xref: /openbmc/qemu/accel/tcg/cpu-exec.c (revision 265b578c)
1 /*
2  *  emulator main execution loop
3  *
4  *  Copyright (c) 2003-2005 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include "qemu/osdep.h"
20 #include "cpu.h"
21 #include "trace.h"
22 #include "disas/disas.h"
23 #include "exec/exec-all.h"
24 #include "tcg.h"
25 #include "qemu/atomic.h"
26 #include "sysemu/qtest.h"
27 #include "qemu/timer.h"
28 #include "qemu/rcu.h"
29 #include "exec/tb-hash.h"
30 #include "exec/tb-lookup.h"
31 #include "exec/log.h"
32 #include "qemu/main-loop.h"
33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
34 #include "hw/i386/apic.h"
35 #endif
36 #include "sysemu/cpus.h"
37 #include "sysemu/replay.h"
38 
39 /* -icount align implementation. */
40 
41 typedef struct SyncClocks {
42     int64_t diff_clk;
43     int64_t last_cpu_icount;
44     int64_t realtime_clock;
45 } SyncClocks;
46 
47 #if !defined(CONFIG_USER_ONLY)
48 /* Allow the guest to have a max 3ms advance.
49  * The difference between the 2 clocks could therefore
50  * oscillate around 0.
51  */
52 #define VM_CLOCK_ADVANCE 3000000
53 #define THRESHOLD_REDUCE 1.5
54 #define MAX_DELAY_PRINT_RATE 2000000000LL
55 #define MAX_NB_PRINTS 100
56 
57 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
58 {
59     int64_t cpu_icount;
60 
61     if (!icount_align_option) {
62         return;
63     }
64 
65     cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
66     sc->diff_clk += cpu_icount_to_ns(sc->last_cpu_icount - cpu_icount);
67     sc->last_cpu_icount = cpu_icount;
68 
69     if (sc->diff_clk > VM_CLOCK_ADVANCE) {
70 #ifndef _WIN32
71         struct timespec sleep_delay, rem_delay;
72         sleep_delay.tv_sec = sc->diff_clk / 1000000000LL;
73         sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL;
74         if (nanosleep(&sleep_delay, &rem_delay) < 0) {
75             sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec;
76         } else {
77             sc->diff_clk = 0;
78         }
79 #else
80         Sleep(sc->diff_clk / SCALE_MS);
81         sc->diff_clk = 0;
82 #endif
83     }
84 }
85 
86 static void print_delay(const SyncClocks *sc)
87 {
88     static float threshold_delay;
89     static int64_t last_realtime_clock;
90     static int nb_prints;
91 
92     if (icount_align_option &&
93         sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE &&
94         nb_prints < MAX_NB_PRINTS) {
95         if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) ||
96             (-sc->diff_clk / (float)1000000000LL <
97              (threshold_delay - THRESHOLD_REDUCE))) {
98             threshold_delay = (-sc->diff_clk / 1000000000LL) + 1;
99             printf("Warning: The guest is now late by %.1f to %.1f seconds\n",
100                    threshold_delay - 1,
101                    threshold_delay);
102             nb_prints++;
103             last_realtime_clock = sc->realtime_clock;
104         }
105     }
106 }
107 
108 static void init_delay_params(SyncClocks *sc,
109                               const CPUState *cpu)
110 {
111     if (!icount_align_option) {
112         return;
113     }
114     sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT);
115     sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock;
116     sc->last_cpu_icount = cpu->icount_extra + cpu->icount_decr.u16.low;
117     if (sc->diff_clk < max_delay) {
118         max_delay = sc->diff_clk;
119     }
120     if (sc->diff_clk > max_advance) {
121         max_advance = sc->diff_clk;
122     }
123 
124     /* Print every 2s max if the guest is late. We limit the number
125        of printed messages to NB_PRINT_MAX(currently 100) */
126     print_delay(sc);
127 }
128 #else
129 static void align_clocks(SyncClocks *sc, const CPUState *cpu)
130 {
131 }
132 
133 static void init_delay_params(SyncClocks *sc, const CPUState *cpu)
134 {
135 }
136 #endif /* CONFIG USER ONLY */
137 
138 /* Execute a TB, and fix up the CPU state afterwards if necessary */
139 static inline tcg_target_ulong cpu_tb_exec(CPUState *cpu, TranslationBlock *itb)
140 {
141     CPUArchState *env = cpu->env_ptr;
142     uintptr_t ret;
143     TranslationBlock *last_tb;
144     int tb_exit;
145     uint8_t *tb_ptr = itb->tc.ptr;
146 
147     qemu_log_mask_and_addr(CPU_LOG_EXEC, itb->pc,
148                            "Trace %d: %p ["
149                            TARGET_FMT_lx "/" TARGET_FMT_lx "/%#x] %s\n",
150                            cpu->cpu_index, itb->tc.ptr,
151                            itb->cs_base, itb->pc, itb->flags,
152                            lookup_symbol(itb->pc));
153 
154 #if defined(DEBUG_DISAS)
155     if (qemu_loglevel_mask(CPU_LOG_TB_CPU)
156         && qemu_log_in_addr_range(itb->pc)) {
157         qemu_log_lock();
158         int flags = 0;
159         if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) {
160             flags |= CPU_DUMP_FPU;
161         }
162 #if defined(TARGET_I386)
163         flags |= CPU_DUMP_CCOP;
164 #endif
165         log_cpu_state(cpu, flags);
166         qemu_log_unlock();
167     }
168 #endif /* DEBUG_DISAS */
169 
170     cpu->can_do_io = !use_icount;
171     ret = tcg_qemu_tb_exec(env, tb_ptr);
172     cpu->can_do_io = 1;
173     last_tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
174     tb_exit = ret & TB_EXIT_MASK;
175     trace_exec_tb_exit(last_tb, tb_exit);
176 
177     if (tb_exit > TB_EXIT_IDX1) {
178         /* We didn't start executing this TB (eg because the instruction
179          * counter hit zero); we must restore the guest PC to the address
180          * of the start of the TB.
181          */
182         CPUClass *cc = CPU_GET_CLASS(cpu);
183         qemu_log_mask_and_addr(CPU_LOG_EXEC, last_tb->pc,
184                                "Stopped execution of TB chain before %p ["
185                                TARGET_FMT_lx "] %s\n",
186                                last_tb->tc.ptr, last_tb->pc,
187                                lookup_symbol(last_tb->pc));
188         if (cc->synchronize_from_tb) {
189             cc->synchronize_from_tb(cpu, last_tb);
190         } else {
191             assert(cc->set_pc);
192             cc->set_pc(cpu, last_tb->pc);
193         }
194     }
195     return ret;
196 }
197 
198 #ifndef CONFIG_USER_ONLY
199 /* Execute the code without caching the generated code. An interpreter
200    could be used if available. */
201 static void cpu_exec_nocache(CPUState *cpu, int max_cycles,
202                              TranslationBlock *orig_tb, bool ignore_icount)
203 {
204     TranslationBlock *tb;
205     uint32_t cflags = curr_cflags() | CF_NOCACHE;
206 
207     if (ignore_icount) {
208         cflags &= ~CF_USE_ICOUNT;
209     }
210 
211     /* Should never happen.
212        We only end up here when an existing TB is too long.  */
213     cflags |= MIN(max_cycles, CF_COUNT_MASK);
214 
215     tb_lock();
216     tb = tb_gen_code(cpu, orig_tb->pc, orig_tb->cs_base,
217                      orig_tb->flags, cflags);
218     tb->orig_tb = orig_tb;
219     tb_unlock();
220 
221     /* execute the generated code */
222     trace_exec_tb_nocache(tb, tb->pc);
223     cpu_tb_exec(cpu, tb);
224 
225     tb_lock();
226     tb_phys_invalidate(tb, -1);
227     tb_remove(tb);
228     tb_unlock();
229 }
230 #endif
231 
232 void cpu_exec_step_atomic(CPUState *cpu)
233 {
234     CPUClass *cc = CPU_GET_CLASS(cpu);
235     TranslationBlock *tb;
236     target_ulong cs_base, pc;
237     uint32_t flags;
238     uint32_t cflags = 1;
239     uint32_t cf_mask = cflags & CF_HASH_MASK;
240     /* volatile because we modify it between setjmp and longjmp */
241     volatile bool in_exclusive_region = false;
242 
243     if (sigsetjmp(cpu->jmp_env, 0) == 0) {
244         tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
245         if (tb == NULL) {
246             mmap_lock();
247             tb_lock();
248             tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask);
249             if (likely(tb == NULL)) {
250                 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags);
251             }
252             tb_unlock();
253             mmap_unlock();
254         }
255 
256         start_exclusive();
257 
258         /* Since we got here, we know that parallel_cpus must be true.  */
259         parallel_cpus = false;
260         in_exclusive_region = true;
261         cc->cpu_exec_enter(cpu);
262         /* execute the generated code */
263         trace_exec_tb(tb, pc);
264         cpu_tb_exec(cpu, tb);
265         cc->cpu_exec_exit(cpu);
266     } else {
267         /* We may have exited due to another problem here, so we need
268          * to reset any tb_locks we may have taken but didn't release.
269          * The mmap_lock is dropped by tb_gen_code if it runs out of
270          * memory.
271          */
272 #ifndef CONFIG_SOFTMMU
273         tcg_debug_assert(!have_mmap_lock());
274 #endif
275         tb_lock_reset();
276     }
277 
278     if (in_exclusive_region) {
279         /* We might longjump out of either the codegen or the
280          * execution, so must make sure we only end the exclusive
281          * region if we started it.
282          */
283         parallel_cpus = true;
284         end_exclusive();
285     }
286 }
287 
288 struct tb_desc {
289     target_ulong pc;
290     target_ulong cs_base;
291     CPUArchState *env;
292     tb_page_addr_t phys_page1;
293     uint32_t flags;
294     uint32_t cf_mask;
295     uint32_t trace_vcpu_dstate;
296 };
297 
298 static bool tb_cmp(const void *p, const void *d)
299 {
300     const TranslationBlock *tb = p;
301     const struct tb_desc *desc = d;
302 
303     if (tb->pc == desc->pc &&
304         tb->page_addr[0] == desc->phys_page1 &&
305         tb->cs_base == desc->cs_base &&
306         tb->flags == desc->flags &&
307         tb->trace_vcpu_dstate == desc->trace_vcpu_dstate &&
308         (tb_cflags(tb) & (CF_HASH_MASK | CF_INVALID)) == desc->cf_mask) {
309         /* check next page if needed */
310         if (tb->page_addr[1] == -1) {
311             return true;
312         } else {
313             tb_page_addr_t phys_page2;
314             target_ulong virt_page2;
315 
316             virt_page2 = (desc->pc & TARGET_PAGE_MASK) + TARGET_PAGE_SIZE;
317             phys_page2 = get_page_addr_code(desc->env, virt_page2);
318             if (tb->page_addr[1] == phys_page2) {
319                 return true;
320             }
321         }
322     }
323     return false;
324 }
325 
326 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
327                                    target_ulong cs_base, uint32_t flags,
328                                    uint32_t cf_mask)
329 {
330     tb_page_addr_t phys_pc;
331     struct tb_desc desc;
332     uint32_t h;
333 
334     desc.env = (CPUArchState *)cpu->env_ptr;
335     desc.cs_base = cs_base;
336     desc.flags = flags;
337     desc.cf_mask = cf_mask;
338     desc.trace_vcpu_dstate = *cpu->trace_dstate;
339     desc.pc = pc;
340     phys_pc = get_page_addr_code(desc.env, pc);
341     desc.phys_page1 = phys_pc & TARGET_PAGE_MASK;
342     h = tb_hash_func(phys_pc, pc, flags, cf_mask, *cpu->trace_dstate);
343     return qht_lookup(&tb_ctx.htable, tb_cmp, &desc, h);
344 }
345 
346 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr)
347 {
348     if (TCG_TARGET_HAS_direct_jump) {
349         uintptr_t offset = tb->jmp_target_arg[n];
350         uintptr_t tc_ptr = (uintptr_t)tb->tc.ptr;
351         tb_target_set_jmp_target(tc_ptr, tc_ptr + offset, addr);
352     } else {
353         tb->jmp_target_arg[n] = addr;
354     }
355 }
356 
357 /* Called with tb_lock held.  */
358 static inline void tb_add_jump(TranslationBlock *tb, int n,
359                                TranslationBlock *tb_next)
360 {
361     assert(n < ARRAY_SIZE(tb->jmp_list_next));
362     if (tb->jmp_list_next[n]) {
363         /* Another thread has already done this while we were
364          * outside of the lock; nothing to do in this case */
365         return;
366     }
367     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
368                            "Linking TBs %p [" TARGET_FMT_lx
369                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
370                            tb->tc.ptr, tb->pc, n,
371                            tb_next->tc.ptr, tb_next->pc);
372 
373     /* patch the native jump address */
374     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr);
375 
376     /* add in TB jmp circular list */
377     tb->jmp_list_next[n] = tb_next->jmp_list_first;
378     tb_next->jmp_list_first = (uintptr_t)tb | n;
379 }
380 
381 static inline TranslationBlock *tb_find(CPUState *cpu,
382                                         TranslationBlock *last_tb,
383                                         int tb_exit, uint32_t cf_mask)
384 {
385     TranslationBlock *tb;
386     target_ulong cs_base, pc;
387     uint32_t flags;
388     bool acquired_tb_lock = false;
389 
390     tb = tb_lookup__cpu_state(cpu, &pc, &cs_base, &flags, cf_mask);
391     if (tb == NULL) {
392         /* mmap_lock is needed by tb_gen_code, and mmap_lock must be
393          * taken outside tb_lock. As system emulation is currently
394          * single threaded the locks are NOPs.
395          */
396         mmap_lock();
397         tb_lock();
398         acquired_tb_lock = true;
399 
400         /* There's a chance that our desired tb has been translated while
401          * taking the locks so we check again inside the lock.
402          */
403         tb = tb_htable_lookup(cpu, pc, cs_base, flags, cf_mask);
404         if (likely(tb == NULL)) {
405             /* if no translated code available, then translate it now */
406             tb = tb_gen_code(cpu, pc, cs_base, flags, cf_mask);
407         }
408 
409         mmap_unlock();
410         /* We add the TB in the virtual pc hash table for the fast lookup */
411         atomic_set(&cpu->tb_jmp_cache[tb_jmp_cache_hash_func(pc)], tb);
412     }
413 #ifndef CONFIG_USER_ONLY
414     /* We don't take care of direct jumps when address mapping changes in
415      * system emulation. So it's not safe to make a direct jump to a TB
416      * spanning two pages because the mapping for the second page can change.
417      */
418     if (tb->page_addr[1] != -1) {
419         last_tb = NULL;
420     }
421 #endif
422     /* See if we can patch the calling TB. */
423     if (last_tb && !qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) {
424         if (!acquired_tb_lock) {
425             tb_lock();
426             acquired_tb_lock = true;
427         }
428         if (!(tb->cflags & CF_INVALID)) {
429             tb_add_jump(last_tb, tb_exit, tb);
430         }
431     }
432     if (acquired_tb_lock) {
433         tb_unlock();
434     }
435     return tb;
436 }
437 
438 static inline bool cpu_handle_halt(CPUState *cpu)
439 {
440     if (cpu->halted) {
441 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY)
442         if ((cpu->interrupt_request & CPU_INTERRUPT_POLL)
443             && replay_interrupt()) {
444             X86CPU *x86_cpu = X86_CPU(cpu);
445             qemu_mutex_lock_iothread();
446             apic_poll_irq(x86_cpu->apic_state);
447             cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL);
448             qemu_mutex_unlock_iothread();
449         }
450 #endif
451         if (!cpu_has_work(cpu)) {
452             return true;
453         }
454 
455         cpu->halted = 0;
456     }
457 
458     return false;
459 }
460 
461 static inline void cpu_handle_debug_exception(CPUState *cpu)
462 {
463     CPUClass *cc = CPU_GET_CLASS(cpu);
464     CPUWatchpoint *wp;
465 
466     if (!cpu->watchpoint_hit) {
467         QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) {
468             wp->flags &= ~BP_WATCHPOINT_HIT;
469         }
470     }
471 
472     cc->debug_excp_handler(cpu);
473 }
474 
475 static inline bool cpu_handle_exception(CPUState *cpu, int *ret)
476 {
477     if (cpu->exception_index < 0) {
478 #ifndef CONFIG_USER_ONLY
479         if (replay_has_exception()
480                && cpu->icount_decr.u16.low + cpu->icount_extra == 0) {
481             /* try to cause an exception pending in the log */
482             cpu_exec_nocache(cpu, 1, tb_find(cpu, NULL, 0, curr_cflags()), true);
483         }
484 #endif
485         if (cpu->exception_index < 0) {
486             return false;
487         }
488     }
489 
490     if (cpu->exception_index >= EXCP_INTERRUPT) {
491         /* exit request from the cpu execution loop */
492         *ret = cpu->exception_index;
493         if (*ret == EXCP_DEBUG) {
494             cpu_handle_debug_exception(cpu);
495         }
496         cpu->exception_index = -1;
497         return true;
498     } else {
499 #if defined(CONFIG_USER_ONLY)
500         /* if user mode only, we simulate a fake exception
501            which will be handled outside the cpu execution
502            loop */
503 #if defined(TARGET_I386)
504         CPUClass *cc = CPU_GET_CLASS(cpu);
505         cc->do_interrupt(cpu);
506 #endif
507         *ret = cpu->exception_index;
508         cpu->exception_index = -1;
509         return true;
510 #else
511         if (replay_exception()) {
512             CPUClass *cc = CPU_GET_CLASS(cpu);
513             qemu_mutex_lock_iothread();
514             cc->do_interrupt(cpu);
515             qemu_mutex_unlock_iothread();
516             cpu->exception_index = -1;
517         } else if (!replay_has_interrupt()) {
518             /* give a chance to iothread in replay mode */
519             *ret = EXCP_INTERRUPT;
520             return true;
521         }
522 #endif
523     }
524 
525     return false;
526 }
527 
528 static inline bool cpu_handle_interrupt(CPUState *cpu,
529                                         TranslationBlock **last_tb)
530 {
531     CPUClass *cc = CPU_GET_CLASS(cpu);
532 
533     /* Clear the interrupt flag now since we're processing
534      * cpu->interrupt_request and cpu->exit_request.
535      * Ensure zeroing happens before reading cpu->exit_request or
536      * cpu->interrupt_request (see also smp_wmb in cpu_exit())
537      */
538     atomic_mb_set(&cpu->icount_decr.u16.high, 0);
539 
540     if (unlikely(atomic_read(&cpu->interrupt_request))) {
541         int interrupt_request;
542         qemu_mutex_lock_iothread();
543         interrupt_request = cpu->interrupt_request;
544         if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) {
545             /* Mask out external interrupts for this step. */
546             interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK;
547         }
548         if (interrupt_request & CPU_INTERRUPT_DEBUG) {
549             cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG;
550             cpu->exception_index = EXCP_DEBUG;
551             qemu_mutex_unlock_iothread();
552             return true;
553         }
554         if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) {
555             /* Do nothing */
556         } else if (interrupt_request & CPU_INTERRUPT_HALT) {
557             replay_interrupt();
558             cpu->interrupt_request &= ~CPU_INTERRUPT_HALT;
559             cpu->halted = 1;
560             cpu->exception_index = EXCP_HLT;
561             qemu_mutex_unlock_iothread();
562             return true;
563         }
564 #if defined(TARGET_I386)
565         else if (interrupt_request & CPU_INTERRUPT_INIT) {
566             X86CPU *x86_cpu = X86_CPU(cpu);
567             CPUArchState *env = &x86_cpu->env;
568             replay_interrupt();
569             cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0);
570             do_cpu_init(x86_cpu);
571             cpu->exception_index = EXCP_HALTED;
572             qemu_mutex_unlock_iothread();
573             return true;
574         }
575 #else
576         else if (interrupt_request & CPU_INTERRUPT_RESET) {
577             replay_interrupt();
578             cpu_reset(cpu);
579             qemu_mutex_unlock_iothread();
580             return true;
581         }
582 #endif
583         /* The target hook has 3 exit conditions:
584            False when the interrupt isn't processed,
585            True when it is, and we should restart on a new TB,
586            and via longjmp via cpu_loop_exit.  */
587         else {
588             if (cc->cpu_exec_interrupt(cpu, interrupt_request)) {
589                 replay_interrupt();
590                 cpu->exception_index = -1;
591                 *last_tb = NULL;
592             }
593             /* The target hook may have updated the 'cpu->interrupt_request';
594              * reload the 'interrupt_request' value */
595             interrupt_request = cpu->interrupt_request;
596         }
597         if (interrupt_request & CPU_INTERRUPT_EXITTB) {
598             cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB;
599             /* ensure that no TB jump will be modified as
600                the program flow was changed */
601             *last_tb = NULL;
602         }
603 
604         /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */
605         qemu_mutex_unlock_iothread();
606     }
607 
608     /* Finally, check if we need to exit to the main loop.  */
609     if (unlikely(atomic_read(&cpu->exit_request)
610         || (use_icount && cpu->icount_decr.u16.low + cpu->icount_extra == 0))) {
611         atomic_set(&cpu->exit_request, 0);
612         if (cpu->exception_index == -1) {
613             cpu->exception_index = EXCP_INTERRUPT;
614         }
615         return true;
616     }
617 
618     return false;
619 }
620 
621 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb,
622                                     TranslationBlock **last_tb, int *tb_exit)
623 {
624     uintptr_t ret;
625     int32_t insns_left;
626 
627     trace_exec_tb(tb, tb->pc);
628     ret = cpu_tb_exec(cpu, tb);
629     tb = (TranslationBlock *)(ret & ~TB_EXIT_MASK);
630     *tb_exit = ret & TB_EXIT_MASK;
631     if (*tb_exit != TB_EXIT_REQUESTED) {
632         *last_tb = tb;
633         return;
634     }
635 
636     *last_tb = NULL;
637     insns_left = atomic_read(&cpu->icount_decr.u32);
638     if (insns_left < 0) {
639         /* Something asked us to stop executing chained TBs; just
640          * continue round the main loop. Whatever requested the exit
641          * will also have set something else (eg exit_request or
642          * interrupt_request) which will be handled by
643          * cpu_handle_interrupt.  cpu_handle_interrupt will also
644          * clear cpu->icount_decr.u16.high.
645          */
646         return;
647     }
648 
649     /* Instruction counter expired.  */
650     assert(use_icount);
651 #ifndef CONFIG_USER_ONLY
652     /* Ensure global icount has gone forward */
653     cpu_update_icount(cpu);
654     /* Refill decrementer and continue execution.  */
655     insns_left = MIN(0xffff, cpu->icount_budget);
656     cpu->icount_decr.u16.low = insns_left;
657     cpu->icount_extra = cpu->icount_budget - insns_left;
658     if (!cpu->icount_extra) {
659         /* Execute any remaining instructions, then let the main loop
660          * handle the next event.
661          */
662         if (insns_left > 0) {
663             cpu_exec_nocache(cpu, insns_left, tb, false);
664         }
665     }
666 #endif
667 }
668 
669 /* main execution loop */
670 
671 int cpu_exec(CPUState *cpu)
672 {
673     CPUClass *cc = CPU_GET_CLASS(cpu);
674     int ret;
675     SyncClocks sc = { 0 };
676 
677     /* replay_interrupt may need current_cpu */
678     current_cpu = cpu;
679 
680     if (cpu_handle_halt(cpu)) {
681         return EXCP_HALTED;
682     }
683 
684     rcu_read_lock();
685 
686     cc->cpu_exec_enter(cpu);
687 
688     /* Calculate difference between guest clock and host clock.
689      * This delay includes the delay of the last cycle, so
690      * what we have to do is sleep until it is 0. As for the
691      * advance/delay we gain here, we try to fix it next time.
692      */
693     init_delay_params(&sc, cpu);
694 
695     /* prepare setjmp context for exception handling */
696     if (sigsetjmp(cpu->jmp_env, 0) != 0) {
697 #if defined(__clang__) || !QEMU_GNUC_PREREQ(4, 6)
698         /* Some compilers wrongly smash all local variables after
699          * siglongjmp. There were bug reports for gcc 4.5.0 and clang.
700          * Reload essential local variables here for those compilers.
701          * Newer versions of gcc would complain about this code (-Wclobbered). */
702         cpu = current_cpu;
703         cc = CPU_GET_CLASS(cpu);
704 #else /* buggy compiler */
705         /* Assert that the compiler does not smash local variables. */
706         g_assert(cpu == current_cpu);
707         g_assert(cc == CPU_GET_CLASS(cpu));
708 #endif /* buggy compiler */
709         tb_lock_reset();
710         if (qemu_mutex_iothread_locked()) {
711             qemu_mutex_unlock_iothread();
712         }
713     }
714 
715     /* if an exception is pending, we execute it here */
716     while (!cpu_handle_exception(cpu, &ret)) {
717         TranslationBlock *last_tb = NULL;
718         int tb_exit = 0;
719 
720         while (!cpu_handle_interrupt(cpu, &last_tb)) {
721             uint32_t cflags = cpu->cflags_next_tb;
722             TranslationBlock *tb;
723 
724             /* When requested, use an exact setting for cflags for the next
725                execution.  This is used for icount, precise smc, and stop-
726                after-access watchpoints.  Since this request should never
727                have CF_INVALID set, -1 is a convenient invalid value that
728                does not require tcg headers for cpu_common_reset.  */
729             if (cflags == -1) {
730                 cflags = curr_cflags();
731             } else {
732                 cpu->cflags_next_tb = -1;
733             }
734 
735             tb = tb_find(cpu, last_tb, tb_exit, cflags);
736             cpu_loop_exec_tb(cpu, tb, &last_tb, &tb_exit);
737             /* Try to align the host and virtual clocks
738                if the guest is in advance */
739             align_clocks(&sc, cpu);
740         }
741     }
742 
743     cc->cpu_exec_exit(cpu);
744     rcu_read_unlock();
745 
746     return ret;
747 }
748