALID) { 364 goto out_unlock_next; 365 } 366 /* Atomically claim the jump destination slot only if it was NULL */ 367 old = atomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, (uintptr_t)tb_next); 368 if (old) { 369 goto out_unlock_next; 370 } 371 372 /* patch the native jump address */ 373 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 374 375 /* add in TB jmp list */ 376 tb->jmp_list_next[n] = tb_next->jmp_list_head; 377 tb_next->jmp_list_head = (uintptr_t)tb | n; 378 379 qemu_spin_unlock(&tb_next->jmp_lock); 380 381 qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc, 382 "Linking TBs %p [" TARGET_FMT_lx 383 "] index %d -> %p [" TARGET_FMT_lx "]\n", 384 tb->tc.ptr, tb->pc, n, 385 tb_next->tc.ptr, tb_next->pc); 386 return; 387 388 out_unlock_next: 389 qemu_spin_unlock(&tb_next->jmp_lock); 390 return; 391 } 392 393 static inline TranslationBlock *tb_find(CPUState *cpu, 394 TranslationBlock *last_tb, 395 int tb_exit, uint32_t cf_mask) 396 { 397 TranslationBlock *tb; 398 target_ulong cs_base, pc; 399 uint32_t flags; 400 401 tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask); 402 if (tb == NULL) { 403 mmap_lock(); 404 tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask); 405 mmap_unlock(); 406 /* We add the TB in the virtual pc hash table for the fast lookup */ 407 atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb); 408 } 409 #ifndef CONFIG_USER_ONLY 410 /* We don't take care of direct jumps when address mapping changes in 411 * system emulation. So it's not safe to make a direct jump to a TB 412 * spanning two pages because the mapping for the second page can change. 413 */ 414 if (tb->page_addr[1] != -1) { 415 last_tb = NULL; 416 } 417 #endif 418 /* See if we can patch the calling TB. */ 419 if (last_tb) { 420 tb_add_jump(last_tb, tb_exit, tb); 421 } 422 return tb; 423 } 424 425 static inline bool cpu_handle_halt(CPUState *cpu) 426 { 427 if (cpu->halted) { 428 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 429 if ((cpu->interrupt_request & CPU_INTERRUPT_POLL) 430 && replay_interrupt()) { 431 X86CPU *x86_cpu = X86_CPU(cpu); 432 qemu_mutex_lock_iothread(); 433 apic_poll_irq(x86_cpu->apic_state); 434 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 435 qemu_mutex_unlock_iothread(); 436 } 437 #endif 438 if (!cpu_has_work(cpu)) { 439 return true; 440 } 441 442 cpu->halted = 0; 443 } 444 445 return false; 446 } 447 448 static inline void cpu_handle_debug_exception(CPUState *cpu) 449 { 450 CPUClass *cc = CPU_GET_CLASS(cpu); 451 CPUWatchpoint *wp; 452 453 if (!cpu->watchpoint_hit) { 454 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 455 wp->flags &= ~BP_WATCHPOINT_HIT; 456 } 457 } 458 459 cc->debug_excp_handler(cpu); 460 } 461 462 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 463 { 464 if (cpu->exception_index < 0) { 465 #ifndef CONFIG_USER_ONLY 466 if (replay_has_exception() 467 && cpu->icount_decr.u16.low + cpu->icount_extra == 0) { 468 /* try to cause an exception pending in the log */ 469 cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true); 470 } 471 #endif 472 if (cpu->exception_index < 0) { 473 return false; 474 } 475 } 476 477 if (cpu->exception_index >= EXCP_INTERRUPT) { 478 /* exit request from the cpu execution loop */ 479 *ret = cpu->exception_index; 480 if (*ret == EXCP_DEBUG) { 481 cpu_handle_debug_exception(cpu); 482 } 483 cpu->exception_index = -1; 484 return true; 485 } else { 486 #if defined(CONFIG_USER_ONLY) 487 /* if user mode only, we simulate a fake exception 488 which will be handled outside the cpu execution 489 loop */ 490 #if defined(TARGET_I386) 491 CPUClass *cc = CPU_GET_CLASS(cpu); 492 cc->do_interrupt(cpu); 493 #endif 494 *ret = cpu->exception_index; 495 cpu->exception_index = -1; 496 return true; 497 #else 498 if (replay_exception()) { 499 CPUClass *cc = CPU_GET_CLASS(cpu); 500 qemu_mutex_lock_iothread(); 501 cc->do_interrupt(cpu); 502 qemu_mutex_unlock_iothread(); 503 cpu->exception_index = -1; 504 } else if (!replay_has_interrupt()) { 505 /* give a chance to iothread in replay mode */ 506 *ret = EXCP_INTERRUPT; 507 return true; 508 } 509 #endif 510 } 511 512 return false; 513 } 514 515 static inline bool cpu_handle_interrupt(CPUState *cpu, 516 TranslationBlock **last_tb) 517 { 518 CPUClass *cc = CPU_GET_CLASS(cpu); 519 520 /* Clear the interrupt flag now since we're processing 521 * cpu->interrupt_request and cpu->exit_request. 522 * Ensure zeroing happens before reading cpu->exit_request or 523 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 524 */ 525 atomic_mb_set(&cpu->icount_decr.u16.high, 0); 526 527 if (unlikely(atomic_read(&cpu->interrupt_request))) { 528 int interrupt_request; 529 qemu_mutex_lock_iothread(); 530 interrupt_request = cpu->interrupt_request; 531 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 532 /* Mask out external interrupts for this step. */ 533 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 534 } 535 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 536 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 537 cpu->exception_index = EXCP_DEBUG; 538 qemu_mutex_unlock_iothread(); 539 return true; 540 } 541 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 542 /* Do nothing */ 543 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 544 replay_interrupt(); 545 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 546 cpu->halted = 1; 547 cpu->exception_index = EXCP_HLT; 548 qemu_mutex_unlock_iothread(); 549 return true; 550 } 551 #if defined(TARGET_I386) 552 else if (interrupt_request & CPU_INTERRUPT_INIT) { 553 X86CPU *x86_cpu = X86_CPU(cpu); 554 CPUArchState *env = &x86_cpu->env; 555 replay_interrupt(); 556 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 557 do_cpu_init(x86_cpu); 558 cpu->exception_index = EXCP_HALTED; 559 qemu_mutex_unlock_iothread(); 560 return true; 561 } 562 #else 563 else if (interrupt_request & CPU_INTERRUPT_RESET) { 564 replay_interrupt(); 565 cpu_reset(cpu); 566 qemu_mutex_unlock_iothread(); 567 return true; 568 } 569 #endif 570 /* The target hook has 3 exit conditions: 571 False when the interrupt isn't processed, 572 True when it is, and we should restart on a new TB, 573 and via longjmp via cpu_loop_exit. */ 574 else { 575 if (cc->cpu_exec_interrupt(cpu, interrupt_request)) { 576 replay_interrupt(); 577 cpu->exception_index = -1; 578 *last_tb = NULL; 579 } 580 /* The target hook may have updated the 'cpu->interrupt_request'; 581 * reload the 'interrupt_request' value */ 582 interrupt_request = cpu->interrupt_request; 583 } 584 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 585 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 586 /* ensure that no TB jump will be modified as 587 the program flow was changed */ 588 *last_tb = NULL; 589 } 590 591 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 592 qemu_mutex_unlock_iothread(); 593 } 594 595 /* Finally, check if we need to exit to the main loop. */ 596 if (unlikely(atomic_read(&cpu->exit_request) 597 || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) { 598 atomic_set(&cpu->exit_request, 0); 599 if (cpu->exception_index == -1) { 600 cpu->exception_index = EXCP_INTERRUPT; 601 } 602 return true; 603 } 604 605 return false; 606 } 607 608 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 609 TranslationBlock **last_tb, int *tb_exit) 610 { 611 uintptr_t ret; 612 int32_t insns_left; 613 614 trace_exec_tb(tb, tb->pc); 615 ret = cpu_tb_exec(cpu, tb); 616 tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK); 617 *tb_exit = ret & TB_EXIT_MASK; 618 if (*tb_exit != TB_EXIT_REQUESTED) { 619 *last_tb = tb; 620 return; 621 } 622 623 *last_tb = NULL; 624 insns_left = atomic_read(&cpu->icount_decr.u32); 625 if (insns_left < 0) { 626 /* Something asked us to stop executing chained TBs; just 627 * continue round the main loop. Whatever requested the exit 628 * will also have set something else (eg exit_request or 629 * interrupt_request) which will be handled by 630 * cpu_handle_interrupt. cpu_handle_interrupt will also 631 * clear cpu->icount_decr.u16.high. 632 */ 633 return; 634 } 635 636 /* Instruction counter expired. */ 637 assert(use_icount); 638 #ifndef CONFIG_USER_ONLY 639 /* Ensure global icount has gone forward */ 640 cpu_update_icount(cpu); 641 /* Refill decrementer and continue execution. */ 642 insns_left = MIN(0xffff, cpu->icount_budget); 643 cpu->icount_decr.u16.low = insns_left; 644 cpu->icount_extra = cpu->icount_budget - insns_left; 645 if (!cpu->icount_extra) { 646 /* Execute any remaining instructions, then let the main loop 647 * handle the next event. 648 */ 649 if (insns_left > 0) { 650 cpu_exec_nocache(cpu, insns_left, tb, false); 651 } 652 } 653 #endif 654 } 655 656 /* main execution loop */ 657 658 int cpu_exec(CPUState *cpu) 659 { 660 CPUClass *cc = CPU_GET_CLASS(cpu); 661 int ret; 662 SyncClocks sc = { 0 }; 663 664 /* replay_interrupt may need current_cpu */ 665 current_cpu = cpu; 666 667 if (cpu_handle_halt(cpu)) { 668 return EXCP_HALTED; 669 } 670 671 rcu_read_lock(); 672 673 cc->cpu_exec_enter(cpu); 674 675 /* Calculate difference between guest clock and host clock. 676 * This delay includes the delay of the last cycle, so 677 * what we have to do is sleep until it is 0. As for the 678 * advance/delay we gain here, we try to fix it next time. 679 */ 680 init_delay_params(&sc, cpu); 681 682 /* prepare setjmp context for exception handling */ 683 if (sigsetjmp(cpu->jmp_env, 0) != 0) { 684 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6) 685 /* Some compilers wrongly smash all local variables after 686 * siglongjmp. There were bug reports for gcc 4.5.0 and clang. 687 * Reload essential local variables here for those compilers. 688 * Newer versions of gcc would complain about this code (-Wclobbered). */ 689 cpu = current_cpu; 690 cc = CPU_GET_CLASS(cpu); 691 #else /* buggy compiler */ 692 /* Assert that the compiler does not smash local variables. */ 693 g_assert(cpu == current_cpu); 694 g_assert(cc == CPU_GET_CLASS(cpu)); 695 #endif /* buggy compiler */ 696 #ifndef CONFIG_SOFTMMU 697 tcg_debug_assert(!have_mmap_lock()); 698 #endif 699 if (qemu_mutex_iothread_locked()) { 700 qemu_mutex_unlock_iothread(); 701 } 702 } 703 704 /* if an exception is pending, we execute it here */ 705 while (!cpu_handle_exception(cpu, &ret)) { 706 TranslationBlock *last_tb = NULL; 707 int tb_exit = 0; 708 709 while (!cpu_handle_interrupt(cpu, &last_tb)) { 710 uint32_t cflags = cpu->cflags_next_tb; 711 TranslationBlock *tb; 712 713 /* When requested, use an exact setting for cflags for the next 714 execution. This is used for icount, precise smc, and stop- 715 after-access watchpoints. Since this request should never 716 have CF_INVALID set, -1 is a convenient invalid value that 717 does not require tcg headers for cpu_common_reset. */ 718 if (cflags == -1) { 719 cflags = curr_cflags(); 720 } else { 721 cpu->cflags_next_tb = -1; 722 } 723 724 tb = tb_find(cpu, last_tb, tb_exit, cflags); 725 cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit); 726 /* Try to align the host and virtual clocks 727 if the guest is in advance */ 728 align_clocks(&sc, cpu); 729 } 730 } 731 732 cc->cpu_exec_exit(cpu); 733 rcu_read_unlock(); 734 735 return ret; 736 } 737