xref: /openbmc/qemu/accel/tcg/cpu-exec.c (revision 26fcd766)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2.1 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #include "qemu/osdep.h"
21 #include "qemu-common.h"
22 #include "qemu/qemu-print.h"
23 #include "qapi/error.h"
24 #include "qapi/qapi-commands-machine.h"
25 #include "qapi/type-helpers.h"
26 #include "hw/core/tcg-cpu-ops.h"
27 #include "trace.h"
28 #include "disas/disas.h"
29 #include "exec/exec-all.h"
30 #include "tcg/tcg.h"
31 #include "qemu/atomic.h"
32 #include "qemu/compiler.h"
33 #include "qemu/timer.h"
34 #include "qemu/rcu.h"
35 #include "exec/log.h"
36 #include "qemu/main-loop.h"
37 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
38 #include "hw/i386/apic.h"
39 #endif
40 #include "sysemu/cpus.h"
41 #include "exec/cpu-all.h"
42 #include "sysemu/cpu-timers.h"
43 #include "sysemu/replay.h"
44 #include "sysemu/tcg.h"
45 #include "exec/helper-proto.h"
46 #include "tb-hash.h"
47 #include "tb-context.h"
48 #include "internal.h"
49 
50 /* -icount align implementation. */
51 
52 typedef struct SyncClocks {
53     int64_t diff_clk;
54     int64_t last_cpu_icount;
55     int64_t realtime_clock;
56 } SyncClocks;
57 
58 #if !defined(CONFIG_USER_ONLY)
59 /* Allow the guest to have a max 3ms advance.
60  * The difference between the 2 clocks could therefore
61  * oscillate around 0.
62  */
63 #define VM_CLOCK_ADVANCE 3000000
64 #define THRESHOLD_REDUCE 1.5
65 #define MAX_DELAY_PRINT_RATE 2000000000LL
66 #define MAX_NB_PRINTS 100
67 
68 static int64_t max_delay;
69 static int64_t max_advance;
70 
71 static void align_clocks(SyncClocks *sc, CPUState *cpu)
72 {
73     int64_t cpu_icount;
74 
75     if (!icount_align_option) {
76         return;
77     }
78 
79     cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
80     sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount);
81     sc->last_cpu_icount = cpu_icount;
82 
83     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
84 #ifndef _WIN32
85         struct timespec sleep_delay, rem_delay;
86         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
87         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
88         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
89             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
90         } else {
91             sc->diff_clk = 0;
92         }
93 #else
94         Sleep(sc->diff_clk / SCALE_MS);
95         sc->diff_clk = 0;
96 #endif
97     }
98 }
99 
100 static void print_delay(const SyncClocks *sc)
101 {
102     static float threshold_delay;
103     static int64_t last_realtime_clock;
104     static int nb_prints;
105 
106     if (icount_align_option &&
107         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
108         nb_prints < MAX_NB_PRINTS) {
109         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
110             (-sc->diff_clk / (float)1000000000LL <
111              (threshold_delay - THRESHOLD_REDUCE))) {
112             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
113             qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
114                         threshold_delay - 1,
115                         threshold_delay);
116             nb_prints++;
117             last_realtime_clock = sc->realtime_clock;
118         }
119     }
120 }
121 
122 static void init_delay_params(SyncClocks *sc, CPUState *cpu)
123 {
124     if (!icount_align_option) {
125         return;
126     }
127     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
128     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
129     sc->last_cpu_icount
130         = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low;
131     if (sc->diff_clk < max_delay) {
132         max_delay = sc->diff_clk;
133     }
134     if (sc->diff_clk > max_advance) {
135         max_advance = sc->diff_clk;
136     }
137 
138     /* Print every 2s max if the guest is late. We limit the number
139        of printed messages to NB_PRINT_MAX(currently 100) */
140     print_delay(sc);
141 }
142 #else
143 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
144 {
145 }
146 
147 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
148 {
149 }
150 #endif /* CONFIG USER ONLY */
151 
152 uint32_t curr_cflags(CPUState *cpu)
153 {
154     uint32_t cflags = cpu->tcg_cflags;
155 
156     /*
157      * Record gdb single-step.  We should be exiting the TB by raising
158      * EXCP_DEBUG, but to simplify other tests, disable chaining too.
159      *
160      * For singlestep and -d nochain, suppress goto_tb so that
161      * we can log -d cpu,exec after every TB.
162      */
163     if (unlikely(cpu->singlestep_enabled)) {
164         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1;
165     } else if (singlestep) {
166         cflags |= CF_NO_GOTO_TB | 1;
167     } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
168         cflags |= CF_NO_GOTO_TB;
169     }
170 
171     return cflags;
172 }
173 
174 /* Might cause an exception, so have a longjmp destination ready */
175 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc,
176                                           target_ulong cs_base,
177                                           uint32_t flags, uint32_t cflags)
178 {
179     TranslationBlock *tb;
180     uint32_t hash;
181 
182     /* we should never be trying to look up an INVALID tb */
183     tcg_debug_assert(!(cflags & CF_INVALID));
184 
185     hash = tb_jmp_cache_hash_func(pc);
186     tb = qatomic_rcu_read(&cpu->tb_jmp_cache[hash]);
187 
188     if (likely(tb &&
189                tb->pc == pc &&
190                tb->cs_base == cs_base &&
191                tb->flags == flags &&
192                tb->trace_vcpu_dstate == *cpu->trace_dstate &&
193                tb_cflags(tb) == cflags)) {
194         return tb;
195     }
196     tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags);
197     if (tb == NULL) {
198         return NULL;
199     }
200     qatomic_set(&cpu->tb_jmp_cache[hash], tb);
201     return tb;
202 }
203 
204 static inline void log_cpu_exec(target_ulong pc, CPUState *cpu,
205                                 const TranslationBlock *tb)
206 {
207     if (unlikely(qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC))
208         && qemu_log_in_addr_range(pc)) {
209 
210         qemu_log_mask(CPU_LOG_EXEC,
211                       "Trace %d: %p [" TARGET_FMT_lx
212                       "/" TARGET_FMT_lx "/%08x/%08x] %s\n",
213                       cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc,
214                       tb->flags, tb->cflags, lookup_symbol(pc));
215 
216 #if defined(DEBUG_DISAS)
217         if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) {
218             FILE *logfile = qemu_log_lock();
219             int flags = 0;
220 
221             if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
222                 flags |= CPU_DUMP_FPU;
223             }
224 #if defined(TARGET_I386)
225             flags |= CPU_DUMP_CCOP;
226 #endif
227             log_cpu_state(cpu, flags);
228             qemu_log_unlock(logfile);
229         }
230 #endif /* DEBUG_DISAS */
231     }
232 }
233 
234 static bool check_for_breakpoints(CPUState *cpu, target_ulong pc,
235                                   uint32_t *cflags)
236 {
237     CPUBreakpoint *bp;
238     bool match_page = false;
239 
240     if (likely(QTAILQ_EMPTY(&cpu->breakpoints))) {
241         return false;
242     }
243 
244     /*
245      * Singlestep overrides breakpoints.
246      * This requirement is visible in the record-replay tests, where
247      * we would fail to make forward progress in reverse-continue.
248      *
249      * TODO: gdb singlestep should only override gdb breakpoints,
250      * so that one could (gdb) singlestep into the guest kernel's
251      * architectural breakpoint handler.
252      */
253     if (cpu->singlestep_enabled) {
254         return false;
255     }
256 
257     QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
258         /*
259          * If we have an exact pc match, trigger the breakpoint.
260          * Otherwise, note matches within the page.
261          */
262         if (pc == bp->pc) {
263             bool match_bp = false;
264 
265             if (bp->flags & BP_GDB) {
266                 match_bp = true;
267             } else if (bp->flags & BP_CPU) {
268 #ifdef CONFIG_USER_ONLY
269                 g_assert_not_reached();
270 #else
271                 CPUClass *cc = CPU_GET_CLASS(cpu);
272                 assert(cc->tcg_ops->debug_check_breakpoint);
273                 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu);
274 #endif
275             }
276 
277             if (match_bp) {
278                 cpu->exception_index = EXCP_DEBUG;
279                 return true;
280             }
281         } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) {
282             match_page = true;
283         }
284     }
285 
286     /*
287      * Within the same page as a breakpoint, single-step,
288      * returning to helper_lookup_tb_ptr after each insn looking
289      * for the actual breakpoint.
290      *
291      * TODO: Perhaps better to record all of the TBs associated
292      * with a given virtual page that contains a breakpoint, and
293      * then invalidate them when a new overlapping breakpoint is
294      * set on the page.  Non-overlapping TBs would not be
295      * invalidated, nor would any TB need to be invalidated as
296      * breakpoints are removed.
297      */
298     if (match_page) {
299         *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1;
300     }
301     return false;
302 }
303 
304 /**
305  * helper_lookup_tb_ptr: quick check for next tb
306  * @env: current cpu state
307  *
308  * Look for an existing TB matching the current cpu state.
309  * If found, return the code pointer.  If not found, return
310  * the tcg epilogue so that we return into cpu_tb_exec.
311  */
312 const void *HELPER(lookup_tb_ptr)(CPUArchState *env)
313 {
314     CPUState *cpu = env_cpu(env);
315     TranslationBlock *tb;
316     target_ulong cs_base, pc;
317     uint32_t flags, cflags;
318 
319     cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
320 
321     cflags = curr_cflags(cpu);
322     if (check_for_breakpoints(cpu, pc, &cflags)) {
323         cpu_loop_exit(cpu);
324     }
325 
326     tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
327     if (tb == NULL) {
328         return tcg_code_gen_epilogue;
329     }
330 
331     log_cpu_exec(pc, cpu, tb);
332 
333     return tb->tc.ptr;
334 }
335 
336 /* Execute a TB, and fix up the CPU state afterwards if necessary */
337 /*
338  * Disable CFI checks.
339  * TCG creates binary blobs at runtime, with the transformed code.
340  * A TB is a blob of binary code, created at runtime and called with an
341  * indirect function call. Since such function did not exist at compile time,
342  * the CFI runtime has no way to verify its signature and would fail.
343  * TCG is not considered a security-sensitive part of QEMU so this does not
344  * affect the impact of CFI in environment with high security requirements
345  */
346 static inline TranslationBlock * QEMU_DISABLE_CFI
347 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit)
348 {
349     CPUArchState *env = cpu->env_ptr;
350     uintptr_t ret;
351     TranslationBlock *last_tb;
352     const void *tb_ptr = itb->tc.ptr;
353 
354     log_cpu_exec(itb->pc, cpu, itb);
355 
356     qemu_thread_jit_execute();
357     ret = tcg_qemu_tb_exec(env, tb_ptr);
358     cpu->can_do_io = 1;
359     /*
360      * TODO: Delay swapping back to the read-write region of the TB
361      * until we actually need to modify the TB.  The read-only copy,
362      * coming from the rx region, shares the same host TLB entry as
363      * the code that executed the exit_tb opcode that arrived here.
364      * If we insist on touching both the RX and the RW pages, we
365      * double the host TLB pressure.
366      */
367     last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK));
368     *tb_exit = ret & TB_EXIT_MASK;
369 
370     trace_exec_tb_exit(last_tb, *tb_exit);
371 
372     if (*tb_exit > TB_EXIT_IDX1) {
373         /* We didn't start executing this TB (eg because the instruction
374          * counter hit zero); we must restore the guest PC to the address
375          * of the start of the TB.
376          */
377         CPUClass *cc = CPU_GET_CLASS(cpu);
378         qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
379                                "Stopped execution of TB chain before %p ["
380                                TARGET_FMT_lx "] %s\n",
381                                last_tb->tc.ptr, last_tb->pc,
382                                lookup_symbol(last_tb->pc));
383         if (cc->tcg_ops->synchronize_from_tb) {
384             cc->tcg_ops->synchronize_from_tb(cpu, last_tb);
385         } else {
386             assert(cc->set_pc);
387             cc->set_pc(cpu, last_tb->pc);
388         }
389     }
390 
391     /*
392      * If gdb single-step, and we haven't raised another exception,
393      * raise a debug exception.  Single-step with another exception
394      * is handled in cpu_handle_exception.
395      */
396     if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) {
397         cpu->exception_index = EXCP_DEBUG;
398         cpu_loop_exit(cpu);
399     }
400 
401     return last_tb;
402 }
403 
404 
405 static void cpu_exec_enter(CPUState *cpu)
406 {
407     CPUClass *cc = CPU_GET_CLASS(cpu);
408 
409     if (cc->tcg_ops->cpu_exec_enter) {
410         cc->tcg_ops->cpu_exec_enter(cpu);
411     }
412 }
413 
414 static void cpu_exec_exit(CPUState *cpu)
415 {
416     CPUClass *cc = CPU_GET_CLASS(cpu);
417 
418     if (cc->tcg_ops->cpu_exec_exit) {
419         cc->tcg_ops->cpu_exec_exit(cpu);
420     }
421 }
422 
423 void cpu_exec_step_atomic(CPUState *cpu)
424 {
425     CPUArchState *env = (CPUArchState *)cpu->env_ptr;
426     TranslationBlock *tb;
427     target_ulong cs_base, pc;
428     uint32_t flags, cflags;
429     int tb_exit;
430 
431     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
432         start_exclusive();
433         g_assert(cpu == current_cpu);
434         g_assert(!cpu->running);
435         cpu->running = true;
436 
437         cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags);
438 
439         cflags = curr_cflags(cpu);
440         /* Execute in a serial context. */
441         cflags &= ~CF_PARALLEL;
442         /* After 1 insn, return and release the exclusive lock. */
443         cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1;
444         /*
445          * No need to check_for_breakpoints here.
446          * We only arrive in cpu_exec_step_atomic after beginning execution
447          * of an insn that includes an atomic operation we can't handle.
448          * Any breakpoint for this insn will have been recognized earlier.
449          */
450 
451         tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
452         if (tb == NULL) {
453             mmap_lock();
454             tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
455             mmap_unlock();
456         }
457 
458         cpu_exec_enter(cpu);
459         /* execute the generated code */
460         trace_exec_tb(tb, pc);
461         cpu_tb_exec(cpu, tb, &tb_exit);
462         cpu_exec_exit(cpu);
463     } else {
464         /*
465          * The mmap_lock is dropped by tb_gen_code if it runs out of
466          * memory.
467          */
468 #ifndef CONFIG_SOFTMMU
469         clear_helper_retaddr();
470         tcg_debug_assert(!have_mmap_lock());
471 #endif
472         if (qemu_mutex_iothread_locked()) {
473             qemu_mutex_unlock_iothread();
474         }
475         assert_no_pages_locked();
476         qemu_plugin_disable_mem_helpers(cpu);
477     }
478 
479     /*
480      * As we start the exclusive region before codegen we must still
481      * be in the region if we longjump out of either the codegen or
482      * the execution.
483      */
484     g_assert(cpu_in_exclusive_context(cpu));
485     cpu->running = false;
486     end_exclusive();
487 }
488 
489 struct tb_desc {
490     target_ulong pc;
491     target_ulong cs_base;
492     CPUArchState *env;
493     tb_page_addr_t phys_page1;
494     uint32_t flags;
495     uint32_t cflags;
496     uint32_t trace_vcpu_dstate;
497 };
498 
499 static bool tb_lookup_cmp(const void *p, const void *d)
500 {
501     const TranslationBlock *tb = p;
502     const struct tb_desc *desc = d;
503 
504     if (tb->pc == desc->pc &&
505         tb->page_addr[0] == desc->phys_page1 &&
506         tb->cs_base == desc->cs_base &&
507         tb->flags == desc->flags &&
508         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
509         tb_cflags(tb) == desc->cflags) {
510         /* check next page if needed */
511         if (tb->page_addr[1] == -1) {
512             return true;
513         } else {
514             tb_page_addr_t phys_page2;
515             target_ulong virt_page2;
516 
517             virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
518             phys_page2 = get_page_addr_code(desc->env, virt_page2);
519             if (tb->page_addr[1] == phys_page2) {
520                 return true;
521             }
522         }
523     }
524     return false;
525 }
526 
527 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
528                                    target_ulong cs_base, uint32_t flags,
529                                    uint32_t cflags)
530 {
531     tb_page_addr_t phys_pc;
532     struct tb_desc desc;
533     uint32_t h;
534 
535     desc.env = (CPUArchState *)cpu->env_ptr;
536     desc.cs_base = cs_base;
537     desc.flags = flags;
538     desc.cflags = cflags;
539     desc.trace_vcpu_dstate = *cpu->trace_dstate;
540     desc.pc = pc;
541     phys_pc = get_page_addr_code(desc.env, pc);
542     if (phys_pc == -1) {
543         return NULL;
544     }
545     desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
546     h = tb_hash_func(phys_pc, pc, flags, cflags, *cpu->trace_dstate);
547     return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp);
548 }
549 
550 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
551 {
552     if (TCG_TARGET_HAS_direct_jump) {
553         uintptr_t offset = tb->jmp_target_arg[n];
554         uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
555         uintptr_t jmp_rx = tc_ptr + offset;
556         uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff;
557         tb_target_set_jmp_target(tc_ptr, jmp_rx, jmp_rw, addr);
558     } else {
559         tb->jmp_target_arg[n] = addr;
560     }
561 }
562 
563 static inline void tb_add_jump(TranslationBlock *tb, int n,
564                                TranslationBlock *tb_next)
565 {
566     uintptr_t old;
567 
568     qemu_thread_jit_write();
569     assert(n < ARRAY_SIZE(tb->jmp_list_next));
570     qemu_spin_lock(&tb_next->jmp_lock);
571 
572     /* make sure the destination TB is valid */
573     if (tb_next->cflags & CF_INVALID) {
574         goto out_unlock_next;
575     }
576     /* Atomically claim the jump destination slot only if it was NULL */
577     old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL,
578                           (uintptr_t)tb_next);
579     if (old) {
580         goto out_unlock_next;
581     }
582 
583     /* patch the native jump address */
584     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
585 
586     /* add in TB jmp list */
587     tb->jmp_list_next[n] = tb_next->jmp_list_head;
588     tb_next->jmp_list_head = (uintptr_t)tb | n;
589 
590     qemu_spin_unlock(&tb_next->jmp_lock);
591 
592     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
593                            "Linking TBs %p [" TARGET_FMT_lx
594                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
595                            tb->tc.ptr, tb->pc, n,
596                            tb_next->tc.ptr, tb_next->pc);
597     return;
598 
599  out_unlock_next:
600     qemu_spin_unlock(&tb_next->jmp_lock);
601     return;
602 }
603 
604 static inline bool cpu_handle_halt(CPUState *cpu)
605 {
606 #ifndef CONFIG_USER_ONLY
607     if (cpu->halted) {
608 #if defined(TARGET_I386)
609         if (cpu->interrupt_request & CPU_INTERRUPT_POLL) {
610             X86CPU *x86_cpu = X86_CPU(cpu);
611             qemu_mutex_lock_iothread();
612             apic_poll_irq(x86_cpu->apic_state);
613             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
614             qemu_mutex_unlock_iothread();
615         }
616 #endif /* TARGET_I386 */
617         if (!cpu_has_work(cpu)) {
618             return true;
619         }
620 
621         cpu->halted = 0;
622     }
623 #endif /* !CONFIG_USER_ONLY */
624 
625     return false;
626 }
627 
628 static inline void cpu_handle_debug_exception(CPUState *cpu)
629 {
630     CPUClass *cc = CPU_GET_CLASS(cpu);
631     CPUWatchpoint *wp;
632 
633     if (!cpu->watchpoint_hit) {
634         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
635             wp->flags &= ~BP_WATCHPOINT_HIT;
636         }
637     }
638 
639     if (cc->tcg_ops->debug_excp_handler) {
640         cc->tcg_ops->debug_excp_handler(cpu);
641     }
642 }
643 
644 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
645 {
646     if (cpu->exception_index < 0) {
647 #ifndef CONFIG_USER_ONLY
648         if (replay_has_exception()
649             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) {
650             /* Execute just one insn to trigger exception pending in the log */
651             cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT)
652                 | CF_NOIRQ | 1;
653         }
654 #endif
655         return false;
656     }
657     if (cpu->exception_index >= EXCP_INTERRUPT) {
658         /* exit request from the cpu execution loop */
659         *ret = cpu->exception_index;
660         if (*ret == EXCP_DEBUG) {
661             cpu_handle_debug_exception(cpu);
662         }
663         cpu->exception_index = -1;
664         return true;
665     } else {
666 #if defined(CONFIG_USER_ONLY)
667         /* if user mode only, we simulate a fake exception
668            which will be handled outside the cpu execution
669            loop */
670 #if defined(TARGET_I386)
671         CPUClass *cc = CPU_GET_CLASS(cpu);
672         cc->tcg_ops->fake_user_interrupt(cpu);
673 #endif /* TARGET_I386 */
674         *ret = cpu->exception_index;
675         cpu->exception_index = -1;
676         return true;
677 #else
678         if (replay_exception()) {
679             CPUClass *cc = CPU_GET_CLASS(cpu);
680             qemu_mutex_lock_iothread();
681             cc->tcg_ops->do_interrupt(cpu);
682             qemu_mutex_unlock_iothread();
683             cpu->exception_index = -1;
684 
685             if (unlikely(cpu->singlestep_enabled)) {
686                 /*
687                  * After processing the exception, ensure an EXCP_DEBUG is
688                  * raised when single-stepping so that GDB doesn't miss the
689                  * next instruction.
690                  */
691                 *ret = EXCP_DEBUG;
692                 cpu_handle_debug_exception(cpu);
693                 return true;
694             }
695         } else if (!replay_has_interrupt()) {
696             /* give a chance to iothread in replay mode */
697             *ret = EXCP_INTERRUPT;
698             return true;
699         }
700 #endif
701     }
702 
703     return false;
704 }
705 
706 #ifndef CONFIG_USER_ONLY
707 /*
708  * CPU_INTERRUPT_POLL is a virtual event which gets converted into a
709  * "real" interrupt event later. It does not need to be recorded for
710  * replay purposes.
711  */
712 static inline bool need_replay_interrupt(int interrupt_request)
713 {
714 #if defined(TARGET_I386)
715     return !(interrupt_request & CPU_INTERRUPT_POLL);
716 #else
717     return true;
718 #endif
719 }
720 #endif /* !CONFIG_USER_ONLY */
721 
722 static inline bool cpu_handle_interrupt(CPUState *cpu,
723                                         TranslationBlock **last_tb)
724 {
725     /*
726      * If we have requested custom cflags with CF_NOIRQ we should
727      * skip checking here. Any pending interrupts will get picked up
728      * by the next TB we execute under normal cflags.
729      */
730     if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) {
731         return false;
732     }
733 
734     /* Clear the interrupt flag now since we're processing
735      * cpu->interrupt_request and cpu->exit_request.
736      * Ensure zeroing happens before reading cpu->exit_request or
737      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
738      */
739     qatomic_mb_set(&cpu_neg(cpu)->icount_decr.u16.high, 0);
740 
741     if (unlikely(qatomic_read(&cpu->interrupt_request))) {
742         int interrupt_request;
743         qemu_mutex_lock_iothread();
744         interrupt_request = cpu->interrupt_request;
745         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
746             /* Mask out external interrupts for this step. */
747             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
748         }
749         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
750             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
751             cpu->exception_index = EXCP_DEBUG;
752             qemu_mutex_unlock_iothread();
753             return true;
754         }
755 #if !defined(CONFIG_USER_ONLY)
756         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
757             /* Do nothing */
758         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
759             replay_interrupt();
760             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
761             cpu->halted = 1;
762             cpu->exception_index = EXCP_HLT;
763             qemu_mutex_unlock_iothread();
764             return true;
765         }
766 #if defined(TARGET_I386)
767         else if (interrupt_request & CPU_INTERRUPT_INIT) {
768             X86CPU *x86_cpu = X86_CPU(cpu);
769             CPUArchState *env = &x86_cpu->env;
770             replay_interrupt();
771             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
772             do_cpu_init(x86_cpu);
773             cpu->exception_index = EXCP_HALTED;
774             qemu_mutex_unlock_iothread();
775             return true;
776         }
777 #else
778         else if (interrupt_request & CPU_INTERRUPT_RESET) {
779             replay_interrupt();
780             cpu_reset(cpu);
781             qemu_mutex_unlock_iothread();
782             return true;
783         }
784 #endif /* !TARGET_I386 */
785         /* The target hook has 3 exit conditions:
786            False when the interrupt isn't processed,
787            True when it is, and we should restart on a new TB,
788            and via longjmp via cpu_loop_exit.  */
789         else {
790             CPUClass *cc = CPU_GET_CLASS(cpu);
791 
792             if (cc->tcg_ops->cpu_exec_interrupt &&
793                 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) {
794                 if (need_replay_interrupt(interrupt_request)) {
795                     replay_interrupt();
796                 }
797                 /*
798                  * After processing the interrupt, ensure an EXCP_DEBUG is
799                  * raised when single-stepping so that GDB doesn't miss the
800                  * next instruction.
801                  */
802                 if (unlikely(cpu->singlestep_enabled)) {
803                     cpu->exception_index = EXCP_DEBUG;
804                     qemu_mutex_unlock_iothread();
805                     return true;
806                 }
807                 cpu->exception_index = -1;
808                 *last_tb = NULL;
809             }
810             /* The target hook may have updated the 'cpu->interrupt_request';
811              * reload the 'interrupt_request' value */
812             interrupt_request = cpu->interrupt_request;
813         }
814 #endif /* !CONFIG_USER_ONLY */
815         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
816             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
817             /* ensure that no TB jump will be modified as
818                the program flow was changed */
819             *last_tb = NULL;
820         }
821 
822         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
823         qemu_mutex_unlock_iothread();
824     }
825 
826     /* Finally, check if we need to exit to the main loop.  */
827     if (unlikely(qatomic_read(&cpu->exit_request))
828         || (icount_enabled()
829             && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT)
830             && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) {
831         qatomic_set(&cpu->exit_request, 0);
832         if (cpu->exception_index == -1) {
833             cpu->exception_index = EXCP_INTERRUPT;
834         }
835         return true;
836     }
837 
838     return false;
839 }
840 
841 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
842                                     TranslationBlock **last_tb, int *tb_exit)
843 {
844     int32_t insns_left;
845 
846     trace_exec_tb(tb, tb->pc);
847     tb = cpu_tb_exec(cpu, tb, tb_exit);
848     if (*tb_exit != TB_EXIT_REQUESTED) {
849         *last_tb = tb;
850         return;
851     }
852 
853     *last_tb = NULL;
854     insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32);
855     if (insns_left < 0) {
856         /* Something asked us to stop executing chained TBs; just
857          * continue round the main loop. Whatever requested the exit
858          * will also have set something else (eg exit_request or
859          * interrupt_request) which will be handled by
860          * cpu_handle_interrupt.  cpu_handle_interrupt will also
861          * clear cpu->icount_decr.u16.high.
862          */
863         return;
864     }
865 
866     /* Instruction counter expired.  */
867     assert(icount_enabled());
868 #ifndef CONFIG_USER_ONLY
869     /* Ensure global icount has gone forward */
870     icount_update(cpu);
871     /* Refill decrementer and continue execution.  */
872     insns_left = MIN(0xffff, cpu->icount_budget);
873     cpu_neg(cpu)->icount_decr.u16.low = insns_left;
874     cpu->icount_extra = cpu->icount_budget - insns_left;
875 
876     /*
877      * If the next tb has more instructions than we have left to
878      * execute we need to ensure we find/generate a TB with exactly
879      * insns_left instructions in it.
880      */
881     if (insns_left > 0 && insns_left < tb->icount)  {
882         assert(insns_left <= CF_COUNT_MASK);
883         assert(cpu->icount_extra == 0);
884         cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left;
885     }
886 #endif
887 }
888 
889 /* main execution loop */
890 
891 int cpu_exec(CPUState *cpu)
892 {
893     int ret;
894     SyncClocks sc = { 0 };
895 
896     /* replay_interrupt may need current_cpu */
897     current_cpu = cpu;
898 
899     if (cpu_handle_halt(cpu)) {
900         return EXCP_HALTED;
901     }
902 
903     rcu_read_lock();
904 
905     cpu_exec_enter(cpu);
906 
907     /* Calculate difference between guest clock and host clock.
908      * This delay includes the delay of the last cycle, so
909      * what we have to do is sleep until it is 0. As for the
910      * advance/delay we gain here, we try to fix it next time.
911      */
912     init_delay_params(&sc, cpu);
913 
914     /* prepare setjmp context for exception handling */
915     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
916 #if defined(__clang__)
917         /*
918          * Some compilers wrongly smash all local variables after
919          * siglongjmp (the spec requires that only non-volatile locals
920          * which are changed between the sigsetjmp and siglongjmp are
921          * permitted to be trashed). There were bug reports for gcc
922          * 4.5.0 and clang.  The bug is fixed in all versions of gcc
923          * that we support, but is still unfixed in clang:
924          *   https://bugs.llvm.org/show_bug.cgi?id=21183
925          *
926          * Reload an essential local variable here for those compilers.
927          * Newer versions of gcc would complain about this code (-Wclobbered),
928          * so we only perform the workaround for clang.
929          */
930         cpu = current_cpu;
931 #else
932         /* Non-buggy compilers preserve this; assert the correct value. */
933         g_assert(cpu == current_cpu);
934 #endif
935 
936 #ifndef CONFIG_SOFTMMU
937         clear_helper_retaddr();
938         tcg_debug_assert(!have_mmap_lock());
939 #endif
940         if (qemu_mutex_iothread_locked()) {
941             qemu_mutex_unlock_iothread();
942         }
943         qemu_plugin_disable_mem_helpers(cpu);
944 
945         assert_no_pages_locked();
946     }
947 
948     /* if an exception is pending, we execute it here */
949     while (!cpu_handle_exception(cpu, &ret)) {
950         TranslationBlock *last_tb = NULL;
951         int tb_exit = 0;
952 
953         while (!cpu_handle_interrupt(cpu, &last_tb)) {
954             TranslationBlock *tb;
955             target_ulong cs_base, pc;
956             uint32_t flags, cflags;
957 
958             cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags);
959 
960             /*
961              * When requested, use an exact setting for cflags for the next
962              * execution.  This is used for icount, precise smc, and stop-
963              * after-access watchpoints.  Since this request should never
964              * have CF_INVALID set, -1 is a convenient invalid value that
965              * does not require tcg headers for cpu_common_reset.
966              */
967             cflags = cpu->cflags_next_tb;
968             if (cflags == -1) {
969                 cflags = curr_cflags(cpu);
970             } else {
971                 cpu->cflags_next_tb = -1;
972             }
973 
974             if (check_for_breakpoints(cpu, pc, &cflags)) {
975                 break;
976             }
977 
978             tb = tb_lookup(cpu, pc, cs_base, flags, cflags);
979             if (tb == NULL) {
980                 mmap_lock();
981                 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
982                 mmap_unlock();
983                 /*
984                  * We add the TB in the virtual pc hash table
985                  * for the fast lookup
986                  */
987                 qatomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
988             }
989 
990 #ifndef CONFIG_USER_ONLY
991             /*
992              * We don't take care of direct jumps when address mapping
993              * changes in system emulation.  So it's not safe to make a
994              * direct jump to a TB spanning two pages because the mapping
995              * for the second page can change.
996              */
997             if (tb->page_addr[1] != -1) {
998                 last_tb = NULL;
999             }
1000 #endif
1001             /* See if we can patch the calling TB. */
1002             if (last_tb) {
1003                 tb_add_jump(last_tb, tb_exit, tb);
1004             }
1005 
1006             cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
1007 
1008             /* Try to align the host and virtual clocks
1009                if the guest is in advance */
1010             align_clocks(&sc, cpu);
1011         }
1012     }
1013 
1014     cpu_exec_exit(cpu);
1015     rcu_read_unlock();
1016 
1017     return ret;
1018 }
1019 
1020 void tcg_exec_realizefn(CPUState *cpu, Error **errp)
1021 {
1022     static bool tcg_target_initialized;
1023     CPUClass *cc = CPU_GET_CLASS(cpu);
1024 
1025     if (!tcg_target_initialized) {
1026         cc->tcg_ops->initialize();
1027         tcg_target_initialized = true;
1028     }
1029     tlb_init(cpu);
1030     qemu_plugin_vcpu_init_hook(cpu);
1031 
1032 #ifndef CONFIG_USER_ONLY
1033     tcg_iommu_init_notifier_list(cpu);
1034 #endif /* !CONFIG_USER_ONLY */
1035 }
1036 
1037 /* undo the initializations in reverse order */
1038 void tcg_exec_unrealizefn(CPUState *cpu)
1039 {
1040 #ifndef CONFIG_USER_ONLY
1041     tcg_iommu_free_notifier_list(cpu);
1042 #endif /* !CONFIG_USER_ONLY */
1043 
1044     qemu_plugin_vcpu_exit_hook(cpu);
1045     tlb_destroy(cpu);
1046 }
1047 
1048 #ifndef CONFIG_USER_ONLY
1049 
1050 void dump_drift_info(GString *buf)
1051 {
1052     if (!icount_enabled()) {
1053         return;
1054     }
1055 
1056     g_string_append_printf(buf, "Host - Guest clock  %"PRIi64" ms\n",
1057                            (cpu_get_clock() - icount_get()) / SCALE_MS);
1058     if (icount_align_option) {
1059         g_string_append_printf(buf, "Max guest delay     %"PRIi64" ms\n",
1060                                -max_delay / SCALE_MS);
1061         g_string_append_printf(buf, "Max guest advance   %"PRIi64" ms\n",
1062                                max_advance / SCALE_MS);
1063     } else {
1064         g_string_append_printf(buf, "Max guest delay     NA\n");
1065         g_string_append_printf(buf, "Max guest advance   NA\n");
1066     }
1067 }
1068 
1069 HumanReadableText *qmp_x_query_jit(Error **errp)
1070 {
1071     g_autoptr(GString) buf = g_string_new("");
1072 
1073     if (!tcg_enabled()) {
1074         error_setg(errp, "JIT information is only available with accel=tcg");
1075         return NULL;
1076     }
1077 
1078     dump_exec_info(buf);
1079     dump_drift_info(buf);
1080 
1081     return human_readable_text_from_str(buf);
1082 }
1083 
1084 HumanReadableText *qmp_x_query_opcount(Error **errp)
1085 {
1086     g_autoptr(GString) buf = g_string_new("");
1087 
1088     if (!tcg_enabled()) {
1089         error_setg(errp, "Opcode count information is only available with accel=tcg");
1090         return NULL;
1091     }
1092 
1093     dump_opcount_info(buf);
1094 
1095     return human_readable_text_from_str(buf);
1096 }
1097 
1098 #ifdef CONFIG_PROFILER
1099 
1100 int64_t dev_time;
1101 
1102 HumanReadableText *qmp_x_query_profile(Error **errp)
1103 {
1104     g_autoptr(GString) buf = g_string_new("");
1105     static int64_t last_cpu_exec_time;
1106     int64_t cpu_exec_time;
1107     int64_t delta;
1108 
1109     cpu_exec_time = tcg_cpu_exec_time();
1110     delta = cpu_exec_time - last_cpu_exec_time;
1111 
1112     g_string_append_printf(buf, "async time  %" PRId64 " (%0.3f)\n",
1113                            dev_time, dev_time / (double)NANOSECONDS_PER_SECOND);
1114     g_string_append_printf(buf, "qemu time   %" PRId64 " (%0.3f)\n",
1115                            delta, delta / (double)NANOSECONDS_PER_SECOND);
1116     last_cpu_exec_time = cpu_exec_time;
1117     dev_time = 0;
1118 
1119     return human_readable_text_from_str(buf);
1120 }
1121 #else
1122 HumanReadableText *qmp_x_query_profile(Error **errp)
1123 {
1124     error_setg(errp, "Internal profiler not compiled");
1125     return NULL;
1126 }
1127 #endif
1128 
1129 #endif /* !CONFIG_USER_ONLY */
1130