xref: /openbmc/qemu/accel/tcg/cpu-exec.c (revision 4366e1db16a3ec7bf24171e5c7619c8ea038e43b)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "trace.h"
22 #include "disas/disas.h"
23 #include "exec/exec-all.h"
24 #include "tcg.h"
25 #include "qemu/atomic.h"
26 #include "sysemu/qtest.h"
27 #include "qemu/timer.h"
28 #include "qemu/rcu.h"
29 #include "exec/tb-hash.h"
30 #include "exec/tb-lookup.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
34 #include "hw/i386/apic.h"
35 #endif
36 #include "sysemu/cpus.h"
37 #include "sysemu/replay.h"
38 
39 /* -icount align implementation. */
40 
41 typedef struct SyncClocks {
42     int64_t diff_clk;
43     int64_t last_cpu_icount;
44     int64_t realtime_clock;
45 } SyncClocks;
46 
47 #if !defined(CONFIG_USER_ONLY)
48 /* Allow the guest to have a max 3ms advance.
49  * The difference between the 2 clocks could therefore
50  * oscillate around 0.
51  */
52 #define VM_CLOCK_ADVANCE 3000000
53 #define THRESHOLD_REDUCE 1.5
54 #define MAX_DELAY_PRINT_RATE 2000000000LL
55 #define MAX_NB_PRINTS 100
56 
57 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
58 {
59     int64_t cpu_icount;
60 
61     if (!icount_align_option) {
62         return;
63     }
64 
65     cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
66     sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
67     sc->last_cpu_icount = cpu_icount;
68 
69     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
70 #ifndef _WIN32
71         struct timespec sleep_delay, rem_delay;
72         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
73         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
74         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
75             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
76         } else {
77             sc->diff_clk = 0;
78         }
79 #else
80         Sleep(sc->diff_clk / SCALE_MS);
81         sc->diff_clk = 0;
82 #endif
83     }
84 }
85 
86 static void print_delay(const SyncClocks *sc)
87 {
88     static float threshold_delay;
89     static int64_t last_realtime_clock;
90     static int nb_prints;
91 
92     if (icount_align_option &&
93         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
94         nb_prints < MAX_NB_PRINTS) {
95         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
96             (-sc->diff_clk / (float)1000000000LL <
97              (threshold_delay - THRESHOLD_REDUCE))) {
98             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
99             printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
100                    threshold_delay - 1,
101                    threshold_delay);
102             nb_prints++;
103             last_realtime_clock = sc->realtime_clock;
104         }
105     }
106 }
107 
108 static void init_delay_params(SyncClocks *sc,
109                               const CPUState *cpu)
110 {
111     if (!icount_align_option) {
112         return;
113     }
114     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
115     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
116     sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
117     if (sc->diff_clk < max_delay) {
118         max_delay = sc->diff_clk;
119     }
120     if (sc->diff_clk > max_advance) {
121         max_advance = sc->diff_clk;
122     }
123 
124     /* Print every 2s max if the guest is late. We limit the number
125        of printed messages to NB_PRINT_MAX(currently 100) */
126     print_delay(sc);
127 }
128 #else
129 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
130 {
131 }
132 
133 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
134 {
135 }
136 #endif /* CONFIG USER ONLY */
137 
138 /* Execute a TB, and fix up the CPU state afterwards if necessary */
139 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
140 {
141     CPUArchState *env = cpu->env_ptr;
142     uintptr_t ret;
143     TranslationBlock *last_tb;
144     int tb_exit;
145     uint8_t *tb_ptr = itb->tc.ptr;
146 
147     qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
148                            "Trace %d: %p ["
149                            TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n",
150                            cpu->cpu_index, itb->tc.ptr,
151                            itb->cs_base, itb->pc, itb->flags,
152                            lookup_symbol(itb->pc));
153 
154 #if defined(DEBUG_DISAS)
155     if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
156         && qemu_log_in_addr_range(itb->pc)) {
157         qemu_log_lock();
158         int flags = 0;
159         if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
160             flags |= CPU_DUMP_FPU;
161         }
162 #if defined(TARGET_I386)
163         flags |= CPU_DUMP_CCOP;
164 #endif
165         log_cpu_state(cpu, flags);
166         qemu_log_unlock();
167     }
168 #endif /* DEBUG_DISAS */
169 
170     cpu->can_do_io = !use_icount;
171     ret = tcg_qemu_tb_exec(env, tb_ptr);
172     cpu->can_do_io = 1;
173     last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
174     tb_exit = ret & TB_EXIT_MASK;
175     trace_exec_tb_exit(last_tb, tb_exit);
176 
177     if (tb_exit > TB_EXIT_IDX1) {
178         /* We didn't start executing this TB (eg because the instruction
179          * counter hit zero); we must restore the guest PC to the address
180          * of the start of the TB.
181          */
182         CPUClass *cc = CPU_GET_CLASS(cpu);
183         qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
184                                "Stopped execution of TB chain before %p ["
185                                TARGET_FMT_lx "] %s\n",
186                                last_tb->tc.ptr, last_tb->pc,
187                                lookup_symbol(last_tb->pc));
188         if (cc->synchronize_from_tb) {
189             cc->synchronize_from_tb(cpu, last_tb);
190         } else {
191             assert(cc->set_pc);
192             cc->set_pc(cpu, last_tb->pc);
193         }
194     }
195     return ret;
196 }
197 
198 #ifndef CONFIG_USER_ONLY
199 /* Execute the code without caching the generated code. An interpreter
200    could be used if available. */
201 static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
202                              TranslationBlock *orig_tb, bool ignore_icount)
203 {
204     TranslationBlock *tb;
205     uint32_t cflags = curr_cflags() | CF_NOCACHE;
206 
207     if (ignore_icount) {
208         cflags &= ~CF_USE_ICOUNT;
209     }
210 
211     /* Should never happen.
212        We only end up here when an existing TB is too long.  */
213     cflags |= MIN(max_cycles, CF_COUNT_MASK);
214 
215     mmap_lock();
216     tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base,
217                      orig_tb->flags, cflags);
218     tb->orig_tb = orig_tb;
219     mmap_unlock();
220 
221     /* execute the generated code */
222     trace_exec_tb_nocache(tb, tb->pc);
223     cpu_tb_exec(cpu, tb);
224 
225     mmap_lock();
226     tb_phys_invalidate(tb, -1);
227     mmap_unlock();
228     tcg_tb_remove(tb);
229 }
230 #endif
231 
232 void cpu_exec_step_atomic(CPUState *cpu)
233 {
234     CPUClass *cc = CPU_GET_CLASS(cpu);
235     TranslationBlock *tb;
236     target_ulong cs_base, pc;
237     uint32_t flags;
238     uint32_t cflags = 1;
239     uint32_t cf_mask = cflags & CF_HASH_MASK;
240     /* volatile because we modify it between setjmp and longjmp */
241     volatile bool in_exclusive_region = false;
242 
243     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
244         tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
245         if (tb == NULL) {
246             mmap_lock();
247             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
248             mmap_unlock();
249         }
250 
251         start_exclusive();
252 
253         /* Since we got here, we know that parallel_cpus must be true.  */
254         parallel_cpus = false;
255         in_exclusive_region = true;
256         cc->cpu_exec_enter(cpu);
257         /* execute the generated code */
258         trace_exec_tb(tb, pc);
259         cpu_tb_exec(cpu, tb);
260         cc->cpu_exec_exit(cpu);
261     } else {
262         /*
263          * The mmap_lock is dropped by tb_gen_code if it runs out of
264          * memory.
265          */
266 #ifndef CONFIG_SOFTMMU
267         tcg_debug_assert(!have_mmap_lock());
268 #endif
269         if (qemu_mutex_iothread_locked()) {
270             qemu_mutex_unlock_iothread();
271         }
272         assert_no_pages_locked();
273     }
274 
275     if (in_exclusive_region) {
276         /* We might longjump out of either the codegen or the
277          * execution, so must make sure we only end the exclusive
278          * region if we started it.
279          */
280         parallel_cpus = true;
281         end_exclusive();
282     }
283 }
284 
285 struct tb_desc {
286     target_ulong pc;
287     target_ulong cs_base;
288     CPUArchState *env;
289     tb_page_addr_t phys_page1;
290     uint32_t flags;
291     uint32_t cf_mask;
292     uint32_t trace_vcpu_dstate;
293 };
294 
295 static bool tb_lookup_cmp(const void *p, const void *d)
296 {
297     const TranslationBlock *tb = p;
298     const struct tb_desc *desc = d;
299 
300     if (tb->pc == desc->pc &&
301         tb->page_addr[0] == desc->phys_page1 &&
302         tb->cs_base == desc->cs_base &&
303         tb->flags == desc->flags &&
304         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
305         (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) {
306         /* check next page if needed */
307         if (tb->page_addr[1] == -1) {
308             return true;
309         } else {
310             tb_page_addr_t phys_page2;
311             target_ulong virt_page2;
312 
313             virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
314             phys_page2 = get_page_addr_code(desc->env, virt_page2);
315             if (tb->page_addr[1] == phys_page2) {
316                 return true;
317             }
318         }
319     }
320     return false;
321 }
322 
323 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
324                                    target_ulong cs_base, uint32_t flags,
325                                    uint32_t cf_mask)
326 {
327     tb_page_addr_t phys_pc;
328     struct tb_desc desc;
329     uint32_t h;
330 
331     cf_mask &= ~CF_CLUSTER_MASK;
332     cf_mask |= cpu->cluster_index << CF_CLUSTER_SHIFT;
333 
334     desc.env = (CPUArchState *)cpu->env_ptr;
335     desc.cs_base = cs_base;
336     desc.flags = flags;
337     desc.cf_mask = cf_mask;
338     desc.trace_vcpu_dstate = *cpu->trace_dstate;
339     desc.pc = pc;
340     phys_pc = get_page_addr_code(desc.env, pc);
341     if (phys_pc == -1) {
342         return NULL;
343     }
344     desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
345     h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate);
346     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
347 }
348 
349 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
350 {
351     if (TCG_TARGET_HAS_direct_jump) {
352         uintptr_t offset = tb->jmp_target_arg[n];
353         uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
354         tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr);
355     } else {
356         tb->jmp_target_arg[n] = addr;
357     }
358 }
359 
360 static inline void tb_add_jump(TranslationBlock *tb, int n,
361                                TranslationBlock *tb_next)
362 {
363     uintptr_t old;
364 
365     assert(n < ARRAY_SIZE(tb->jmp_list_next));
366     qemu_spin_lock(&tb_next->jmp_lock);
367 
368     /* make sure the destination TB is valid */
369     if (tb_next->cflags & CF_INVALID) {
370         goto out_unlock_next;
371     }
372     /* Atomically claim the jump destination slot only if it was NULL */
373     old = atomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, (uintptr_t)tb_next);
374     if (old) {
375         goto out_unlock_next;
376     }
377 
378     /* patch the native jump address */
379     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
380 
381     /* add in TB jmp list */
382     tb->jmp_list_next[n] = tb_next->jmp_list_head;
383     tb_next->jmp_list_head = (uintptr_t)tb | n;
384 
385     qemu_spin_unlock(&tb_next->jmp_lock);
386 
387     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
388                            "Linking TBs %p [" TARGET_FMT_lx
389                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
390                            tb->tc.ptr, tb->pc, n,
391                            tb_next->tc.ptr, tb_next->pc);
392     return;
393 
394  out_unlock_next:
395     qemu_spin_unlock(&tb_next->jmp_lock);
396     return;
397 }
398 
399 static inline TranslationBlock *tb_find(CPUState *cpu,
400                                         TranslationBlock *last_tb,
401                                         int tb_exit, uint32_t cf_mask)
402 {
403     TranslationBlock *tb;
404     target_ulong cs_base, pc;
405     uint32_t flags;
406 
407     tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
408     if (tb == NULL) {
409         mmap_lock();
410         tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask);
411         mmap_unlock();
412         /* We add the TB in the virtual pc hash table for the fast lookup */
413         atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
414     }
415 #ifndef CONFIG_USER_ONLY
416     /* We don't take care of direct jumps when address mapping changes in
417      * system emulation. So it's not safe to make a direct jump to a TB
418      * spanning two pages because the mapping for the second page can change.
419      */
420     if (tb->page_addr[1] != -1) {
421         last_tb = NULL;
422     }
423 #endif
424     /* See if we can patch the calling TB. */
425     if (last_tb) {
426         tb_add_jump(last_tb, tb_exit, tb);
427     }
428     return tb;
429 }
430 
431 static inline bool cpu_handle_halt(CPUState *cpu)
432 {
433     if (cpu->halted) {
434 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
435         if ((cpu->interrupt_request & CPU_INTERRUPT_POLL)
436             && replay_interrupt()) {
437             X86CPU *x86_cpu = X86_CPU(cpu);
438             qemu_mutex_lock_iothread();
439             apic_poll_irq(x86_cpu->apic_state);
440             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
441             qemu_mutex_unlock_iothread();
442         }
443 #endif
444         if (!cpu_has_work(cpu)) {
445             return true;
446         }
447 
448         cpu->halted = 0;
449     }
450 
451     return false;
452 }
453 
454 static inline void cpu_handle_debug_exception(CPUState *cpu)
455 {
456     CPUClass *cc = CPU_GET_CLASS(cpu);
457     CPUWatchpoint *wp;
458 
459     if (!cpu->watchpoint_hit) {
460         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
461             wp->flags &= ~BP_WATCHPOINT_HIT;
462         }
463     }
464 
465     cc->debug_excp_handler(cpu);
466 }
467 
468 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
469 {
470     if (cpu->exception_index < 0) {
471 #ifndef CONFIG_USER_ONLY
472         if (replay_has_exception()
473                && cpu->icount_decr.u16.low + cpu->icount_extra == 0) {
474             /* try to cause an exception pending in the log */
475             cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true);
476         }
477 #endif
478         if (cpu->exception_index < 0) {
479             return false;
480         }
481     }
482 
483     if (cpu->exception_index >= EXCP_INTERRUPT) {
484         /* exit request from the cpu execution loop */
485         *ret = cpu->exception_index;
486         if (*ret == EXCP_DEBUG) {
487             cpu_handle_debug_exception(cpu);
488         }
489         cpu->exception_index = -1;
490         return true;
491     } else {
492 #if defined(CONFIG_USER_ONLY)
493         /* if user mode only, we simulate a fake exception
494            which will be handled outside the cpu execution
495            loop */
496 #if defined(TARGET_I386)
497         CPUClass *cc = CPU_GET_CLASS(cpu);
498         cc->do_interrupt(cpu);
499 #endif
500         *ret = cpu->exception_index;
501         cpu->exception_index = -1;
502         return true;
503 #else
504         if (replay_exception()) {
505             CPUClass *cc = CPU_GET_CLASS(cpu);
506             qemu_mutex_lock_iothread();
507             cc->do_interrupt(cpu);
508             qemu_mutex_unlock_iothread();
509             cpu->exception_index = -1;
510         } else if (!replay_has_interrupt()) {
511             /* give a chance to iothread in replay mode */
512             *ret = EXCP_INTERRUPT;
513             return true;
514         }
515 #endif
516     }
517 
518     return false;
519 }
520 
521 static inline bool cpu_handle_interrupt(CPUState *cpu,
522                                         TranslationBlock **last_tb)
523 {
524     CPUClass *cc = CPU_GET_CLASS(cpu);
525 
526     /* Clear the interrupt flag now since we're processing
527      * cpu->interrupt_request and cpu->exit_request.
528      * Ensure zeroing happens before reading cpu->exit_request or
529      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
530      */
531     atomic_mb_set(&cpu->icount_decr.u16.high, 0);
532 
533     if (unlikely(atomic_read(&cpu->interrupt_request))) {
534         int interrupt_request;
535         qemu_mutex_lock_iothread();
536         interrupt_request = cpu->interrupt_request;
537         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
538             /* Mask out external interrupts for this step. */
539             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
540         }
541         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
542             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
543             cpu->exception_index = EXCP_DEBUG;
544             qemu_mutex_unlock_iothread();
545             return true;
546         }
547         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
548             /* Do nothing */
549         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
550             replay_interrupt();
551             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
552             cpu->halted = 1;
553             cpu->exception_index = EXCP_HLT;
554             qemu_mutex_unlock_iothread();
555             return true;
556         }
557 #if defined(TARGET_I386)
558         else if (interrupt_request & CPU_INTERRUPT_INIT) {
559             X86CPU *x86_cpu = X86_CPU(cpu);
560             CPUArchState *env = &x86_cpu->env;
561             replay_interrupt();
562             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
563             do_cpu_init(x86_cpu);
564             cpu->exception_index = EXCP_HALTED;
565             qemu_mutex_unlock_iothread();
566             return true;
567         }
568 #else
569         else if (interrupt_request & CPU_INTERRUPT_RESET) {
570             replay_interrupt();
571             cpu_reset(cpu);
572             qemu_mutex_unlock_iothread();
573             return true;
574         }
575 #endif
576         /* The target hook has 3 exit conditions:
577            False when the interrupt isn't processed,
578            True when it is, and we should restart on a new TB,
579            and via longjmp via cpu_loop_exit.  */
580         else {
581             if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
582                 replay_interrupt();
583                 cpu->exception_index = -1;
584                 *last_tb = NULL;
585             }
586             /* The target hook may have updated the 'cpu->interrupt_request';
587              * reload the 'interrupt_request' value */
588             interrupt_request = cpu->interrupt_request;
589         }
590         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
591             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
592             /* ensure that no TB jump will be modified as
593                the program flow was changed */
594             *last_tb = NULL;
595         }
596 
597         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
598         qemu_mutex_unlock_iothread();
599     }
600 
601     /* Finally, check if we need to exit to the main loop.  */
602     if (unlikely(atomic_read(&cpu->exit_request)
603         || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) {
604         atomic_set(&cpu->exit_request, 0);
605         if (cpu->exception_index == -1) {
606             cpu->exception_index = EXCP_INTERRUPT;
607         }
608         return true;
609     }
610 
611     return false;
612 }
613 
614 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
615                                     TranslationBlock **last_tb, int *tb_exit)
616 {
617     uintptr_t ret;
618     int32_t insns_left;
619 
620     trace_exec_tb(tb, tb->pc);
621     ret = cpu_tb_exec(cpu, tb);
622     tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
623     *tb_exit = ret & TB_EXIT_MASK;
624     if (*tb_exit != TB_EXIT_REQUESTED) {
625         *last_tb = tb;
626         return;
627     }
628 
629     *last_tb = NULL;
630     insns_left = atomic_read(&cpu->icount_decr.u32);
631     if (insns_left < 0) {
632         /* Something asked us to stop executing chained TBs; just
633          * continue round the main loop. Whatever requested the exit
634          * will also have set something else (eg exit_request or
635          * interrupt_request) which will be handled by
636          * cpu_handle_interrupt.  cpu_handle_interrupt will also
637          * clear cpu->icount_decr.u16.high.
638          */
639         return;
640     }
641 
642     /* Instruction counter expired.  */
643     assert(use_icount);
644 #ifndef CONFIG_USER_ONLY
645     /* Ensure global icount has gone forward */
646     cpu_update_icount(cpu);
647     /* Refill decrementer and continue execution.  */
648     insns_left = MIN(0xffff, cpu->icount_budget);
649     cpu->icount_decr.u16.low = insns_left;
650     cpu->icount_extra = cpu->icount_budget - insns_left;
651     if (!cpu->icount_extra) {
652         /* Execute any remaining instructions, then let the main loop
653          * handle the next event.
654          */
655         if (insns_left > 0) {
656             cpu_exec_nocache(cpu, insns_left, tb, false);
657         }
658     }
659 #endif
660 }
661 
662 /* main execution loop */
663 
664 int cpu_exec(CPUState *cpu)
665 {
666     CPUClass *cc = CPU_GET_CLASS(cpu);
667     int ret;
668     SyncClocks sc = { 0 };
669 
670     /* replay_interrupt may need current_cpu */
671     current_cpu = cpu;
672 
673     if (cpu_handle_halt(cpu)) {
674         return EXCP_HALTED;
675     }
676 
677     rcu_read_lock();
678 
679     cc->cpu_exec_enter(cpu);
680 
681     /* Calculate difference between guest clock and host clock.
682      * This delay includes the delay of the last cycle, so
683      * what we have to do is sleep until it is 0. As for the
684      * advance/delay we gain here, we try to fix it next time.
685      */
686     init_delay_params(&sc, cpu);
687 
688     /* prepare setjmp context for exception handling */
689     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
690 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6)
691         /* Some compilers wrongly smash all local variables after
692          * siglongjmp. There were bug reports for gcc 4.5.0 and clang.
693          * Reload essential local variables here for those compilers.
694          * Newer versions of gcc would complain about this code (-Wclobbered). */
695         cpu = current_cpu;
696         cc = CPU_GET_CLASS(cpu);
697 #else /* buggy compiler */
698         /* Assert that the compiler does not smash local variables. */
699         g_assert(cpu == current_cpu);
700         g_assert(cc == CPU_GET_CLASS(cpu));
701 #endif /* buggy compiler */
702 #ifndef CONFIG_SOFTMMU
703         tcg_debug_assert(!have_mmap_lock());
704 #endif
705         if (qemu_mutex_iothread_locked()) {
706             qemu_mutex_unlock_iothread();
707         }
708         assert_no_pages_locked();
709     }
710 
711     /* if an exception is pending, we execute it here */
712     while (!cpu_handle_exception(cpu, &ret)) {
713         TranslationBlock *last_tb = NULL;
714         int tb_exit = 0;
715 
716         while (!cpu_handle_interrupt(cpu, &last_tb)) {
717             uint32_t cflags = cpu->cflags_next_tb;
718             TranslationBlock *tb;
719 
720             /* When requested, use an exact setting for cflags for the next
721                execution.  This is used for icount, precise smc, and stop-
722                after-access watchpoints.  Since this request should never
723                have CF_INVALID set, -1 is a convenient invalid value that
724                does not require tcg headers for cpu_common_reset.  */
725             if (cflags == -1) {
726                 cflags = curr_cflags();
727             } else {
728                 cpu->cflags_next_tb = -1;
729             }
730 
731             tb = tb_find(cpu, last_tb, tb_exit, cflags);
732             cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
733             /* Try to align the host and virtual clocks
734                if the guest is in advance */
735             align_clocks(&sc, cpu);
736         }
737     }
738 
739     cc->cpu_exec_exit(cpu);
740     rcu_read_unlock();
741 
742     return ret;
743 }
744