1 /* 2 * emulator main execution loop 3 * 4 * Copyright (c) 2003-2005 Fabrice Bellard 5 * 6 * This library is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU Lesser General Public 8 * License as published by the Free Software Foundation; either 9 * version 2.1 of the License, or (at your option) any later version. 10 * 11 * This library is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU 14 * Lesser General Public License for more details. 15 * 16 * You should have received a copy of the GNU Lesser General Public 17 * License along with this library; if not, see <http://www.gnu.org/licenses/>. 18 */ 19 20 #include "qemu/osdep.h" 21 #include "qemu/qemu-print.h" 22 #include "qapi/error.h" 23 #include "qapi/type-helpers.h" 24 #include "hw/core/tcg-cpu-ops.h" 25 #include "trace.h" 26 #include "disas/disas.h" 27 #include "exec/exec-all.h" 28 #include "tcg/tcg.h" 29 #include "qemu/atomic.h" 30 #include "qemu/rcu.h" 31 #include "exec/log.h" 32 #include "qemu/main-loop.h" 33 #if defined(TARGET_I386) && !defined(CONFIG_USER_ONLY) 34 #include "hw/i386/apic.h" 35 #endif 36 #include "sysemu/cpus.h" 37 #include "exec/cpu-all.h" 38 #include "sysemu/cpu-timers.h" 39 #include "exec/replay-core.h" 40 #include "sysemu/tcg.h" 41 #include "exec/helper-proto.h" 42 #include "tb-jmp-cache.h" 43 #include "tb-hash.h" 44 #include "tb-context.h" 45 #include "internal.h" 46 47 /* -icount align implementation. */ 48 49 typedef struct SyncClocks { 50 int64_t diff_clk; 51 int64_t last_cpu_icount; 52 int64_t realtime_clock; 53 } SyncClocks; 54 55 #if !defined(CONFIG_USER_ONLY) 56 /* Allow the guest to have a max 3ms advance. 57 * The difference between the 2 clocks could therefore 58 * oscillate around 0. 59 */ 60 #define VM_CLOCK_ADVANCE 3000000 61 #define THRESHOLD_REDUCE 1.5 62 #define MAX_DELAY_PRINT_RATE 2000000000LL 63 #define MAX_NB_PRINTS 100 64 65 int64_t max_delay; 66 int64_t max_advance; 67 68 static void align_clocks(SyncClocks *sc, CPUState *cpu) 69 { 70 int64_t cpu_icount; 71 72 if (!icount_align_option) { 73 return; 74 } 75 76 cpu_icount = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 77 sc->diff_clk += icount_to_ns(sc->last_cpu_icount - cpu_icount); 78 sc->last_cpu_icount = cpu_icount; 79 80 if (sc->diff_clk > VM_CLOCK_ADVANCE) { 81 #ifndef _WIN32 82 struct timespec sleep_delay, rem_delay; 83 sleep_delay.tv_sec = sc->diff_clk / 1000000000LL; 84 sleep_delay.tv_nsec = sc->diff_clk % 1000000000LL; 85 if (nanosleep(&sleep_delay, &rem_delay) < 0) { 86 sc->diff_clk = rem_delay.tv_sec * 1000000000LL + rem_delay.tv_nsec; 87 } else { 88 sc->diff_clk = 0; 89 } 90 #else 91 Sleep(sc->diff_clk / SCALE_MS); 92 sc->diff_clk = 0; 93 #endif 94 } 95 } 96 97 static void print_delay(const SyncClocks *sc) 98 { 99 static float threshold_delay; 100 static int64_t last_realtime_clock; 101 static int nb_prints; 102 103 if (icount_align_option && 104 sc->realtime_clock - last_realtime_clock >= MAX_DELAY_PRINT_RATE && 105 nb_prints < MAX_NB_PRINTS) { 106 if ((-sc->diff_clk / (float)1000000000LL > threshold_delay) || 107 (-sc->diff_clk / (float)1000000000LL < 108 (threshold_delay - THRESHOLD_REDUCE))) { 109 threshold_delay = (-sc->diff_clk / 1000000000LL) + 1; 110 qemu_printf("Warning: The guest is now late by %.1f to %.1f seconds\n", 111 threshold_delay - 1, 112 threshold_delay); 113 nb_prints++; 114 last_realtime_clock = sc->realtime_clock; 115 } 116 } 117 } 118 119 static void init_delay_params(SyncClocks *sc, CPUState *cpu) 120 { 121 if (!icount_align_option) { 122 return; 123 } 124 sc->realtime_clock = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL_RT); 125 sc->diff_clk = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - sc->realtime_clock; 126 sc->last_cpu_icount 127 = cpu->icount_extra + cpu_neg(cpu)->icount_decr.u16.low; 128 if (sc->diff_clk < max_delay) { 129 max_delay = sc->diff_clk; 130 } 131 if (sc->diff_clk > max_advance) { 132 max_advance = sc->diff_clk; 133 } 134 135 /* Print every 2s max if the guest is late. We limit the number 136 of printed messages to NB_PRINT_MAX(currently 100) */ 137 print_delay(sc); 138 } 139 #else 140 static void align_clocks(SyncClocks *sc, const CPUState *cpu) 141 { 142 } 143 144 static void init_delay_params(SyncClocks *sc, const CPUState *cpu) 145 { 146 } 147 #endif /* CONFIG USER ONLY */ 148 149 uint32_t curr_cflags(CPUState *cpu) 150 { 151 uint32_t cflags = cpu->tcg_cflags; 152 153 /* 154 * Record gdb single-step. We should be exiting the TB by raising 155 * EXCP_DEBUG, but to simplify other tests, disable chaining too. 156 * 157 * For singlestep and -d nochain, suppress goto_tb so that 158 * we can log -d cpu,exec after every TB. 159 */ 160 if (unlikely(cpu->singlestep_enabled)) { 161 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | CF_SINGLE_STEP | 1; 162 } else if (qatomic_read(&one_insn_per_tb)) { 163 cflags |= CF_NO_GOTO_TB | 1; 164 } else if (qemu_loglevel_mask(CPU_LOG_TB_NOCHAIN)) { 165 cflags |= CF_NO_GOTO_TB; 166 } 167 168 return cflags; 169 } 170 171 struct tb_desc { 172 target_ulong pc; 173 target_ulong cs_base; 174 CPUArchState *env; 175 tb_page_addr_t page_addr0; 176 uint32_t flags; 177 uint32_t cflags; 178 }; 179 180 static bool tb_lookup_cmp(const void *p, const void *d) 181 { 182 const TranslationBlock *tb = p; 183 const struct tb_desc *desc = d; 184 185 if ((tb_cflags(tb) & CF_PCREL || tb->pc == desc->pc) && 186 tb_page_addr0(tb) == desc->page_addr0 && 187 tb->cs_base == desc->cs_base && 188 tb->flags == desc->flags && 189 tb_cflags(tb) == desc->cflags) { 190 /* check next page if needed */ 191 tb_page_addr_t tb_phys_page1 = tb_page_addr1(tb); 192 if (tb_phys_page1 == -1) { 193 return true; 194 } else { 195 tb_page_addr_t phys_page1; 196 target_ulong virt_page1; 197 198 /* 199 * We know that the first page matched, and an otherwise valid TB 200 * encountered an incomplete instruction at the end of that page, 201 * therefore we know that generating a new TB from the current PC 202 * must also require reading from the next page -- even if the 203 * second pages do not match, and therefore the resulting insn 204 * is different for the new TB. Therefore any exception raised 205 * here by the faulting lookup is not premature. 206 */ 207 virt_page1 = TARGET_PAGE_ALIGN(desc->pc); 208 phys_page1 = get_page_addr_code(desc->env, virt_page1); 209 if (tb_phys_page1 == phys_page1) { 210 return true; 211 } 212 } 213 } 214 return false; 215 } 216 217 static TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc, 218 target_ulong cs_base, uint32_t flags, 219 uint32_t cflags) 220 { 221 tb_page_addr_t phys_pc; 222 struct tb_desc desc; 223 uint32_t h; 224 225 desc.env = cpu->env_ptr; 226 desc.cs_base = cs_base; 227 desc.flags = flags; 228 desc.cflags = cflags; 229 desc.pc = pc; 230 phys_pc = get_page_addr_code(desc.env, pc); 231 if (phys_pc == -1) { 232 return NULL; 233 } 234 desc.page_addr0 = phys_pc; 235 h = tb_hash_func(phys_pc, (cflags & CF_PCREL ? 0 : pc), 236 flags, cs_base, cflags); 237 return qht_lookup_custom(&tb_ctx.htable, &desc, h, tb_lookup_cmp); 238 } 239 240 /* Might cause an exception, so have a longjmp destination ready */ 241 static inline TranslationBlock *tb_lookup(CPUState *cpu, target_ulong pc, 242 target_ulong cs_base, 243 uint32_t flags, uint32_t cflags) 244 { 245 TranslationBlock *tb; 246 CPUJumpCache *jc; 247 uint32_t hash; 248 249 /* we should never be trying to look up an INVALID tb */ 250 tcg_debug_assert(!(cflags & CF_INVALID)); 251 252 hash = tb_jmp_cache_hash_func(pc); 253 jc = cpu->tb_jmp_cache; 254 255 if (cflags & CF_PCREL) { 256 /* Use acquire to ensure current load of pc from jc. */ 257 tb = qatomic_load_acquire(&jc->array[hash].tb); 258 259 if (likely(tb && 260 jc->array[hash].pc == pc && 261 tb->cs_base == cs_base && 262 tb->flags == flags && 263 tb_cflags(tb) == cflags)) { 264 return tb; 265 } 266 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 267 if (tb == NULL) { 268 return NULL; 269 } 270 jc->array[hash].pc = pc; 271 /* Ensure pc is written first. */ 272 qatomic_store_release(&jc->array[hash].tb, tb); 273 } else { 274 /* Use rcu_read to ensure current load of pc from *tb. */ 275 tb = qatomic_rcu_read(&jc->array[hash].tb); 276 277 if (likely(tb && 278 tb->pc == pc && 279 tb->cs_base == cs_base && 280 tb->flags == flags && 281 tb_cflags(tb) == cflags)) { 282 return tb; 283 } 284 tb = tb_htable_lookup(cpu, pc, cs_base, flags, cflags); 285 if (tb == NULL) { 286 return NULL; 287 } 288 /* Use the pc value already stored in tb->pc. */ 289 qatomic_set(&jc->array[hash].tb, tb); 290 } 291 292 return tb; 293 } 294 295 static void log_cpu_exec(target_ulong pc, CPUState *cpu, 296 const TranslationBlock *tb) 297 { 298 if (qemu_log_in_addr_range(pc)) { 299 qemu_log_mask(CPU_LOG_EXEC, 300 "Trace %d: %p [%08" PRIx64 301 "/" TARGET_FMT_lx "/%08x/%08x] %s\n", 302 cpu->cpu_index, tb->tc.ptr, tb->cs_base, pc, 303 tb->flags, tb->cflags, lookup_symbol(pc)); 304 305 if (qemu_loglevel_mask(CPU_LOG_TB_CPU)) { 306 FILE *logfile = qemu_log_trylock(); 307 if (logfile) { 308 int flags = 0; 309 310 if (qemu_loglevel_mask(CPU_LOG_TB_FPU)) { 311 flags |= CPU_DUMP_FPU; 312 } 313 #if defined(TARGET_I386) 314 flags |= CPU_DUMP_CCOP; 315 #endif 316 if (qemu_loglevel_mask(CPU_LOG_TB_VPU)) { 317 flags |= CPU_DUMP_VPU; 318 } 319 cpu_dump_state(cpu, logfile, flags); 320 qemu_log_unlock(logfile); 321 } 322 } 323 } 324 } 325 326 static bool check_for_breakpoints_slow(CPUState *cpu, target_ulong pc, 327 uint32_t *cflags) 328 { 329 CPUBreakpoint *bp; 330 bool match_page = false; 331 332 /* 333 * Singlestep overrides breakpoints. 334 * This requirement is visible in the record-replay tests, where 335 * we would fail to make forward progress in reverse-continue. 336 * 337 * TODO: gdb singlestep should only override gdb breakpoints, 338 * so that one could (gdb) singlestep into the guest kernel's 339 * architectural breakpoint handler. 340 */ 341 if (cpu->singlestep_enabled) { 342 return false; 343 } 344 345 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 346 /* 347 * If we have an exact pc match, trigger the breakpoint. 348 * Otherwise, note matches within the page. 349 */ 350 if (pc == bp->pc) { 351 bool match_bp = false; 352 353 if (bp->flags & BP_GDB) { 354 match_bp = true; 355 } else if (bp->flags & BP_CPU) { 356 #ifdef CONFIG_USER_ONLY 357 g_assert_not_reached(); 358 #else 359 CPUClass *cc = CPU_GET_CLASS(cpu); 360 assert(cc->tcg_ops->debug_check_breakpoint); 361 match_bp = cc->tcg_ops->debug_check_breakpoint(cpu); 362 #endif 363 } 364 365 if (match_bp) { 366 cpu->exception_index = EXCP_DEBUG; 367 return true; 368 } 369 } else if (((pc ^ bp->pc) & TARGET_PAGE_MASK) == 0) { 370 match_page = true; 371 } 372 } 373 374 /* 375 * Within the same page as a breakpoint, single-step, 376 * returning to helper_lookup_tb_ptr after each insn looking 377 * for the actual breakpoint. 378 * 379 * TODO: Perhaps better to record all of the TBs associated 380 * with a given virtual page that contains a breakpoint, and 381 * then invalidate them when a new overlapping breakpoint is 382 * set on the page. Non-overlapping TBs would not be 383 * invalidated, nor would any TB need to be invalidated as 384 * breakpoints are removed. 385 */ 386 if (match_page) { 387 *cflags = (*cflags & ~CF_COUNT_MASK) | CF_NO_GOTO_TB | 1; 388 } 389 return false; 390 } 391 392 static inline bool check_for_breakpoints(CPUState *cpu, target_ulong pc, 393 uint32_t *cflags) 394 { 395 return unlikely(!QTAILQ_EMPTY(&cpu->breakpoints)) && 396 check_for_breakpoints_slow(cpu, pc, cflags); 397 } 398 399 /** 400 * helper_lookup_tb_ptr: quick check for next tb 401 * @env: current cpu state 402 * 403 * Look for an existing TB matching the current cpu state. 404 * If found, return the code pointer. If not found, return 405 * the tcg epilogue so that we return into cpu_tb_exec. 406 */ 407 const void *HELPER(lookup_tb_ptr)(CPUArchState *env) 408 { 409 CPUState *cpu = env_cpu(env); 410 TranslationBlock *tb; 411 target_ulong cs_base, pc; 412 uint32_t flags, cflags; 413 414 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 415 416 cflags = curr_cflags(cpu); 417 if (check_for_breakpoints(cpu, pc, &cflags)) { 418 cpu_loop_exit(cpu); 419 } 420 421 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 422 if (tb == NULL) { 423 return tcg_code_gen_epilogue; 424 } 425 426 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 427 log_cpu_exec(pc, cpu, tb); 428 } 429 430 return tb->tc.ptr; 431 } 432 433 /* Execute a TB, and fix up the CPU state afterwards if necessary */ 434 /* 435 * Disable CFI checks. 436 * TCG creates binary blobs at runtime, with the transformed code. 437 * A TB is a blob of binary code, created at runtime and called with an 438 * indirect function call. Since such function did not exist at compile time, 439 * the CFI runtime has no way to verify its signature and would fail. 440 * TCG is not considered a security-sensitive part of QEMU so this does not 441 * affect the impact of CFI in environment with high security requirements 442 */ 443 static inline TranslationBlock * QEMU_DISABLE_CFI 444 cpu_tb_exec(CPUState *cpu, TranslationBlock *itb, int *tb_exit) 445 { 446 CPUArchState *env = cpu->env_ptr; 447 uintptr_t ret; 448 TranslationBlock *last_tb; 449 const void *tb_ptr = itb->tc.ptr; 450 451 if (qemu_loglevel_mask(CPU_LOG_TB_CPU | CPU_LOG_EXEC)) { 452 log_cpu_exec(log_pc(cpu, itb), cpu, itb); 453 } 454 455 qemu_thread_jit_execute(); 456 ret = tcg_qemu_tb_exec(env, tb_ptr); 457 cpu->can_do_io = 1; 458 qemu_plugin_disable_mem_helpers(cpu); 459 /* 460 * TODO: Delay swapping back to the read-write region of the TB 461 * until we actually need to modify the TB. The read-only copy, 462 * coming from the rx region, shares the same host TLB entry as 463 * the code that executed the exit_tb opcode that arrived here. 464 * If we insist on touching both the RX and the RW pages, we 465 * double the host TLB pressure. 466 */ 467 last_tb = tcg_splitwx_to_rw((void *)(ret & ~TB_EXIT_MASK)); 468 *tb_exit = ret & TB_EXIT_MASK; 469 470 trace_exec_tb_exit(last_tb, *tb_exit); 471 472 if (*tb_exit > TB_EXIT_IDX1) { 473 /* We didn't start executing this TB (eg because the instruction 474 * counter hit zero); we must restore the guest PC to the address 475 * of the start of the TB. 476 */ 477 CPUClass *cc = CPU_GET_CLASS(cpu); 478 479 if (cc->tcg_ops->synchronize_from_tb) { 480 cc->tcg_ops->synchronize_from_tb(cpu, last_tb); 481 } else { 482 tcg_debug_assert(!(tb_cflags(last_tb) & CF_PCREL)); 483 assert(cc->set_pc); 484 cc->set_pc(cpu, last_tb->pc); 485 } 486 if (qemu_loglevel_mask(CPU_LOG_EXEC)) { 487 target_ulong pc = log_pc(cpu, last_tb); 488 if (qemu_log_in_addr_range(pc)) { 489 qemu_log("Stopped execution of TB chain before %p [" 490 TARGET_FMT_lx "] %s\n", 491 last_tb->tc.ptr, pc, lookup_symbol(pc)); 492 } 493 } 494 } 495 496 /* 497 * If gdb single-step, and we haven't raised another exception, 498 * raise a debug exception. Single-step with another exception 499 * is handled in cpu_handle_exception. 500 */ 501 if (unlikely(cpu->singlestep_enabled) && cpu->exception_index == -1) { 502 cpu->exception_index = EXCP_DEBUG; 503 cpu_loop_exit(cpu); 504 } 505 506 return last_tb; 507 } 508 509 510 static void cpu_exec_enter(CPUState *cpu) 511 { 512 CPUClass *cc = CPU_GET_CLASS(cpu); 513 514 if (cc->tcg_ops->cpu_exec_enter) { 515 cc->tcg_ops->cpu_exec_enter(cpu); 516 } 517 } 518 519 static void cpu_exec_exit(CPUState *cpu) 520 { 521 CPUClass *cc = CPU_GET_CLASS(cpu); 522 523 if (cc->tcg_ops->cpu_exec_exit) { 524 cc->tcg_ops->cpu_exec_exit(cpu); 525 } 526 } 527 528 void cpu_exec_step_atomic(CPUState *cpu) 529 { 530 CPUArchState *env = cpu->env_ptr; 531 TranslationBlock *tb; 532 target_ulong cs_base, pc; 533 uint32_t flags, cflags; 534 int tb_exit; 535 536 if (sigsetjmp(cpu->jmp_env, 0) == 0) { 537 start_exclusive(); 538 g_assert(cpu == current_cpu); 539 g_assert(!cpu->running); 540 cpu->running = true; 541 542 cpu_get_tb_cpu_state(env, &pc, &cs_base, &flags); 543 544 cflags = curr_cflags(cpu); 545 /* Execute in a serial context. */ 546 cflags &= ~CF_PARALLEL; 547 /* After 1 insn, return and release the exclusive lock. */ 548 cflags |= CF_NO_GOTO_TB | CF_NO_GOTO_PTR | 1; 549 /* 550 * No need to check_for_breakpoints here. 551 * We only arrive in cpu_exec_step_atomic after beginning execution 552 * of an insn that includes an atomic operation we can't handle. 553 * Any breakpoint for this insn will have been recognized earlier. 554 */ 555 556 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 557 if (tb == NULL) { 558 mmap_lock(); 559 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 560 mmap_unlock(); 561 } 562 563 cpu_exec_enter(cpu); 564 /* execute the generated code */ 565 trace_exec_tb(tb, pc); 566 cpu_tb_exec(cpu, tb, &tb_exit); 567 cpu_exec_exit(cpu); 568 } else { 569 #ifndef CONFIG_SOFTMMU 570 clear_helper_retaddr(); 571 if (have_mmap_lock()) { 572 mmap_unlock(); 573 } 574 #endif 575 if (qemu_mutex_iothread_locked()) { 576 qemu_mutex_unlock_iothread(); 577 } 578 assert_no_pages_locked(); 579 } 580 581 /* 582 * As we start the exclusive region before codegen we must still 583 * be in the region if we longjump out of either the codegen or 584 * the execution. 585 */ 586 g_assert(cpu_in_exclusive_context(cpu)); 587 cpu->running = false; 588 end_exclusive(); 589 } 590 591 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr) 592 { 593 /* 594 * Get the rx view of the structure, from which we find the 595 * executable code address, and tb_target_set_jmp_target can 596 * produce a pc-relative displacement to jmp_target_addr[n]. 597 */ 598 const TranslationBlock *c_tb = tcg_splitwx_to_rx(tb); 599 uintptr_t offset = tb->jmp_insn_offset[n]; 600 uintptr_t jmp_rx = (uintptr_t)tb->tc.ptr + offset; 601 uintptr_t jmp_rw = jmp_rx - tcg_splitwx_diff; 602 603 tb->jmp_target_addr[n] = addr; 604 tb_target_set_jmp_target(c_tb, n, jmp_rx, jmp_rw); 605 } 606 607 static inline void tb_add_jump(TranslationBlock *tb, int n, 608 TranslationBlock *tb_next) 609 { 610 uintptr_t old; 611 612 qemu_thread_jit_write(); 613 assert(n < ARRAY_SIZE(tb->jmp_list_next)); 614 qemu_spin_lock(&tb_next->jmp_lock); 615 616 /* make sure the destination TB is valid */ 617 if (tb_next->cflags & CF_INVALID) { 618 goto out_unlock_next; 619 } 620 /* Atomically claim the jump destination slot only if it was NULL */ 621 old = qatomic_cmpxchg(&tb->jmp_dest[n], (uintptr_t)NULL, 622 (uintptr_t)tb_next); 623 if (old) { 624 goto out_unlock_next; 625 } 626 627 /* patch the native jump address */ 628 tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc.ptr); 629 630 /* add in TB jmp list */ 631 tb->jmp_list_next[n] = tb_next->jmp_list_head; 632 tb_next->jmp_list_head = (uintptr_t)tb | n; 633 634 qemu_spin_unlock(&tb_next->jmp_lock); 635 636 qemu_log_mask(CPU_LOG_EXEC, "Linking TBs %p index %d -> %p\n", 637 tb->tc.ptr, n, tb_next->tc.ptr); 638 return; 639 640 out_unlock_next: 641 qemu_spin_unlock(&tb_next->jmp_lock); 642 return; 643 } 644 645 static inline bool cpu_handle_halt(CPUState *cpu) 646 { 647 #ifndef CONFIG_USER_ONLY 648 if (cpu->halted) { 649 #if defined(TARGET_I386) 650 if (cpu->interrupt_request & CPU_INTERRUPT_POLL) { 651 X86CPU *x86_cpu = X86_CPU(cpu); 652 qemu_mutex_lock_iothread(); 653 apic_poll_irq(x86_cpu->apic_state); 654 cpu_reset_interrupt(cpu, CPU_INTERRUPT_POLL); 655 qemu_mutex_unlock_iothread(); 656 } 657 #endif /* TARGET_I386 */ 658 if (!cpu_has_work(cpu)) { 659 return true; 660 } 661 662 cpu->halted = 0; 663 } 664 #endif /* !CONFIG_USER_ONLY */ 665 666 return false; 667 } 668 669 static inline void cpu_handle_debug_exception(CPUState *cpu) 670 { 671 CPUClass *cc = CPU_GET_CLASS(cpu); 672 CPUWatchpoint *wp; 673 674 if (!cpu->watchpoint_hit) { 675 QTAILQ_FOREACH(wp, &cpu->watchpoints, entry) { 676 wp->flags &= ~BP_WATCHPOINT_HIT; 677 } 678 } 679 680 if (cc->tcg_ops->debug_excp_handler) { 681 cc->tcg_ops->debug_excp_handler(cpu); 682 } 683 } 684 685 static inline bool cpu_handle_exception(CPUState *cpu, int *ret) 686 { 687 if (cpu->exception_index < 0) { 688 #ifndef CONFIG_USER_ONLY 689 if (replay_has_exception() 690 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0) { 691 /* Execute just one insn to trigger exception pending in the log */ 692 cpu->cflags_next_tb = (curr_cflags(cpu) & ~CF_USE_ICOUNT) 693 | CF_NOIRQ | 1; 694 } 695 #endif 696 return false; 697 } 698 if (cpu->exception_index >= EXCP_INTERRUPT) { 699 /* exit request from the cpu execution loop */ 700 *ret = cpu->exception_index; 701 if (*ret == EXCP_DEBUG) { 702 cpu_handle_debug_exception(cpu); 703 } 704 cpu->exception_index = -1; 705 return true; 706 } else { 707 #if defined(CONFIG_USER_ONLY) 708 /* if user mode only, we simulate a fake exception 709 which will be handled outside the cpu execution 710 loop */ 711 #if defined(TARGET_I386) 712 CPUClass *cc = CPU_GET_CLASS(cpu); 713 cc->tcg_ops->fake_user_interrupt(cpu); 714 #endif /* TARGET_I386 */ 715 *ret = cpu->exception_index; 716 cpu->exception_index = -1; 717 return true; 718 #else 719 if (replay_exception()) { 720 CPUClass *cc = CPU_GET_CLASS(cpu); 721 qemu_mutex_lock_iothread(); 722 cc->tcg_ops->do_interrupt(cpu); 723 qemu_mutex_unlock_iothread(); 724 cpu->exception_index = -1; 725 726 if (unlikely(cpu->singlestep_enabled)) { 727 /* 728 * After processing the exception, ensure an EXCP_DEBUG is 729 * raised when single-stepping so that GDB doesn't miss the 730 * next instruction. 731 */ 732 *ret = EXCP_DEBUG; 733 cpu_handle_debug_exception(cpu); 734 return true; 735 } 736 } else if (!replay_has_interrupt()) { 737 /* give a chance to iothread in replay mode */ 738 *ret = EXCP_INTERRUPT; 739 return true; 740 } 741 #endif 742 } 743 744 return false; 745 } 746 747 #ifndef CONFIG_USER_ONLY 748 /* 749 * CPU_INTERRUPT_POLL is a virtual event which gets converted into a 750 * "real" interrupt event later. It does not need to be recorded for 751 * replay purposes. 752 */ 753 static inline bool need_replay_interrupt(int interrupt_request) 754 { 755 #if defined(TARGET_I386) 756 return !(interrupt_request & CPU_INTERRUPT_POLL); 757 #else 758 return true; 759 #endif 760 } 761 #endif /* !CONFIG_USER_ONLY */ 762 763 static inline bool cpu_handle_interrupt(CPUState *cpu, 764 TranslationBlock **last_tb) 765 { 766 /* 767 * If we have requested custom cflags with CF_NOIRQ we should 768 * skip checking here. Any pending interrupts will get picked up 769 * by the next TB we execute under normal cflags. 770 */ 771 if (cpu->cflags_next_tb != -1 && cpu->cflags_next_tb & CF_NOIRQ) { 772 return false; 773 } 774 775 /* Clear the interrupt flag now since we're processing 776 * cpu->interrupt_request and cpu->exit_request. 777 * Ensure zeroing happens before reading cpu->exit_request or 778 * cpu->interrupt_request (see also smp_wmb in cpu_exit()) 779 */ 780 qatomic_set_mb(&cpu_neg(cpu)->icount_decr.u16.high, 0); 781 782 if (unlikely(qatomic_read(&cpu->interrupt_request))) { 783 int interrupt_request; 784 qemu_mutex_lock_iothread(); 785 interrupt_request = cpu->interrupt_request; 786 if (unlikely(cpu->singlestep_enabled & SSTEP_NOIRQ)) { 787 /* Mask out external interrupts for this step. */ 788 interrupt_request &= ~CPU_INTERRUPT_SSTEP_MASK; 789 } 790 if (interrupt_request & CPU_INTERRUPT_DEBUG) { 791 cpu->interrupt_request &= ~CPU_INTERRUPT_DEBUG; 792 cpu->exception_index = EXCP_DEBUG; 793 qemu_mutex_unlock_iothread(); 794 return true; 795 } 796 #if !defined(CONFIG_USER_ONLY) 797 if (replay_mode == REPLAY_MODE_PLAY && !replay_has_interrupt()) { 798 /* Do nothing */ 799 } else if (interrupt_request & CPU_INTERRUPT_HALT) { 800 replay_interrupt(); 801 cpu->interrupt_request &= ~CPU_INTERRUPT_HALT; 802 cpu->halted = 1; 803 cpu->exception_index = EXCP_HLT; 804 qemu_mutex_unlock_iothread(); 805 return true; 806 } 807 #if defined(TARGET_I386) 808 else if (interrupt_request & CPU_INTERRUPT_INIT) { 809 X86CPU *x86_cpu = X86_CPU(cpu); 810 CPUArchState *env = &x86_cpu->env; 811 replay_interrupt(); 812 cpu_svm_check_intercept_param(env, SVM_EXIT_INIT, 0, 0); 813 do_cpu_init(x86_cpu); 814 cpu->exception_index = EXCP_HALTED; 815 qemu_mutex_unlock_iothread(); 816 return true; 817 } 818 #else 819 else if (interrupt_request & CPU_INTERRUPT_RESET) { 820 replay_interrupt(); 821 cpu_reset(cpu); 822 qemu_mutex_unlock_iothread(); 823 return true; 824 } 825 #endif /* !TARGET_I386 */ 826 /* The target hook has 3 exit conditions: 827 False when the interrupt isn't processed, 828 True when it is, and we should restart on a new TB, 829 and via longjmp via cpu_loop_exit. */ 830 else { 831 CPUClass *cc = CPU_GET_CLASS(cpu); 832 833 if (cc->tcg_ops->cpu_exec_interrupt && 834 cc->tcg_ops->cpu_exec_interrupt(cpu, interrupt_request)) { 835 if (need_replay_interrupt(interrupt_request)) { 836 replay_interrupt(); 837 } 838 /* 839 * After processing the interrupt, ensure an EXCP_DEBUG is 840 * raised when single-stepping so that GDB doesn't miss the 841 * next instruction. 842 */ 843 if (unlikely(cpu->singlestep_enabled)) { 844 cpu->exception_index = EXCP_DEBUG; 845 qemu_mutex_unlock_iothread(); 846 return true; 847 } 848 cpu->exception_index = -1; 849 *last_tb = NULL; 850 } 851 /* The target hook may have updated the 'cpu->interrupt_request'; 852 * reload the 'interrupt_request' value */ 853 interrupt_request = cpu->interrupt_request; 854 } 855 #endif /* !CONFIG_USER_ONLY */ 856 if (interrupt_request & CPU_INTERRUPT_EXITTB) { 857 cpu->interrupt_request &= ~CPU_INTERRUPT_EXITTB; 858 /* ensure that no TB jump will be modified as 859 the program flow was changed */ 860 *last_tb = NULL; 861 } 862 863 /* If we exit via cpu_loop_exit/longjmp it is reset in cpu_exec */ 864 qemu_mutex_unlock_iothread(); 865 } 866 867 /* Finally, check if we need to exit to the main loop. */ 868 if (unlikely(qatomic_read(&cpu->exit_request)) 869 || (icount_enabled() 870 && (cpu->cflags_next_tb == -1 || cpu->cflags_next_tb & CF_USE_ICOUNT) 871 && cpu_neg(cpu)->icount_decr.u16.low + cpu->icount_extra == 0)) { 872 qatomic_set(&cpu->exit_request, 0); 873 if (cpu->exception_index == -1) { 874 cpu->exception_index = EXCP_INTERRUPT; 875 } 876 return true; 877 } 878 879 return false; 880 } 881 882 static inline void cpu_loop_exec_tb(CPUState *cpu, TranslationBlock *tb, 883 target_ulong pc, 884 TranslationBlock **last_tb, int *tb_exit) 885 { 886 int32_t insns_left; 887 888 trace_exec_tb(tb, pc); 889 tb = cpu_tb_exec(cpu, tb, tb_exit); 890 if (*tb_exit != TB_EXIT_REQUESTED) { 891 *last_tb = tb; 892 return; 893 } 894 895 *last_tb = NULL; 896 insns_left = qatomic_read(&cpu_neg(cpu)->icount_decr.u32); 897 if (insns_left < 0) { 898 /* Something asked us to stop executing chained TBs; just 899 * continue round the main loop. Whatever requested the exit 900 * will also have set something else (eg exit_request or 901 * interrupt_request) which will be handled by 902 * cpu_handle_interrupt. cpu_handle_interrupt will also 903 * clear cpu->icount_decr.u16.high. 904 */ 905 return; 906 } 907 908 /* Instruction counter expired. */ 909 assert(icount_enabled()); 910 #ifndef CONFIG_USER_ONLY 911 /* Ensure global icount has gone forward */ 912 icount_update(cpu); 913 /* Refill decrementer and continue execution. */ 914 insns_left = MIN(0xffff, cpu->icount_budget); 915 cpu_neg(cpu)->icount_decr.u16.low = insns_left; 916 cpu->icount_extra = cpu->icount_budget - insns_left; 917 918 /* 919 * If the next tb has more instructions than we have left to 920 * execute we need to ensure we find/generate a TB with exactly 921 * insns_left instructions in it. 922 */ 923 if (insns_left > 0 && insns_left < tb->icount) { 924 assert(insns_left <= CF_COUNT_MASK); 925 assert(cpu->icount_extra == 0); 926 cpu->cflags_next_tb = (tb->cflags & ~CF_COUNT_MASK) | insns_left; 927 } 928 #endif 929 } 930 931 /* main execution loop */ 932 933 static int __attribute__((noinline)) 934 cpu_exec_loop(CPUState *cpu, SyncClocks *sc) 935 { 936 int ret; 937 938 /* if an exception is pending, we execute it here */ 939 while (!cpu_handle_exception(cpu, &ret)) { 940 TranslationBlock *last_tb = NULL; 941 int tb_exit = 0; 942 943 while (!cpu_handle_interrupt(cpu, &last_tb)) { 944 TranslationBlock *tb; 945 target_ulong cs_base, pc; 946 uint32_t flags, cflags; 947 948 cpu_get_tb_cpu_state(cpu->env_ptr, &pc, &cs_base, &flags); 949 950 /* 951 * When requested, use an exact setting for cflags for the next 952 * execution. This is used for icount, precise smc, and stop- 953 * after-access watchpoints. Since this request should never 954 * have CF_INVALID set, -1 is a convenient invalid value that 955 * does not require tcg headers for cpu_common_reset. 956 */ 957 cflags = cpu->cflags_next_tb; 958 if (cflags == -1) { 959 cflags = curr_cflags(cpu); 960 } else { 961 cpu->cflags_next_tb = -1; 962 } 963 964 if (check_for_breakpoints(cpu, pc, &cflags)) { 965 break; 966 } 967 968 tb = tb_lookup(cpu, pc, cs_base, flags, cflags); 969 if (tb == NULL) { 970 CPUJumpCache *jc; 971 uint32_t h; 972 973 mmap_lock(); 974 tb = tb_gen_code(cpu, pc, cs_base, flags, cflags); 975 mmap_unlock(); 976 977 /* 978 * We add the TB in the virtual pc hash table 979 * for the fast lookup 980 */ 981 h = tb_jmp_cache_hash_func(pc); 982 jc = cpu->tb_jmp_cache; 983 if (cflags & CF_PCREL) { 984 jc->array[h].pc = pc; 985 /* Ensure pc is written first. */ 986 qatomic_store_release(&jc->array[h].tb, tb); 987 } else { 988 /* Use the pc value already stored in tb->pc. */ 989 qatomic_set(&jc->array[h].tb, tb); 990 } 991 } 992 993 #ifndef CONFIG_USER_ONLY 994 /* 995 * We don't take care of direct jumps when address mapping 996 * changes in system emulation. So it's not safe to make a 997 * direct jump to a TB spanning two pages because the mapping 998 * for the second page can change. 999 */ 1000 if (tb_page_addr1(tb) != -1) { 1001 last_tb = NULL; 1002 } 1003 #endif 1004 /* See if we can patch the calling TB. */ 1005 if (last_tb) { 1006 tb_add_jump(last_tb, tb_exit, tb); 1007 } 1008 1009 cpu_loop_exec_tb(cpu, tb, pc, &last_tb, &tb_exit); 1010 1011 /* Try to align the host and virtual clocks 1012 if the guest is in advance */ 1013 align_clocks(sc, cpu); 1014 } 1015 } 1016 return ret; 1017 } 1018 1019 static int cpu_exec_setjmp(CPUState *cpu, SyncClocks *sc) 1020 { 1021 /* Prepare setjmp context for exception handling. */ 1022 if (unlikely(sigsetjmp(cpu->jmp_env, 0) != 0)) { 1023 /* Non-buggy compilers preserve this; assert the correct value. */ 1024 g_assert(cpu == current_cpu); 1025 1026 #ifndef CONFIG_SOFTMMU 1027 clear_helper_retaddr(); 1028 if (have_mmap_lock()) { 1029 mmap_unlock(); 1030 } 1031 #endif 1032 if (qemu_mutex_iothread_locked()) { 1033 qemu_mutex_unlock_iothread(); 1034 } 1035 1036 assert_no_pages_locked(); 1037 } 1038 1039 return cpu_exec_loop(cpu, sc); 1040 } 1041 1042 int cpu_exec(CPUState *cpu) 1043 { 1044 int ret; 1045 SyncClocks sc = { 0 }; 1046 1047 /* replay_interrupt may need current_cpu */ 1048 current_cpu = cpu; 1049 1050 if (cpu_handle_halt(cpu)) { 1051 return EXCP_HALTED; 1052 } 1053 1054 rcu_read_lock(); 1055 cpu_exec_enter(cpu); 1056 1057 /* 1058 * Calculate difference between guest clock and host clock. 1059 * This delay includes the delay of the last cycle, so 1060 * what we have to do is sleep until it is 0. As for the 1061 * advance/delay we gain here, we try to fix it next time. 1062 */ 1063 init_delay_params(&sc, cpu); 1064 1065 ret = cpu_exec_setjmp(cpu, &sc); 1066 1067 cpu_exec_exit(cpu); 1068 rcu_read_unlock(); 1069 1070 return ret; 1071 } 1072 1073 void tcg_exec_realizefn(CPUState *cpu, Error **errp) 1074 { 1075 static bool tcg_target_initialized; 1076 CPUClass *cc = CPU_GET_CLASS(cpu); 1077 1078 if (!tcg_target_initialized) { 1079 cc->tcg_ops->initialize(); 1080 tcg_target_initialized = true; 1081 } 1082 1083 cpu->tb_jmp_cache = g_new0(CPUJumpCache, 1); 1084 tlb_init(cpu); 1085 #ifndef CONFIG_USER_ONLY 1086 tcg_iommu_init_notifier_list(cpu); 1087 #endif /* !CONFIG_USER_ONLY */ 1088 /* qemu_plugin_vcpu_init_hook delayed until cpu_index assigned. */ 1089 } 1090 1091 /* undo the initializations in reverse order */ 1092 void tcg_exec_unrealizefn(CPUState *cpu) 1093 { 1094 #ifndef CONFIG_USER_ONLY 1095 tcg_iommu_free_notifier_list(cpu); 1096 #endif /* !CONFIG_USER_ONLY */ 1097 1098 tlb_destroy(cpu); 1099 g_free_rcu(cpu->tb_jmp_cache, rcu); 1100 } 1101