1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/tcg-cpu-ops.h" 25 #include "trace.h" 26 #include "disas/disas.h" 27 #include "exec/exec-all.h" 28 #include "tcg/tcg.h" 29 #include "qemu/atomic.h" 30 #include "qemu/rcu.h" 31 #include "exec/log.h" 32 #include "qemu/main-loop.h" 33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 34 #include "hw/i386/apic.h" 35 #endif 36 #include "sysemu/cpus.h" 37 #include "exec/cpu-all.h" 38 #include "sysemu/cpu-timers.h" 39 #include "exec/replay-core.h" 40 #include "sysemu/tcg.h" 41 #include "exec/helper-proto-common.h" 42 #include "tb-jmp-cache.h" 43 #include "tb-hash.h" 44 #include "tb-context.h" 45 #include "internal.h" 46 47 /* -icount align implementation. */ 48 49 typedef struct SyncClocks { 50 int64_t diff_clk; 51 int64_t last_cpu_icount; 52 int64_t realtime_clock; 53 } SyncClocks; 54 55 #if !defined(CONFIG_USER_ONLY) 56 /* Allow the guest to have a max 3ms advance. 57 * The difference between the 2 clocks could therefore 58 * oscillate around 0. 59 */ 60 #define VM_CLOCK_ADVANCE 3000000 61 #define THRESHOLD_REDUCE 1.5 62 #define MAX_DELAY_PRINT_RATE 2000000000LL 63 #define MAX_NB_PRINTS 100 64 65 int64_t max_delay; 66 int64_t max_advance; 67 68 static void align_clocks(SyncClocks *sc, CPUState *cpu) 69 { 70 int64_t cpu_icount; 71 72 if (!icount_align_option) { 73 return; 74 } 75 76 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 77 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 78 sc->last_cpu_icount = cpu_icount; 79 80 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 81 #ifndef _WIN32 82 struct timespec sleep_delay, rem_delay; 83 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 84 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 85 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 86 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 87 } else { 88 sc->diff_clk = 0; 89 } 90 #else 91 Sleep(sc->diff_clk / SCALE_MS); 92 sc->diff_clk = 0; 93 #endif 94 } 95 } 96 97 static void print_delay(const SyncClocks *sc) 98 { 99 static float threshold_delay; 100 static int64_t last_realtime_clock; 101 static int nb_prints; 102 103 if (icount_align_option && 104 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 105 nb_prints < MAX_NB_PRINTS) { 106 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 107 (-sc->diff_clk / (float)1000000000LL < 108 (threshold_delay - THRESHOLD_REDUCE))) { 109 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 110 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 111 threshold_delay - 1, 112 threshold_delay); 113 nb_prints++; 114 last_realtime_clock = sc->realtime_clock; 115 } 116 } 117 } 118 119 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 120 { 121 if (!icount_align_option) { 122 return; 123 } 124 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 125 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 126 sc->last_cpu_icount 127 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 128 if (sc->diff_clk < max_delay) { 129 max_delay = sc->diff_clk; 130 } 131 if (sc->diff_clk > max_advance) { 132 max_advance = sc->diff_clk; 133 } 134 135 /* Print every 2s max if the guest is late. We limit the number 136 of printed messages to NB_PRINT_MAX(currently 100) */ 137 print_delay(sc); 138 } 139 #else 140 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 141 { 142 } 143 144 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 145 { 146 } 147 #endif /* CONFIG USER ONLY */ 148 149 uint32_t curr_cflags(CPUState *cpu) 150 { 151 uint32_t cflags = cpu->tcg_cflags; 152 153 /* 154 * Record gdb single-step. We should be exiting the TB by raising 155 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 156 * 157 * For singlestep and -d nochain, suppress goto_tb so that 158 * we can log -d cpu,exec after every TB. 159 */ 160 if (unlikely(cpu->singlestep_enabled)) { 161 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 162 } else if (qatomic_read(&one_insn_per_tb)) { 163 cflags |= CF_NO_GOTO_TB | 1; 164 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 165 cflags |= CF_NO_GOTO_TB; 166 } 167 168 return cflags; 169 } 170 171 struct tb_desc { 172 vaddr pc; 173 uint64_t cs_base; 174 CPUArchState *env; 175 tb_page_addr_t page_addr0; 176 uint32_t flags; 177 uint32_t cflags; 178 }; 179 180 static bool tb_lookup_cmp(const void *p, const void *d) 181 { 182 const TranslationBlock *tb = p; 183 const struct tb_desc *desc = d; 184 185 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && 186 tb_page_addr0(tb) == desc->page_addr0 && 187 tb->cs_base == desc->cs_base && 188 tb->flags == desc->flags && 189 tb_cflags(tb) == desc->cflags) { 190 /* check next page if needed */ 191 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 192 if (tb_phys_page1 == -1) { 193 return true; 194 } else { 195 tb_page_addr_t phys_page1; 196 vaddr virt_page1; 197 198 /* 199 * We know that the first page matched, and an otherwise valid TB 200 * encountered an incomplete instruction at the end of that page, 201 * therefore we know that generating a new TB from the current PC 202 * must also require reading from the next page -- even if the 203 * second pages do not match, and therefore the resulting insn 204 * is different for the new TB. Therefore any exception raised 205 * here by the faulting lookup is not premature. 206 */ 207 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 208 phys_page1 = get_page_addr_code(desc->env, virt_page1); 209 if (tb_phys_page1 == phys_page1) { 210 return true; 211 } 212 } 213 } 214 return false; 215 } 216 217 static TranslationBlock *tb_htable_lookup(CPUState *cpu, vaddr pc, 218 uint64_t cs_base, uint32_t flags, 219 uint32_t cflags) 220 { 221 tb_page_addr_t phys_pc; 222 struct tb_desc desc; 223 uint32_t h; 224 225 desc.env = cpu->env_ptr; 226 desc.cs_base = cs_base; 227 desc.flags = flags; 228 desc.cflags = cflags; 229 desc.pc = pc; 230 phys_pc = get_page_addr_code(desc.env, pc); 231 if (phys_pc == -1) { 232 return NULL; 233 } 234 desc.page_addr0 = phys_pc; 235 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), 236 flags, cs_base, cflags); 237 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 238 } 239 240 /* Might cause an exception, so have a longjmp destination ready */ 241 static inline TranslationBlock *tb_lookup(CPUState *cpu, vaddr pc, 242 uint64_t cs_base, uint32_t flags, 243 uint32_t cflags) 244 { 245 TranslationBlock *tb; 246 CPUJumpCache *jc; 247 uint32_t hash; 248 249 /* we should never be trying to look up an INVALID tb */ 250 tcg_debug_assert(!(cflags & CF_INVALID)); 251 252 hash = tb_jmp_cache_hash_func(pc); 253 jc = cpu->tb_jmp_cache; 254 255 if (cflags & CF_PCREL) { 256 /* Use acquire to ensure current load of pc from jc. */ 257 tb = qatomic_load_acquire(&jc->array[hash].tb); 258 259 if (likely(tb && 260 jc->array[hash].pc == pc && 261 tb->cs_base == cs_base && 262 tb->flags == flags && 263 tb_cflags(tb) == cflags)) { 264 return tb; 265 } 266 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 267 if (tb == NULL) { 268 return NULL; 269 } 270 jc->array[hash].pc = pc; 271 /* Ensure pc is written first. */ 272 qatomic_store_release(&jc->array[hash].tb, tb); 273 } else { 274 /* Use rcu_read to ensure current load of pc from *tb. */ 275 tb = qatomic_rcu_read(&jc->array[hash].tb); 276 277 if (likely(tb && 278 tb->pc == pc && 279 tb->cs_base == cs_base && 280 tb->flags == flags && 281 tb_cflags(tb) == cflags)) { 282 return tb; 283 } 284 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 285 if (tb == NULL) { 286 return NULL; 287 } 288 /* Use the pc value already stored in tb->pc. */ 289 qatomic_set(&jc->array[hash].tb, tb); 290 } 291 292 return tb; 293 } 294 295 static void log_cpu_exec(vaddr pc, CPUState *cpu, 296 const TranslationBlock *tb) 297 { 298 if (qemu_log_in_addr_range(pc)) { 299 qemu_log_mask(CPU_LOG_EXEC, 300 "Trace %d: %p [%08" PRIx64 301 "/%" VADDR_PRIx "/%08x/%08x] %s\n", 302 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 303 tb->flags, tb->cflags, lookup_symbol(pc)); 304 305 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 306 FILE *logfile = qemu_log_trylock(); 307 if (logfile) { 308 int flags = 0; 309 310 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 311 flags |= CPU_DUMP_FPU; 312 } 313 #if defined(TARGET_I386) 314 flags |= CPU_DUMP_CCOP; 315 #endif 316 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { 317 flags |= CPU_DUMP_VPU; 318 } 319 cpu_dump_state(cpu, logfile, flags); 320 qemu_log_unlock(logfile); 321 } 322 } 323 } 324 } 325 326 static bool check_for_breakpoints_slow(CPUState *cpu, vaddr pc, 327 uint32_t *cflags) 328 { 329 CPUBreakpoint *bp; 330 bool match_page = false; 331 332 /* 333 * Singlestep overrides breakpoints. 334 * This requirement is visible in the record-replay tests, where 335 * we would fail to make forward progress in reverse-continue. 336 * 337 * TODO: gdb singlestep should only override gdb breakpoints, 338 * so that one could (gdb) singlestep into the guest kernel's 339 * architectural breakpoint handler. 340 */ 341 if (cpu->singlestep_enabled) { 342 return false; 343 } 344 345 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 346 /* 347 * If we have an exact pc match, trigger the breakpoint. 348 * Otherwise, note matches within the page. 349 */ 350 if (pc == bp->pc) { 351 bool match_bp = false; 352 353 if (bp->flags & BP_GDB) { 354 match_bp = true; 355 } else if (bp->flags & BP_CPU) { 356 #ifdef CONFIG_USER_ONLY 357 g_assert_not_reached(); 358 #else 359 CPUClass *cc = CPU_GET_CLASS(cpu); 360 assert(cc->tcg_ops->debug_check_breakpoint); 361 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu); 362 #endif 363 } 364 365 if (match_bp) { 366 cpu->exception_index = EXCP_DEBUG; 367 return true; 368 } 369 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 370 match_page = true; 371 } 372 } 373 374 /* 375 * Within the same page as a breakpoint, single-step, 376 * returning to helper_lookup_tb_ptr after each insn looking 377 * for the actual breakpoint. 378 * 379 * TODO: Perhaps better to record all of the TBs associated 380 * with a given virtual page that contains a breakpoint, and 381 * then invalidate them when a new overlapping breakpoint is 382 * set on the page. Non-overlapping TBs would not be 383 * invalidated, nor would any TB need to be invalidated as 384 * breakpoints are removed. 385 */ 386 if (match_page) { 387 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1; 388 } 389 return false; 390 } 391 392 static inline bool check_for_breakpoints(CPUState *cpu, vaddr pc, 393 uint32_t *cflags) 394 { 395 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 396 check_for_breakpoints_slow(cpu, pc, cflags); 397 } 398 399 /** 400 * helper_lookup_tb_ptr: quick check for next tb 401 * @env: current cpu state 402 * 403 * Look for an existing TB matching the current cpu state. 404 * If found, return the code pointer. If not found, return 405 * the tcg epilogue so that we return into cpu_tb_exec. 406 */ 407 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 408 { 409 CPUState *cpu = env_cpu(env); 410 TranslationBlock *tb; 411 vaddr pc; 412 uint64_t cs_base; 413 uint32_t flags, cflags; 414 415 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 416 417 cflags = curr_cflags(cpu); 418 if (check_for_breakpoints(cpu, pc, &cflags)) { 419 cpu_loop_exit(cpu); 420 } 421 422 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 423 if (tb == NULL) { 424 return tcg_code_gen_epilogue; 425 } 426 427 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 428 log_cpu_exec(pc, cpu, tb); 429 } 430 431 return tb->tc.ptr; 432 } 433 434 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 435 /* 436 * Disable CFI checks. 437 * TCG creates binary blobs at runtime, with the transformed code. 438 * A TB is a blob of binary code, created at runtime and called with an 439 * indirect function call. Since such function did not exist at compile time, 440 * the CFI runtime has no way to verify its signature and would fail. 441 * TCG is not considered a security-sensitive part of QEMU so this does not 442 * affect the impact of CFI in environment with high security requirements 443 */ 444 static inline TranslationBlock * QEMU_DISABLE_CFI 445 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 446 { 447 CPUArchState *env = cpu->env_ptr; 448 uintptr_t ret; 449 TranslationBlock *last_tb; 450 const void *tb_ptr = itb->tc.ptr; 451 452 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 453 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 454 } 455 456 qemu_thread_jit_execute(); 457 ret = tcg_qemu_tb_exec(env, tb_ptr); 458 cpu->can_do_io = 1; 459 qemu_plugin_disable_mem_helpers(cpu); 460 /* 461 * TODO: Delay swapping back to the read-write region of the TB 462 * until we actually need to modify the TB. The read-only copy, 463 * coming from the rx region, shares the same host TLB entry as 464 * the code that executed the exit_tb opcode that arrived here. 465 * If we insist on touching both the RX and the RW pages, we 466 * double the host TLB pressure. 467 */ 468 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 469 *tb_exit = ret & TB_EXIT_MASK; 470 471 trace_exec_tb_exit(last_tb, *tb_exit); 472 473 if (*tb_exit > TB_EXIT_IDX1) { 474 /* We didn't start executing this TB (eg because the instruction 475 * counter hit zero); we must restore the guest PC to the address 476 * of the start of the TB. 477 */ 478 CPUClass *cc = CPU_GET_CLASS(cpu); 479 480 if (cc->tcg_ops->synchronize_from_tb) { 481 cc->tcg_ops->synchronize_from_tb(cpu, last_tb); 482 } else { 483 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 484 assert(cc->set_pc); 485 cc->set_pc(cpu, last_tb->pc); 486 } 487 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 488 vaddr pc = log_pc(cpu, last_tb); 489 if (qemu_log_in_addr_range(pc)) { 490 qemu_log("Stopped execution of TB chain before %p [%" 491 VADDR_PRIx "] %s\n", 492 last_tb->tc.ptr, pc, lookup_symbol(pc)); 493 } 494 } 495 } 496 497 /* 498 * If gdb single-step, and we haven't raised another exception, 499 * raise a debug exception. Single-step with another exception 500 * is handled in cpu_handle_exception. 501 */ 502 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 503 cpu->exception_index = EXCP_DEBUG; 504 cpu_loop_exit(cpu); 505 } 506 507 return last_tb; 508 } 509 510 511 static void cpu_exec_enter(CPUState *cpu) 512 { 513 CPUClass *cc = CPU_GET_CLASS(cpu); 514 515 if (cc->tcg_ops->cpu_exec_enter) { 516 cc->tcg_ops->cpu_exec_enter(cpu); 517 } 518 } 519 520 static void cpu_exec_exit(CPUState *cpu) 521 { 522 CPUClass *cc = CPU_GET_CLASS(cpu); 523 524 if (cc->tcg_ops->cpu_exec_exit) { 525 cc->tcg_ops->cpu_exec_exit(cpu); 526 } 527 } 528 529 void cpu_exec_step_atomic(CPUState *cpu) 530 { 531 CPUArchState *env = cpu->env_ptr; 532 TranslationBlock *tb; 533 vaddr pc; 534 uint64_t cs_base; 535 uint32_t flags, cflags; 536 int tb_exit; 537 538 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 539 start_exclusive(); 540 g_assert(cpu == current_cpu); 541 g_assert(!cpu->running); 542 cpu->running = true; 543 544 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 545 546 cflags = curr_cflags(cpu); 547 /* Execute in a serial context. */ 548 cflags &= ~CF_PARALLEL; 549 /* After 1 insn, return and release the exclusive lock. */ 550 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 551 /* 552 * No need to check_for_breakpoints here. 553 * We only arrive in cpu_exec_step_atomic after beginning execution 554 * of an insn that includes an atomic operation we can't handle. 555 * Any breakpoint for this insn will have been recognized earlier. 556 */ 557 558 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 559 if (tb == NULL) { 560 mmap_lock(); 561 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 562 mmap_unlock(); 563 } 564 565 cpu_exec_enter(cpu); 566 /* execute the generated code */ 567 trace_exec_tb(tb, pc); 568 cpu_tb_exec(cpu, tb, &tb_exit); 569 cpu_exec_exit(cpu); 570 } else { 571 #ifdef CONFIG_USER_ONLY 572 clear_helper_retaddr(); 573 if (have_mmap_lock()) { 574 mmap_unlock(); 575 } 576 #endif 577 if (qemu_mutex_iothread_locked()) { 578 qemu_mutex_unlock_iothread(); 579 } 580 assert_no_pages_locked(); 581 } 582 583 /* 584 * As we start the exclusive region before codegen we must still 585 * be in the region if we longjump out of either the codegen or 586 * the execution. 587 */ 588 g_assert(cpu_in_exclusive_context(cpu)); 589 cpu->running = false; 590 end_exclusive(); 591 } 592 593 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 594 { 595 /* 596 * Get the rx view of the structure, from which we find the 597 * executable code address, and tb_target_set_jmp_target can 598 * produce a pc-relative displacement to jmp_target_addr[n]. 599 */ 600 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 601 uintptr_t offset = tb->jmp_insn_offset[n]; 602 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 603 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 604 605 tb->jmp_target_addr[n] = addr; 606 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 607 } 608 609 static inline void tb_add_jump(TranslationBlock *tb, int n, 610 TranslationBlock *tb_next) 611 { 612 uintptr_t old; 613 614 qemu_thread_jit_write(); 615 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 616 qemu_spin_lock(&tb_next->jmp_lock); 617 618 /* make sure the destination TB is valid */ 619 if (tb_next->cflags & CF_INVALID) { 620 goto out_unlock_next; 621 } 622 /* Atomically claim the jump destination slot only if it was NULL */ 623 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 624 (uintptr_t)tb_next); 625 if (old) { 626 goto out_unlock_next; 627 } 628 629 /* patch the native jump address */ 630 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 631 632 /* add in TB jmp list */ 633 tb->jmp_list_next[n] = tb_next->jmp_list_head; 634 tb_next->jmp_list_head = (uintptr_t)tb | n; 635 636 qemu_spin_unlock(&tb_next->jmp_lock); 637 638 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 639 tb->tc.ptr, n, tb_next->tc.ptr); 640 return; 641 642 out_unlock_next: 643 qemu_spin_unlock(&tb_next->jmp_lock); 644 return; 645 } 646 647 static inline bool cpu_handle_halt(CPUState *cpu) 648 { 649 #ifndef CONFIG_USER_ONLY 650 if (cpu->halted) { 651 #if defined(TARGET_I386) 652 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) { 653 X86CPU *x86_cpu = X86_CPU(cpu); 654 qemu_mutex_lock_iothread(); 655 apic_poll_irq(x86_cpu->apic_state); 656 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 657 qemu_mutex_unlock_iothread(); 658 } 659 #endif /* TARGET_I386 */ 660 if (!cpu_has_work(cpu)) { 661 return true; 662 } 663 664 cpu->halted = 0; 665 } 666 #endif /* !CONFIG_USER_ONLY */ 667 668 return false; 669 } 670 671 static inline void cpu_handle_debug_exception(CPUState *cpu) 672 { 673 CPUClass *cc = CPU_GET_CLASS(cpu); 674 CPUWatchpoint *wp; 675 676 if (!cpu->watchpoint_hit) { 677 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 678 wp->flags &= ~BP_WATCHPOINT_HIT; 679 } 680 } 681 682 if (cc->tcg_ops->debug_excp_handler) { 683 cc->tcg_ops->debug_excp_handler(cpu); 684 } 685 } 686 687 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 688 { 689 if (cpu->exception_index < 0) { 690 #ifndef CONFIG_USER_ONLY 691 if (replay_has_exception() 692 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) { 693 /* Execute just one insn to trigger exception pending in the log */ 694 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 695 | CF_NOIRQ | 1; 696 } 697 #endif 698 return false; 699 } 700 if (cpu->exception_index >= EXCP_INTERRUPT) { 701 /* exit request from the cpu execution loop */ 702 *ret = cpu->exception_index; 703 if (*ret == EXCP_DEBUG) { 704 cpu_handle_debug_exception(cpu); 705 } 706 cpu->exception_index = -1; 707 return true; 708 } else { 709 #if defined(CONFIG_USER_ONLY) 710 /* if user mode only, we simulate a fake exception 711 which will be handled outside the cpu execution 712 loop */ 713 #if defined(TARGET_I386) 714 CPUClass *cc = CPU_GET_CLASS(cpu); 715 cc->tcg_ops->fake_user_interrupt(cpu); 716 #endif /* TARGET_I386 */ 717 *ret = cpu->exception_index; 718 cpu->exception_index = -1; 719 return true; 720 #else 721 if (replay_exception()) { 722 CPUClass *cc = CPU_GET_CLASS(cpu); 723 qemu_mutex_lock_iothread(); 724 cc->tcg_ops->do_interrupt(cpu); 725 qemu_mutex_unlock_iothread(); 726 cpu->exception_index = -1; 727 728 if (unlikely(cpu->singlestep_enabled)) { 729 /* 730 * After processing the exception, ensure an EXCP_DEBUG is 731 * raised when single-stepping so that GDB doesn't miss the 732 * next instruction. 733 */ 734 *ret = EXCP_DEBUG; 735 cpu_handle_debug_exception(cpu); 736 return true; 737 } 738 } else if (!replay_has_interrupt()) { 739 /* give a chance to iothread in replay mode */ 740 *ret = EXCP_INTERRUPT; 741 return true; 742 } 743 #endif 744 } 745 746 return false; 747 } 748 749 #ifndef CONFIG_USER_ONLY 750 /* 751 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a 752 * "real" interrupt event later. It does not need to be recorded for 753 * replay purposes. 754 */ 755 static inline bool need_replay_interrupt(int interrupt_request) 756 { 757 #if defined(TARGET_I386) 758 return !(interrupt_request & CPU_INTERRUPT_POLL); 759 #else 760 return true; 761 #endif 762 } 763 #endif /* !CONFIG_USER_ONLY */ 764 765 static inline bool cpu_handle_interrupt(CPUState *cpu, 766 TranslationBlock **last_tb) 767 { 768 /* 769 * If we have requested custom cflags with CF_NOIRQ we should 770 * skip checking here. Any pending interrupts will get picked up 771 * by the next TB we execute under normal cflags. 772 */ 773 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 774 return false; 775 } 776 777 /* Clear the interrupt flag now since we're processing 778 * cpu->interrupt_request and cpu->exit_request. 779 * Ensure zeroing happens before reading cpu->exit_request or 780 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 781 */ 782 qatomic_set_mb(&cpu_neg(cpu)->icount_decr.u16.high, 0); 783 784 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 785 int interrupt_request; 786 qemu_mutex_lock_iothread(); 787 interrupt_request = cpu->interrupt_request; 788 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 789 /* Mask out external interrupts for this step. */ 790 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 791 } 792 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 793 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 794 cpu->exception_index = EXCP_DEBUG; 795 qemu_mutex_unlock_iothread(); 796 return true; 797 } 798 #if !defined(CONFIG_USER_ONLY) 799 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 800 /* Do nothing */ 801 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 802 replay_interrupt(); 803 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 804 cpu->halted = 1; 805 cpu->exception_index = EXCP_HLT; 806 qemu_mutex_unlock_iothread(); 807 return true; 808 } 809 #if defined(TARGET_I386) 810 else if (interrupt_request & CPU_INTERRUPT_INIT) { 811 X86CPU *x86_cpu = X86_CPU(cpu); 812 CPUArchState *env = &x86_cpu->env; 813 replay_interrupt(); 814 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 815 do_cpu_init(x86_cpu); 816 cpu->exception_index = EXCP_HALTED; 817 qemu_mutex_unlock_iothread(); 818 return true; 819 } 820 #else 821 else if (interrupt_request & CPU_INTERRUPT_RESET) { 822 replay_interrupt(); 823 cpu_reset(cpu); 824 qemu_mutex_unlock_iothread(); 825 return true; 826 } 827 #endif /* !TARGET_I386 */ 828 /* The target hook has 3 exit conditions: 829 False when the interrupt isn't processed, 830 True when it is, and we should restart on a new TB, 831 and via longjmp via cpu_loop_exit. */ 832 else { 833 CPUClass *cc = CPU_GET_CLASS(cpu); 834 835 if (cc->tcg_ops->cpu_exec_interrupt && 836 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 837 if (need_replay_interrupt(interrupt_request)) { 838 replay_interrupt(); 839 } 840 /* 841 * After processing the interrupt, ensure an EXCP_DEBUG is 842 * raised when single-stepping so that GDB doesn't miss the 843 * next instruction. 844 */ 845 if (unlikely(cpu->singlestep_enabled)) { 846 cpu->exception_index = EXCP_DEBUG; 847 qemu_mutex_unlock_iothread(); 848 return true; 849 } 850 cpu->exception_index = -1; 851 *last_tb = NULL; 852 } 853 /* The target hook may have updated the 'cpu->interrupt_request'; 854 * reload the 'interrupt_request' value */ 855 interrupt_request = cpu->interrupt_request; 856 } 857 #endif /* !CONFIG_USER_ONLY */ 858 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 859 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 860 /* ensure that no TB jump will be modified as 861 the program flow was changed */ 862 *last_tb = NULL; 863 } 864 865 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 866 qemu_mutex_unlock_iothread(); 867 } 868 869 /* Finally, check if we need to exit to the main loop. */ 870 if (unlikely(qatomic_read(&cpu->exit_request)) 871 || (icount_enabled() 872 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT) 873 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) { 874 qatomic_set(&cpu->exit_request, 0); 875 if (cpu->exception_index == -1) { 876 cpu->exception_index = EXCP_INTERRUPT; 877 } 878 return true; 879 } 880 881 return false; 882 } 883 884 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 885 vaddr pc, TranslationBlock **last_tb, 886 int *tb_exit) 887 { 888 int32_t insns_left; 889 890 trace_exec_tb(tb, pc); 891 tb = cpu_tb_exec(cpu, tb, tb_exit); 892 if (*tb_exit != TB_EXIT_REQUESTED) { 893 *last_tb = tb; 894 return; 895 } 896 897 *last_tb = NULL; 898 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32); 899 if (insns_left < 0) { 900 /* Something asked us to stop executing chained TBs; just 901 * continue round the main loop. Whatever requested the exit 902 * will also have set something else (eg exit_request or 903 * interrupt_request) which will be handled by 904 * cpu_handle_interrupt. cpu_handle_interrupt will also 905 * clear cpu->icount_decr.u16.high. 906 */ 907 return; 908 } 909 910 /* Instruction counter expired. */ 911 assert(icount_enabled()); 912 #ifndef CONFIG_USER_ONLY 913 /* Ensure global icount has gone forward */ 914 icount_update(cpu); 915 /* Refill decrementer and continue execution. */ 916 insns_left = MIN(0xffff, cpu->icount_budget); 917 cpu_neg(cpu)->icount_decr.u16.low = insns_left; 918 cpu->icount_extra = cpu->icount_budget - insns_left; 919 920 /* 921 * If the next tb has more instructions than we have left to 922 * execute we need to ensure we find/generate a TB with exactly 923 * insns_left instructions in it. 924 */ 925 if (insns_left > 0 && insns_left < tb->icount) { 926 assert(insns_left <= CF_COUNT_MASK); 927 assert(cpu->icount_extra == 0); 928 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 929 } 930 #endif 931 } 932 933 /* main execution loop */ 934 935 static int __attribute__((noinline)) 936 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 937 { 938 int ret; 939 940 /* if an exception is pending, we execute it here */ 941 while (!cpu_handle_exception(cpu, &ret)) { 942 TranslationBlock *last_tb = NULL; 943 int tb_exit = 0; 944 945 while (!cpu_handle_interrupt(cpu, &last_tb)) { 946 TranslationBlock *tb; 947 vaddr pc; 948 uint64_t cs_base; 949 uint32_t flags, cflags; 950 951 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags); 952 953 /* 954 * When requested, use an exact setting for cflags for the next 955 * execution. This is used for icount, precise smc, and stop- 956 * after-access watchpoints. Since this request should never 957 * have CF_INVALID set, -1 is a convenient invalid value that 958 * does not require tcg headers for cpu_common_reset. 959 */ 960 cflags = cpu->cflags_next_tb; 961 if (cflags == -1) { 962 cflags = curr_cflags(cpu); 963 } else { 964 cpu->cflags_next_tb = -1; 965 } 966 967 if (check_for_breakpoints(cpu, pc, &cflags)) { 968 break; 969 } 970 971 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 972 if (tb == NULL) { 973 CPUJumpCache *jc; 974 uint32_t h; 975 976 mmap_lock(); 977 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 978 mmap_unlock(); 979 980 /* 981 * We add the TB in the virtual pc hash table 982 * for the fast lookup 983 */ 984 h = tb_jmp_cache_hash_func(pc); 985 jc = cpu->tb_jmp_cache; 986 if (cflags & CF_PCREL) { 987 jc->array[h].pc = pc; 988 /* Ensure pc is written first. */ 989 qatomic_store_release(&jc->array[h].tb, tb); 990 } else { 991 /* Use the pc value already stored in tb->pc. */ 992 qatomic_set(&jc->array[h].tb, tb); 993 } 994 } 995 996 #ifndef CONFIG_USER_ONLY 997 /* 998 * We don't take care of direct jumps when address mapping 999 * changes in system emulation. So it's not safe to make a 1000 * direct jump to a TB spanning two pages because the mapping 1001 * for the second page can change. 1002 */ 1003 if (tb_page_addr1(tb) != -1) { 1004 last_tb = NULL; 1005 } 1006 #endif 1007 /* See if we can patch the calling TB. */ 1008 if (last_tb) { 1009 tb_add_jump(last_tb, tb_exit, tb); 1010 } 1011 1012 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1013 1014 /* Try to align the host and virtual clocks 1015 if the guest is in advance */ 1016 align_clocks(sc, cpu); 1017 } 1018 } 1019 return ret; 1020 } 1021 1022 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 1023 { 1024 /* Prepare setjmp context for exception handling. */ 1025 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 1026 /* Non-buggy compilers preserve this; assert the correct value. */ 1027 g_assert(cpu == current_cpu); 1028 1029 #ifdef CONFIG_USER_ONLY 1030 clear_helper_retaddr(); 1031 if (have_mmap_lock()) { 1032 mmap_unlock(); 1033 } 1034 #endif 1035 if (qemu_mutex_iothread_locked()) { 1036 qemu_mutex_unlock_iothread(); 1037 } 1038 1039 assert_no_pages_locked(); 1040 } 1041 1042 return cpu_exec_loop(cpu, sc); 1043 } 1044 1045 int cpu_exec(CPUState *cpu) 1046 { 1047 int ret; 1048 SyncClocks sc = { 0 }; 1049 1050 /* replay_interrupt may need current_cpu */ 1051 current_cpu = cpu; 1052 1053 if (cpu_handle_halt(cpu)) { 1054 return EXCP_HALTED; 1055 } 1056 1057 rcu_read_lock(); 1058 cpu_exec_enter(cpu); 1059 1060 /* 1061 * Calculate difference between guest clock and host clock. 1062 * This delay includes the delay of the last cycle, so 1063 * what we have to do is sleep until it is 0. As for the 1064 * advance/delay we gain here, we try to fix it next time. 1065 */ 1066 init_delay_params(&sc, cpu); 1067 1068 ret = cpu_exec_setjmp(cpu, &sc); 1069 1070 cpu_exec_exit(cpu); 1071 rcu_read_unlock(); 1072 1073 return ret; 1074 } 1075 1076 void tcg_exec_realizefn(CPUState *cpu, Error **errp) 1077 { 1078 static bool tcg_target_initialized; 1079 CPUClass *cc = CPU_GET_CLASS(cpu); 1080 1081 if (!tcg_target_initialized) { 1082 cc->tcg_ops->initialize(); 1083 tcg_target_initialized = true; 1084 } 1085 1086 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1087 tlb_init(cpu); 1088 #ifndef CONFIG_USER_ONLY 1089 tcg_iommu_init_notifier_list(cpu); 1090 #endif /* !CONFIG_USER_ONLY */ 1091 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1092 } 1093 1094 /* undo the initializations in reverse order */ 1095 void tcg_exec_unrealizefn(CPUState *cpu) 1096 { 1097 #ifndef CONFIG_USER_ONLY 1098 tcg_iommu_free_notifier_list(cpu); 1099 #endif /* !CONFIG_USER_ONLY */ 1100 1101 tlb_destroy(cpu); 1102 g_free_rcu(cpu->tb_jmp_cache, rcu); 1103 } 1104